
Package ‘anglemania’
January 5, 2026

URL https://github.com/BIMSBbioinfo/anglemania/

Title Feature Extraction for scRNA-seq Dataset Integration

Version 1.0.0

Description anglemania extracts genes from multi-batch scRNA-seq experiments for down-
stream dataset integration. It shows improvement over the conventional usage of highly-
variable genes for many integration tasks. We leverage gene-gene correlations that are sta-
ble across batches to identify biologically informative genes which are less affected by batch ef-
fects. Currently, its main use is for single-cell RNA-seq dataset integration, but it can be ap-
plied for other multi-batch downstream analyses such as NMF.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

LinkingTo Rcpp, rmio, bigstatsr

Depends R (>= 4.5.0)

Imports bigparallelr, bigstatsr, checkmate, digest, dplyr, Matrix,
pbapply, S4Vectors, SingleCellExperiment, stats,
SummarizedExperiment, tidyr, withr

Suggests batchelor, BiocStyle, bluster, knitr, magick, matrixStats,
patchwork, RcppArmadillo, rmarkdown, scater, scran, Seurat,
splatter, testthat (>= 3.0.0), UpSetR

VignetteBuilder knitr

biocViews SingleCell, BatchEffect, MultipleComparison,
FeatureExtraction

BiocType Software

Config/testthat/edition 3

BugReports https://github.com/BIMSBbioinfo/anglemania/issues

git_url https://git.bioconductor.org/packages/anglemania

git_branch RELEASE_3_22

git_last_commit 3acc9da

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-05

1

https://github.com/BIMSBbioinfo/anglemania/
https://github.com/BIMSBbioinfo/anglemania/issues

2 adapted_reexports

Author Aaron Kollotzek [aut, cre] (ORCID:
<https://orcid.org/0009-0009-7142-4015>),

Vedran Franke [aut] (ORCID: <https://orcid.org/0000-0003-3606-6792>),
Artem Baranovskii [aut],
Altuna Akalin [aut],
SFB1588 [fnd] (Funded by the DFG – Deutsche Forschungsgemeinschaft)

Maintainer Aaron Kollotzek <aaron.kollotzek@mdc-berlin.de>

Contents
adapted_reexports . 2
anglemania . 4
anglemania_utils . 7
extract_angles . 9
factorise . 10
permute_nonzero . 12
sce_example . 12
select_genes . 13
statistics . 15

Index 17

adapted_reexports Adapted Reexports from bigstatsr

Description

These are functions that were adapted from the bigstatsr package, modified to suppress certain
warnings and errors (e.g., from zero variance in scaling).

Usage

CutBySize(m, block.size, nb = ceiling(m/block.size))

big_crossprodSelf_no_warning(
X,
fun.scaling = big_scale_no_warning(center = FALSE, scale = FALSE),
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X)),
backingfile = tempfile(tmpdir = getOption("FBM.dir"))

)

big_cor_no_warning(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X)),
backingfile = tempfile(tmpdir = getOption("FBM.dir"))

)

big_scale_no_warning(center = TRUE, scale = TRUE)

https://orcid.org/0009-0009-7142-4015
https://orcid.org/0000-0003-3606-6792

adapted_reexports 3

Arguments

m An integer specifying the length of the input to split into intervals.

block.size An integer specifying the maximum length of each block.

nb Number of blocks. Default is ceiling(m / block.size).

X An object of class FBM.

fun.scaling A function with parameters X, ind.row and ind.col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind.col, to scale
each of their elements such as followed:

Xi,j − centerj
scalej

.

Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().

ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

backingfile Path to the file storing the FBM data on disk. An extension ".bk" will be
automatically added. Default stores in the temporary directory, which you can
change using global option "FBM.dir".

center A logical value: whether to return means or 0s.

scale A logical value: whether to return standard deviations or 1s. You can’t use scale
without using center.

Value

Intervals from the input length.

The self crossproduct of an FBM.

The Pearson correlation matrix from an FBM.

A new function that returns a data.frame with two vectors, center and scale, both of length
ind.col.

Functions

• CutBySize(): Copied version of the unexported bigstatsr:::CutBySize function.

• big_crossprodSelf_no_warning(): Adapted version of bigstatsr::big_crossprodSelf
that suppresses warnings and errors related to zero scaling.

• big_cor_no_warning(): Adapted version of bigstatsr::big_cor that suppresses warnings
and errors.

