# (PART) Case studies {-} # Human PBMCs (10X Genomics) ## Introduction This performs an analysis of the public PBMC ID dataset generated by 10X Genomics [@zheng2017massively], starting from the filtered count matrix. ## Data loading ``` r library(TENxPBMCData) all.sce <- list( pbmc3k=TENxPBMCData('pbmc3k'), pbmc4k=TENxPBMCData('pbmc4k'), pbmc8k=TENxPBMCData('pbmc8k') ) ``` ## Quality control ``` r unfiltered <- all.sce ``` Cell calling implicitly serves as a QC step to remove libraries with low total counts and number of detected genes. Thus, we will only filter on the mitochondrial proportion. ``` r library(scater) stats <- high.mito <- list() for (n in names(all.sce)) { current <- all.sce[[n]] is.mito <- grep("MT", rowData(current)$Symbol_TENx) stats[[n]] <- perCellQCMetrics(current, subsets=list(Mito=is.mito)) high.mito[[n]] <- isOutlier(stats[[n]]$subsets_Mito_percent, type="higher") all.sce[[n]] <- current[,!high.mito[[n]]] } ``` ``` r qcplots <- list() for (n in names(all.sce)) { current <- unfiltered[[n]] colData(current) <- cbind(colData(current), stats[[n]]) current$discard <- high.mito[[n]] qcplots[[n]] <- plotColData(current, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() } do.call(gridExtra::grid.arrange, c(qcplots, ncol=3)) ```
Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-pbmc-filtered-var)Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r lapply(high.mito, summary) ``` ``` ## $pbmc3k ## Mode FALSE TRUE ## logical 2609 91 ## ## $pbmc4k ## Mode FALSE TRUE ## logical 4182 158 ## ## $pbmc8k ## Mode FALSE TRUE ## logical 8157 224 ``` ## Normalization We perform library size normalization, simply for convenience when dealing with file-backed matrices. ``` r all.sce <- lapply(all.sce, logNormCounts) ``` ``` r lapply(all.sce, function(x) summary(sizeFactors(x))) ``` ``` ## $pbmc3k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.234 0.748 0.926 1.000 1.157 6.604 ## ## $pbmc4k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.315 0.711 0.890 1.000 1.127 11.027 ## ## $pbmc8k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.296 0.704 0.877 1.000 1.118 6.794 ``` ## Variance modelling ``` r library(scran) all.dec <- lapply(all.sce, modelGeneVar) all.hvgs <- lapply(all.dec, getTopHVGs, prop=0.1) ``` ``` r par(mfrow=c(1,3)) for (n in names(all.dec)) { curdec <- all.dec[[n]] plot(curdec$mean, curdec$total, pch=16, cex=0.5, main=n, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(curdec) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-filtered-pbmc-variance)Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Dimensionality reduction For various reasons, we will first analyze each PBMC dataset separately rather than merging them together. We use randomized SVD, which is more efficient for file-backed matrices. ``` r library(BiocSingular) set.seed(10000) all.sce <- mapply(FUN=runPCA, x=all.sce, subset_row=all.hvgs, MoreArgs=list(ncomponents=25, BSPARAM=RandomParam()), SIMPLIFY=FALSE) set.seed(100000) all.sce <- lapply(all.sce, runTSNE, dimred="PCA") set.seed(1000000) all.sce <- lapply(all.sce, runUMAP, dimred="PCA") ``` ## Clustering ``` r for (n in names(all.sce)) { g <- buildSNNGraph(all.sce[[n]], k=10, use.dimred='PCA') clust <- igraph::cluster_walktrap(g)$membership colLabels(all.sce[[n]]) <- factor(clust) } ``` ``` r lapply(all.sce, function(x) table(colLabels(x))) ``` ``` ## $pbmc3k ## ## 1 2 3 4 5 6 7 8 9 10 ## 475 636 153 476 164 31 159 164 340 11 ## ## $pbmc4k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 127 594 518 775 211 394 187 993 55 201 91 36 ## ## $pbmc8k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ## 292 1603 388 94 738 1035 1049 156 203 153 2098 261 64 14 9 ``` ``` r all.tsne <- list() for (n in names(all.sce)) { all.tsne[[n]] <- plotTSNE(all.sce[[n]], colour_by="label") + ggtitle(n) } do.call(gridExtra::grid.arrange, c(all.tsne, list(ncol=2))) ```
Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

(\#fig:unref-filtered-pbmc-tsne)Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

