# Grun mouse HSC (CEL-seq) ## Introduction This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with CEL-seq [@grun2016denovo]. Despite its name, this dataset actually contains both sorted HSCs and a population of micro-dissected bone marrow cells. ## Data loading ``` r library(scRNAseq) sce.grun.hsc <- GrunHSCData(ensembl=TRUE) ``` ``` r library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] anno <- select(ens.mm.v97, keys=rownames(sce.grun.hsc), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.grun.hsc) <- anno[match(rownames(sce.grun.hsc), anno$GENEID),] ``` After loading and annotation, we inspect the resulting `SingleCellExperiment` object: ``` r sce.grun.hsc ``` ``` ## class: SingleCellExperiment ## dim: 21817 1915 ## metadata(0): ## assays(1): counts ## rownames(21817): ENSMUSG00000109644 ENSMUSG00000007777 ... ## ENSMUSG00000055670 ENSMUSG00000039068 ## rowData names(3): GENEID SYMBOL SEQNAME ## colnames(1915): JC4_349_HSC_FE_S13_ JC4_350_HSC_FE_S13_ ... ## JC48P6_1203_HSC_FE_S8_ JC48P6_1204_HSC_FE_S8_ ## colData names(2): sample protocol ## reducedDimNames(0): ## mainExpName: NULL ## altExpNames(0): ``` ## Quality control ``` r unfiltered <- sce.grun.hsc ``` For some reason, no mitochondrial transcripts are available, and we have no spike-in transcripts, so we only use the number of detected genes and the library size for quality control. We block on the protocol used for cell extraction, ignoring the micro-dissected cells when computing this threshold. This is based on our judgement that a majority of micro-dissected plates consist of a majority of low-quality cells, compromising the assumptions of outlier detection. ``` r library(scuttle) stats <- perCellQCMetrics(sce.grun.hsc) qc <- quickPerCellQC(stats, batch=sce.grun.hsc$protocol, subset=grepl("sorted", sce.grun.hsc$protocol)) sce.grun.hsc <- sce.grun.hsc[,!qc$discard] ``` We examine the number of cells discarded for each reason. ``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features discard ## 465 482 488 ``` We create some diagnostic plots for each metric (Figure \@ref(fig:unref-hgrun-qc-dist)). The library sizes are unusually low for many plates of micro-dissected cells; this may be attributable to damage induced by the extraction protocol compared to cell sorting. ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard library(scater) gridExtra::grid.arrange( plotColData(unfiltered, y="sum", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Total count") + facet_wrap(~protocol), plotColData(unfiltered, y="detected", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Detected features") + facet_wrap(~protocol), ncol=1 ) ```
Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-hgrun-qc-dist)Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization ``` r library(scran) set.seed(101000110) clusters <- quickCluster(sce.grun.hsc) sce.grun.hsc <- computeSumFactors(sce.grun.hsc, clusters=clusters) sce.grun.hsc <- logNormCounts(sce.grun.hsc) ``` We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure \@ref(fig:unref-hgrun-norm)). ``` r summary(sizeFactors(sce.grun.hsc)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0275 0.2897 0.6032 1.0000 1.2011 16.4333 ``` ``` r plot(librarySizeFactors(sce.grun.hsc), sizeFactors(sce.grun.hsc), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

(\#fig:unref-hgrun-norm)Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

## Variance modelling We create a mean-variance trend based on the expectation that UMI counts have Poisson technical noise. We do not block on sample here as we want to preserve any difference between the micro-dissected cells and the sorted HSCs. ``` r set.seed(00010101) dec.grun.hsc <- modelGeneVarByPoisson(sce.grun.hsc) top.grun.hsc <- getTopHVGs(dec.grun.hsc, prop=0.1) ``` The lack of a typical "bump" shape in Figure \@ref(fig:unref-hgrun-var) is caused by the low counts. ``` r plot(dec.grun.hsc$mean, dec.grun.hsc$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.grun.hsc) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

(\#fig:unref-hgrun-var)Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

## Dimensionality reduction ``` r set.seed(101010011) sce.grun.hsc <- denoisePCA(sce.grun.hsc, technical=dec.grun.hsc, subset.row=top.grun.hsc) sce.grun.hsc <- runTSNE(sce.grun.hsc, dimred="PCA") ``` We check that the number of retained PCs is sensible. ``` r ncol(reducedDim(sce.grun.hsc, "PCA")) ``` ``` ## [1] 9 ``` ## Clustering ``` r snn.gr <- buildSNNGraph(sce.grun.hsc, use.dimred="PCA") colLabels(sce.grun.hsc) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r table(colLabels(sce.grun.hsc)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 259 148 221 103 177 108 48 122 98 63 62 18 ``` ``` r short <- ifelse(grepl("micro", sce.grun.hsc$protocol), "micro", "sorted") gridExtra:::grid.arrange( plotTSNE(sce.grun.hsc, colour_by="label"), plotTSNE(sce.grun.hsc, colour_by=I(short)), ncol=2 ) ```
Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