• big_scale_no_warning(): Adapted version of bigstatsr::big_scale that suppresses warn-
ings and errors.

Examples

m = 1000
intervals = CutBySize(m, 100)
intervals
mat <- matrix(rnorm(400), 20, 20)

4 anglemania

X = bigstatsr::FBM(20, 20, init = mat)
crossp <- big_crossprodSelf_no_warning(X)
crossp_base <- crossprod(mat)
all.equal(crossp[], crossp_base)
mat <- matrix(rnorm(400), 20, 20)
X = bigstatsr::FBM(20, 20, init = mat)
cor <- big_cor_no_warning(X)
cor_base <- cor(mat)
all.equal(cor[], cor_base)
set.seed(123)
mat <- matrix(rnorm(200), 20, 10)
X <- bigstatsr::FBM(20, 10, init = mat)
bs_ns <- big_scale_no_warning(center = TRUE, scale = TRUE)
scale_stats <- bs_ns(X)
scale_stats
bigstatsr::big_apply(X, function(X, ind) {

X.sub <- X[, ind, drop = FALSE]
X.sub <- t((t(X.sub) - scale_stats$center[ind]) / scale_stats$scale[ind])
X[, ind] <- X.sub
NULL

}, block.size = 3)
scaled_mat <- scale(mat)
all.equal(X[], scaled_mat, check.attributes = FALSE)
X[1:5, 1:5]
scaled_mat[1:5, 1:5]

anglemania anglemania

Description

anglemania computes critical angles between genes across all samples provided in an SingleCell-
Experiment object. It calculates angles, transforms them to z-scores, computes statistical measures,
and selects the top genes based on mean and standard deviation of z-scores. These genes are bio-
logically informative and invariant to batch effects.

This function adds a unique batch identifier to the metadata of a SingleCellExperiment object
by combining specified dataset and batch keys. This is useful for distinguishing samples during
integration or analysis.

Usage

anglemania(
sce,
batch_key,
dataset_key = NA_character_,
max_n_genes = 2000,
min_cells_per_gene = 1,
min_samples_per_gene = 2,
allow_missing_features = FALSE,
method = "cosine",
permute_row_or_column = "column",
permutation_function = "sample",
prefilter_threshold = 0.5,

anglemania 5

normalization_method = "divide_by_total_counts",
verbose = TRUE

)

check_params(
sce,
batch_key,
dataset_key,
max_n_genes,
method,
min_cells_per_gene,
min_samples_per_gene,
allow_missing_features,
permute_row_or_column,
permutation_function,
prefilter_threshold,
normalization_method,
verbose

)

add_unique_batch_key(sce, dataset_key = NA_character_, batch_key)

get_intersect_genes(
matrix_list,
allow_missing_features = FALSE,
min_samples_per_gene = 1,
verbose = TRUE

)

Arguments

sce A SingleCellExperiment object.
batch_key A character string specifying the column name in the metadata that identifies the

batch.
dataset_key A character string specifying the column name in the metadata that identifies the

dataset. If NA, only the batch_key is used.
max_n_genes Integer specifying the maximum number of genes to select.
min_cells_per_gene

Integer specifying the minimum number of cells per gene. Default is 1.
min_samples_per_gene

Integer indicating the minimum number of samples per gene.
allow_missing_features

Logical indicating whether to allow missing features.
method Character string specifying the method to use for calculating the relationship

between gene pairs. Default is "cosine". Other options include "spearman"
permute_row_or_column

Character "row" or "column", whether permutations should be executed row-
wise or column wise. Default is "column"

permutation_function

Character "sample" or "permute_nonzero". If sample,then sample is used for
constructing background distributions. If permute_nonzero, then only non-zero
values are permuted. Default is "sample"

6 anglemania

prefilter_threshold

Numeric value specifying the threshold prefiltering genes. Speeds up gene se-
lection.

normalization_method

Character "divide_by_total_counts" or "scale_by_total_counts". Default is "divide_by_total_counts"

verbose Logical indicating whether to print messages.

matrix_list A list of bigstatsr::FBM objects.

Details

This function performs the following steps:

1. Computes angles between genes for each batch in the SingleCellExperiment using the spec-
ified method, via factorise.

2. Transforms the angles to z-scores.

3. Computes statistical measures (mean z-score, signal-to-noise ratio) across batches using get_list_stats.

4. Selects the top n genes based on mean and standard deviation of z-scores using select_genes.

The computed statistics and selected genes are added to the SingleCellExperiment object, which
is returned.