## Data integration With the per-dataset analyses out of the way, we will now repeat the analysis after merging together the three batches. ``` r # Intersecting the common genes. universe <- Reduce(intersect, lapply(all.sce, rownames)) all.sce2 <- lapply(all.sce, "[", i=universe,) all.dec2 <- lapply(all.dec, "[", i=universe,) # Renormalizing to adjust for differences in depth. library(batchelor) normed.sce <- do.call(multiBatchNorm, all.sce2) # Identifying a set of HVGs using stats from all batches. combined.dec <- do.call(combineVar, all.dec2) combined.hvg <- getTopHVGs(combined.dec, n=5000) set.seed(1000101) merged.pbmc <- do.call(fastMNN, c(normed.sce, list(subset.row=combined.hvg, BSPARAM=RandomParam()))) ``` We use the percentage of lost variance as a diagnostic measure. ``` r metadata(merged.pbmc)$merge.info$lost.var ``` ``` ## pbmc3k pbmc4k pbmc8k ## [1,] 7.044e-03 3.129e-03 0.000000 ## [2,] 6.876e-05 4.912e-05 0.003008 ``` We proceed to clustering: ``` r g <- buildSNNGraph(merged.pbmc, use.dimred="corrected") colLabels(merged.pbmc) <- factor(igraph::cluster_louvain(g)$membership) table(colLabels(merged.pbmc), merged.pbmc$batch) ``` ``` ## ## pbmc3k pbmc4k pbmc8k ## 1 535 426 830 ## 2 331 588 1126 ## 3 182 122 217 ## 4 150 179 292 ## 5 170 345 573 ## 6 292 538 1020 ## 7 342 630 1236 ## 8 437 749 1538 ## 9 9 18 95 ## 10 97 365 782 ## 11 34 120 201 ## 12 11 54 159 ## 13 11 3 9 ## 14 4 36 64 ## 15 4 9 15 ``` And visualization: ``` r set.seed(10101010) merged.pbmc <- runTSNE(merged.pbmc, dimred="corrected") gridExtra::grid.arrange( plotTSNE(merged.pbmc, colour_by="label", text_by="label", text_colour="red"), plotTSNE(merged.pbmc, colour_by="batch") ) ```
Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

(\#fig:unref-filtered-pbmc-merged-tsne)Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

## Session Info {-}
``` R version 4.5.0 (2025-04-11) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] batchelor_1.25.0 BiocSingular_1.25.0 [3] scran_1.37.0 scater_1.37.0 [5] ggplot2_3.5.2 scuttle_1.19.0 [7] TENxPBMCData_1.27.0 HDF5Array_1.37.0 [9] h5mread_1.1.0 rhdf5_2.53.0 [11] DelayedArray_0.35.1 SparseArray_1.9.0 [13] S4Arrays_1.9.0 abind_1.4-8 [15] Matrix_1.7-3 SingleCellExperiment_1.31.0 [17] SummarizedExperiment_1.39.0 Biobase_2.69.0 [19] GenomicRanges_1.61.0 GenomeInfoDb_1.45.0 [21] IRanges_2.43.0 S4Vectors_0.47.0 [23] BiocGenerics_0.55.0 generics_0.1.3 [25] MatrixGenerics_1.21.0 matrixStats_1.5.0 [27] BiocStyle_2.37.0 rebook_1.19.0 loaded via a namespace (and not attached): [1] DBI_1.2.3 gridExtra_2.3 [3] httr2_1.1.2 CodeDepends_0.6.6 [5] rlang_1.1.6 magrittr_2.0.3 [7] RcppAnnoy_0.0.22 compiler_4.5.0 [9] RSQLite_2.3.9 DelayedMatrixStats_1.31.0 [11] dir.expiry_1.17.0 png_0.1-8 [13] vctrs_0.6.5 pkgconfig_2.0.3 [15] crayon_1.5.3 fastmap_1.2.0 [17] dbplyr_2.5.0 XVector_0.49.0 [19] labeling_0.4.3 rmarkdown_2.29 [21] graph_1.87.0 UCSC.utils_1.5.0 [23] ggbeeswarm_0.7.2 purrr_1.0.4 [25] bit_4.6.0 bluster_1.19.0 [27] xfun_0.52 cachem_1.1.0 [29] beachmat_2.25.0 jsonlite_2.0.0 [31] blob_1.2.4 rhdf5filters_1.21.0 [33] Rhdf5lib_1.31.0 BiocParallel_1.43.0 [35] cluster_2.1.8.1 irlba_2.3.5.1 [37] parallel_4.5.0 R6_2.6.1 [39] bslib_0.9.0 limma_3.65.0 [41] jquerylib_0.1.4 Rcpp_1.0.14 [43] bookdown_0.43 knitr_1.50 [45] FNN_1.1.4.1 igraph_2.1.4 [47] tidyselect_1.2.1 viridis_0.6.5 [49] yaml_2.3.10 codetools_0.2-20 [51] curl_6.2.2 lattice_0.22-7 [53] tibble_3.2.1 withr_3.0.2 [55] KEGGREST_1.49.0 Rtsne_0.17 [57] evaluate_1.0.3 BiocFileCache_2.99.0 [59] ExperimentHub_2.99.0 Biostrings_2.77.0 [61] pillar_1.10.2 BiocManager_1.30.25 [63] filelock_1.0.3 BiocVersion_3.22.0 [65] sparseMatrixStats_1.21.0 munsell_0.5.1 [67] scales_1.3.0 glue_1.8.0 [69] metapod_1.17.0 tools_4.5.0 [71] AnnotationHub_3.99.0 BiocNeighbors_2.3.0 [73] ScaledMatrix_1.17.0 locfit_1.5-9.12 [75] XML_3.99-0.18 cowplot_1.1.3 [77] grid_4.5.0 edgeR_4.7.0 [79] AnnotationDbi_1.71.0 colorspace_2.1-1 [81] GenomeInfoDbData_1.2.14 beeswarm_0.4.0 [83] vipor_0.4.7 cli_3.6.4 [85] rsvd_1.0.5 rappdirs_0.3.3 [87] viridisLite_0.4.2 dplyr_1.1.4 [89] ResidualMatrix_1.19.0 uwot_0.2.3 [91] gtable_0.3.6 sass_0.4.10 [93] digest_0.6.37 dqrng_0.4.1 [95] ggrepel_0.9.6 farver_2.1.2 [97] memoise_2.0.1 htmltools_0.5.8.1 [99] lifecycle_1.0.4 httr_1.4.7 [101] statmod_1.5.0 bit64_4.6.0-1 ```