(\#fig:unref-hgrun-tsne)Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

## Marker gene detection ``` r markers <- findMarkers(sce.grun.hsc, test.type="wilcox", direction="up", row.data=rowData(sce.grun.hsc)[,"SYMBOL",drop=FALSE]) ``` To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of _Camp_, _Lcn2_, _Ltf_ and lysozyme genes indicates that this cluster contains cells of neuronal origin. ``` r chosen <- markers[['6']] best <- chosen[chosen$Top <= 10,] aucs <- getMarkerEffects(best, prefix="AUC") rownames(aucs) <- best$SYMBOL library(pheatmap) pheatmap(aucs, color=viridis::plasma(100)) ```
Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

(\#fig:unref-heat-hgrun-markers)Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

## Session Info {-}
``` R version 4.5.0 (2025-04-11) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] pheatmap_1.0.12 scran_1.37.0 [3] scater_1.37.0 ggplot2_3.5.2 [5] scuttle_1.19.0 AnnotationHub_3.99.0 [7] BiocFileCache_2.99.0 dbplyr_2.5.0 [9] ensembldb_2.33.0 AnnotationFilter_1.33.0 [11] GenomicFeatures_1.61.0 AnnotationDbi_1.71.0 [13] scRNAseq_2.23.0 SingleCellExperiment_1.31.0 [15] SummarizedExperiment_1.39.0 Biobase_2.69.0 [17] GenomicRanges_1.61.0 GenomeInfoDb_1.45.0 [19] IRanges_2.43.0 S4Vectors_0.47.0 [21] BiocGenerics_0.55.0 generics_0.1.3 [23] MatrixGenerics_1.21.0 matrixStats_1.5.0 [25] BiocStyle_2.37.0 rebook_1.19.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_2.0.0 CodeDepends_0.6.6 [4] magrittr_2.0.3 ggbeeswarm_0.7.2 gypsum_1.5.0 [7] farver_2.1.2 rmarkdown_2.29 BiocIO_1.19.0 [10] vctrs_0.6.5 memoise_2.0.1 Rsamtools_2.25.0 [13] RCurl_1.98-1.17 htmltools_0.5.8.1 S4Arrays_1.9.0 [16] curl_6.2.2 BiocNeighbors_2.3.0 Rhdf5lib_1.31.0 [19] SparseArray_1.9.0 rhdf5_2.53.0 sass_0.4.10 [22] alabaster.base_1.9.0 bslib_0.9.0 alabaster.sce_1.9.0 [25] httr2_1.1.2 cachem_1.1.0 GenomicAlignments_1.45.0 [28] igraph_2.1.4 lifecycle_1.0.4 pkgconfig_2.0.3 [31] rsvd_1.0.5 Matrix_1.7-3 R6_2.6.1 [34] fastmap_1.2.0 GenomeInfoDbData_1.2.14 digest_0.6.37 [37] colorspace_2.1-1 dqrng_0.4.1 irlba_2.3.5.1 [40] ExperimentHub_2.99.0 RSQLite_2.3.9 beachmat_2.25.0 [43] labeling_0.4.3 filelock_1.0.3 httr_1.4.7 [46] abind_1.4-8 compiler_4.5.0 bit64_4.6.0-1 [49] withr_3.0.2 BiocParallel_1.43.0 viridis_0.6.5 [52] DBI_1.2.3 HDF5Array_1.37.0 alabaster.ranges_1.9.0 [55] alabaster.schemas_1.9.0 rappdirs_0.3.3 DelayedArray_0.35.1 [58] bluster_1.19.0 rjson_0.2.23 tools_4.5.0 [61] vipor_0.4.7 beeswarm_0.4.0 glue_1.8.0 [64] h5mread_1.1.0 restfulr_0.0.15 rhdf5filters_1.21.0 [67] grid_4.5.0 Rtsne_0.17 cluster_2.1.8.1 [70] gtable_0.3.6 metapod_1.17.0 BiocSingular_1.25.0 [73] ScaledMatrix_1.17.0 XVector_0.49.0 ggrepel_0.9.6 [76] BiocVersion_3.22.0 pillar_1.10.2 limma_3.65.0 [79] dplyr_1.1.4 lattice_0.22-7 rtracklayer_1.69.0 [82] bit_4.6.0 tidyselect_1.2.1 locfit_1.5-9.12 [85] Biostrings_2.77.0 knitr_1.50 gridExtra_2.3 [88] bookdown_0.43 ProtGenerics_1.41.0 edgeR_4.7.0 [91] xfun_0.52 statmod_1.5.0 UCSC.utils_1.5.0 [94] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.3 [97] codetools_0.2-20 tibble_3.2.1 alabaster.matrix_1.9.0 [100] BiocManager_1.30.25 graph_1.87.0 cli_3.6.4 [103] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.14 [106] dir.expiry_1.17.0 png_0.1-8 XML_3.99-0.18 [109] parallel_4.5.0 blob_1.2.4 bitops_1.0-9 [112] viridisLite_0.4.2 alabaster.se_1.9.0 scales_1.3.0 [115] purrr_1.0.4 crayon_1.5.3 rlang_1.1.6 [118] cowplot_1.1.3 KEGGREST_1.49.0 ```