Value

An updated SingleCellExperiment object with computed statistics and selected genes. The re-
sults are stored in the metadata of the SingleCellExperiment object.

A list of validated parameters

A SingleCellExperiment object with an additional metadata column containing the unique batch
key.

A character vector of intersected genes.

Functions

• check_params(): Check Parameters provided to the anglemania function

• add_unique_batch_key(): Temporarily add a unique batch key to the dataset

• get_intersect_genes(): Extract the intersected genes from a list of matrices (count matri-
ces from different batches/datasets). It also allows for missing features in individual matrices,
so that a feature does not have to be present in every single batch.

See Also

get_list_stats, select_genes, factorise, big_apply, https://arxiv.org/abs/1306.0256

Examples

Set seed (optional)
set.seed(1)
sce <- sce_example()
sce <- anglemania(

sce,
batch_key = "batch",
method = "cosine"

)

https://arxiv.org/abs/1306.0256

anglemania_utils 7

Access the selected genes
selected_genes <- get_anglemania_genes(sce)
selected_genes[1:10]
sce <- sce_example()
params <- check_params(

sce,
batch_key = "batch",
dataset_key = "dataset",
max_n_genes = 2000,
method = "cosine",
min_cells_per_gene = 1,
min_samples_per_gene = 2,
allow_missing_features = FALSE,
permute_row_or_column = "column",
permutation_function = "sample",
prefilter_threshold = 0.5,
normalization_method = "divide_by_total_counts",
verbose = TRUE

)
sce <- sce_example()
head(SummarizedExperiment::colData(sce))
sce <- add_unique_batch_key(

sce,
batch_key = "batch",
dataset_key = "dataset"

)
head(SummarizedExperiment::colData(sce))
library(SingleCellExperiment)
sce <- sce_example()
barcodes_by_batch <- split(colnames(sce), colData(sce)$batch)
matrix_list <- lapply(barcodes_by_batch, function(barcodes) {

SingleCellExperiment::counts(sce)[, barcodes]
})
intersect_genes <- get_intersect_genes(matrix_list)
head(intersect_genes)

anglemania_utils Utility Functions for the anglemania Package

Description

A collection of utility functions used within the anglemania package for manipulating FBMs, cal-
culating statistics, and selecting genes.

Replaces all NaN and Inf values in a numeric vector with NA.

Usage

sparse_to_fbm(s_mat)

replace_with_na(v)

normalize_matrix(
x_mat,

8 anglemania_utils

normalization_method = "divide_by_total_counts",
verbose = TRUE

)

get_anglemania_genes(sce)

get_anglemania_stats_df(sce)

Arguments

s_mat A sparse matrix.

v A numeric vector.

x_mat A bigstatsr::FBM object containing the matrix to normalize (typically genes
x cells).

normalization_method

A character string specifying the normalization method to use. One of "divide_by_total_counts"
(default) or "find_residuals".

• "divide_by_total_counts" normalizes each cell by its total expression
count and applies log1p.

• "find_residuals" computes log1p-transformed residuals after regressing
out total expression.

sce A SingleCellExperiment or SummarizedExperiment object

Value

An FBM object from the bigstatsr package.

A numeric vector with NaN and Inf values replaced with NA.

The input FBM object with normalized values written back in place. This function modifies the input
x_mat by reference.

A character vector of gene names that have been selected by the anglemania algorithm

A data frame of gene pairs from which the anglemania genes were selected

Functions

• sparse_to_fbm(): Convert a sparse matrix into a file-backed matrix (FBM) with efficient
memory usage.

• replace_with_na(): replace Nan and Inf values with NA

• normalize_matrix(): normalize matrix Normalize a Filebacked Big Matrix (FBM) using ei-
ther total-count scaling or residuals from a linear model. Intended for use with single-cell
RNA-seq gene expression data.

• get_anglemania_genes(): Utility function to extract the genes that have been selected by
the anglemania algorithm.

• get_anglemania_stats_df(): Utility function to extract the stats of the gene pairs from
which the anglemania genes were selected.

extract_angles 9

Examples

s_mat <- Matrix::rsparsematrix(nrow = 10, ncol = 5, density = 0.3)
fbm_mat <- sparse_to_fbm(s_mat)
fbm_mat
v <- c(1, 2, 3, 4, 5, 6, 7, Inf, 9, NA)
v <- replace_with_na(v)
v
library(bigstatsr)
set.seed(42)
mat <- matrix(rpois(1000, lambda = 5), nrow = 100, ncol = 10)
fbm <- as_FBM(mat)

normalize_matrix(
fbm,
normalization_method = "divide_by_total_counts"

)[1:5, 1:5]
normalize_matrix(

fbm,
normalization_method = "find_residuals"

)[1:5, 1:5]

sce <- sce_example()
sce <- anglemania(sce, batch_key = "batch")
anglemania_genes <- get_anglemania_genes(sce)
head(anglemania_genes)
length(anglemania_genes)
sce <- sce_example()
sce <- anglemania(sce, batch_key = "batch")
anglemania_stats_df <- get_anglemania_stats_df(sce)
head(anglemania_stats_df)
length(anglemania_stats_df)

extract_angles Calculate cosine angle between genes

Description

Constructs a matrix of gene-gene relationships based on distance metrics.

Usage

extract_angles(x_mat, method = "cosine")

Arguments

x_mat An FBM object containing raw gene expression data, where rows correspond to
genes and columns to samples. The data will be normalized and scaled within
the function.

method A character string specifying the method to compute the gene-gene relation-
ships. Options are:

• "cosine" (default): Computes the cosine angle between genes.
• "spearman": Computes the Spearman rank correlation coefficient by rank-

transforming the data before computing the correlation.

10 factorise

Details

The function returns the gene-gene angle matrix as an FBM object.

Value

An FBM object containing the gene-gene correlation matrix. The matrix is square with dimensions
equal to the number of genes and contains the pairwise correlations between genes. The diagonal
elements are set to NA.

See Also

big_apply, big_cor, FBM, factorise

Examples

mat <- matrix(
c(

5, 3, 0, 0,
0, 0, 0, 3,
2, 1, 3, 4,
0, 0, 1, 0,
1, 2, 1, 2,
3, 4, 3, 4

),
nrow = 6, # 6 genes
ncol = 4, # 4 cells
byrow = TRUE

)

mat <- bigstatsr::FBM(nrow = nrow(mat), ncol = ncol(mat), init = mat)

angle_mat <- extract_angles(mat)
angle_mat[]

factorise Factorize Angle Matrices into Z-Scores

Description

factorise computes the angle matrix of the input gene expression matrix using the specified
method, performs permutation to create a null distribution, and transforms the correlations into
z-scores. This function is optimized for large datasets using the bigstatsr package.

Usage

factorise(
x_mat,
method = "cosine",
seed = 1,
permute_row_or_column = "column",
permutation_function = "sample",
normalization_method = "divide_by_total_counts"

)

factorise 11

Arguments

x_mat A FBM object representing the normalized and scaled gene expression matrix.

method A character string specifying the method for calculating the relationship between
gene pairs. Default is "cosine". Other options include "spearman"

seed An integer value for setting the seed for reproducibility during permutation. De-
fault is 1.

permute_row_or_column

Character "row" or "column", whether permutations should be executed row-
wise or column wise. Default is "column"

permutation_function

Character "sample" or "permute_nonzero". If sample, then sample is used for
constructing background distributions. If permute_nonzero, then only non-zero
values are permuted. Default is "sample"

normalization_method

Character "divide_by_total_counts" or "scale_by_total_counts". Default is "divide_by_total_counts"

Details

The function performs the following steps:

1. Permutation: The input matrix is permuted column-wise to disrupt existing angles, creating
a null distribution.

2. Angle Computation: Computes the angle matrix for both the original and permuted matrices
using extract_angles.

3. Method-Specific Processing:

• For other methods ("cosine", "spearman"), statistical measures are computed from the
permuted data.

4. Statistical Measures: Calculates mean, variance, and standard deviation using get_dstat.

5. Z-Score Transformation: Transforms the original angle matrix into z-scores.

This process allows for the identification of invariant gene-gene relationships by comparing them
to a null distribution derived from the permuted data.

Value

An FBM object containing the z-score-transformed angle matrix.

See Also

extract_angles, get_dstat, big_apply, FBM

Examples

mat <- matrix(
c(

5, 3, 0, 0,
0, 0, 0, 3,
2, 1, 3, 4,
0, 0, 1, 0,
1, 2, 1, 2,
3, 4, 3, 4

),

12 sce_example

nrow = 6, # 6 genes
ncol = 4, # 4 cells
byrow = TRUE

)

mat <- bigstatsr::FBM(nrow = nrow(mat), ncol = ncol(mat), init = mat)

Run factorise with method "cosine" and a fixed seed
result_fbm <- factorise(mat, method = "cosine", seed = 1)
result_fbm[]

permute_nonzero permute non-zero elements of vectors

Description

Permutes the non-zero elements of a numeric vector.

Usage

permute_nonzero(v)

Arguments

v A numeric vector.

Value

A numeric vector with non-zero elements permuted.

Examples

v <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # put in some zeroes
v = c(v, 0, 0, 0)
permute_nonzero(v)

sce_example Generate example SingleCellExperiment object

Description

This function generates a SingleCellExperiment object with 2 batches and 2 datasets. The object
contains 300 genes and 600 cells. The counts matrix is generated using the rpois function with
different lambda values for the two batches.

Usage

sce_example(seed = 42)

select_genes 13

Arguments

seed The seed for the random number generator. Because this function is only used
locally, we allow to set a seed within the function.

Value

A SingleCellExperiment object

Examples

sce <- sce_example()
sce

select_genes Select genes from an anglemania-processed SCE

Description

Select genes from a SingleCellExperiment object based on mean z-score and the signal-to-noise
ratio of angles between gene pairs across batches.

Usage

prefilter_angl(
sce,
zscore_mean_threshold = 1,
zscore_sn_threshold = 1,
verbose = TRUE

)

select_genes(
sce,
max_n_genes = 2000,
score_weights = c(0.4, 0.6),
verbose = TRUE

)

extract_rows_for_unique_genes(dt, max_n_genes)

Arguments

sce A SingleCellExperiment object.
zscore_mean_threshold

Numeric value specifying the threshold for the absolute mean z-score. Default
is 1.

zscore_sn_threshold

Numeric value specifying the threshold for the SNR z-score. Default is 1.

verbose Logical value indicating whether to print progress messages. Default is TRUE.

max_n_genes An integer specifying the maximum number of unique genes to return.

14 select_genes

score_weights A vector of two numeric values specifying the weights for the mean z-score and
standard deviation of z-score, respectively. Default is c(0.4, 0.6) for a greater
emphasis on the standard deviation of z-score.

dt A data frame containing gene pairs, with columns geneA and geneB.

Details

The function performs the following steps:

1. Identifies gene pairs where both the mean z-score and SNR z-score exceed the specified thresh-
olds.

Selects the top n genes based on the weighted sum of the ranked mean and standard deviation of the
z-score of the correlations between gene pairs.

The function combines the geneA and geneB columns, extracts unique gene names, and returns the
first max_n_genes genes. If max_n_genes exceeds the number of unique genes available, all unique
genes are returned.

Value

A data frame containing the prefiltered gene pairs.

The input SingleCellExperiment object with the anglemania_genes slot updated to include the
selected genes and their statistical information.

A vector of unique gene identifiers.

Functions

• prefilter_angl(): Prefilter gene pairs from the mean and SNR z-scores based on thresh-
olds, to simplify downstream filtering.

• select_genes(): Select the top n genes on the weighted sum of the ranks of the mean z-score
and SNR z-score of the gene pairs.

• extract_rows_for_unique_genes(): Extract unique gene identifiers from gene pairs, re-
turning up to a specified maximum number.

See Also

extract_rows_for_unique_genes, get_intersect_genes, get_list_stats

select_genes

Examples

library(SingleCellExperiment)
sce <- sce_example()
sce <- anglemania(sce, batch_key = "batch")
prefiltered_df <- prefilter_angl(

sce,
zscore_mean_threshold = 1,
zscore_sn_threshold = 1

)
head(prefiltered_df)
sce <- sce_example()
sce <- anglemania(

sce,

statistics 15

batch_key = "batch",
max_n_genes = 20

)
anglemania_genes <- get_anglemania_genes(sce)
View the selected genes and use for integration
head(anglemania_genes)
length(anglemania_genes)
sce <- select_genes(

sce,
max_n_genes = 10

)
anglemania_genes <- get_anglemania_genes(sce)
head(anglemania_genes)
length(anglemania_genes)
gene_pairs <- data.frame(

geneA = c("Gene1", "Gene2", "Gene3", "Gene4"),
geneB = c("Gene3", "Gene4", "Gene5", "Gene6")

)
unique_genes <- extract_rows_for_unique_genes(

gene_pairs,
max_n_genes = 3

)
print(unique_genes)

statistics Statistics functions for the anglemania package

Description

A collection of utility functions used within the anglemania package for calculating statistics based
on the results created during the anglemania function.

Usage

get_dstat(corr_matrix)

big_mat_list_mean(matrix_list, weights, verbose = TRUE)

get_list_stats(matrix_list, weights, verbose = TRUE)

Arguments

corr_matrix An FBM object.

matrix_list A list of bigstatsr::FBM objects.

weights A numeric vector of weights for each dataset or batch.

Value

A list with statistical measures including mean, sd, var, min, and max.

A new bigstatsr::FBM object containing the mean values.

A list containing three matrices: mean_zscore, sds_zscore, and sn_zscore which are later used
to filter gene pairs based on the absolute mean z-score and signal-to-noise ratio of the angles.

16 statistics

Functions

• get_dstat(): Compute mean, standard deviation, variance, min, and max of a correlation
matrix stored as an FBM.

• big_mat_list_mean(): Calculates the element-wise mean from a list of bigstatsr::FBM
objects.

• get_list_stats(): Calculate mean, standard deviation, and SNR across a list of FBMs.

See Also

big_apply, FBM

big_apply, FBM

Examples

s_mat <- Matrix::rsparsematrix(nrow = 10, ncol = 5, density = 0.3)
fbm_mat <- sparse_to_fbm(s_mat)
result <- get_dstat(fbm_mat)
str(result)
result
Create FBMs
mat1 <- matrix(1:9, nrow = 3)
mat2 <- matrix(1:9, nrow = 3)

fbm1 <- bigstatsr::FBM(nrow = nrow(mat1), ncol = ncol(mat1), init = mat1)
fbm2 <- bigstatsr::FBM(nrow = nrow(mat2), ncol = ncol(mat2), init = mat2)

Create weights
weights <- c(batch1 = 0.5, batch2 = 0.5)

Create the list of FBMs
fbm_list <- list(batch1 = fbm1, batch2 = fbm2)

big_mat_list_mean(fbm_list, weights)
library(SingleCellExperiment)
library(S4Vectors)
sce <- sce_example()
sce <- anglemania(sce, batch_key = "batch")
matrix_list <- metadata(sce)$anglemania$matrix_list
weights <- setNames(

S4Vectors::metadata(sce)$anglemania$params$dataset_weights$weight,
S4Vectors::metadata(sce)$anglemania$params$dataset_weights$anglemania_batch

)
list_stats <- get_list_stats(matrix_list, weights)
names(list_stats)
list_stats$mean_zscore[1:5, 1:5]

Index

∗ internal
adapted_reexports, 2
anglemania_utils, 7
select_genes, 13
statistics, 15

adapted_reexports, 2
add_unique_batch_key (anglemania), 4
anglemania, 4
anglemania_utils, 7
as_scaling_fun(), 3

big_apply, 6, 10, 11, 16
big_cor, 10
big_cor_no_warning (adapted_reexports),

2
big_crossprodSelf_no_warning

(adapted_reexports), 2
big_mat_list_mean (statistics), 15
big_scale_no_warning

(adapted_reexports), 2

check_params (anglemania), 4
CutBySize (adapted_reexports), 2

extract_angles, 9, 11
extract_rows_for_unique_genes, 14
extract_rows_for_unique_genes

(select_genes), 13

factorise, 6, 10, 10
FBM, 3, 8–11, 15, 16

get_anglemania_genes
(anglemania_utils), 7

get_anglemania_stats_df
(anglemania_utils), 7

get_dstat, 11
get_dstat (statistics), 15
get_intersect_genes, 14
get_intersect_genes (anglemania), 4
get_list_stats, 6, 14
get_list_stats (statistics), 15

normalize_matrix (anglemania_utils), 7

permute_nonzero, 12
prefilter_angl (select_genes), 13

replace_with_na (anglemania_utils), 7

sce_example, 12
select_genes, 6, 13, 14
SingleCellExperiment, 4
sparse_to_fbm (anglemania_utils), 7
statistics, 15

17

	adapted_reexports
	anglemania
	anglemania_utils
	extract_angles
	factorise
	permute_nonzero
	sce_example
	select_genes
	statistics
	Index

