Changes in version 0.99.0 ๐Ÿš€ Enhanced Parameter Support & Internal Dependencies New Features - Enhanced Parameter Support: All main functions now expose the complete parameter sets from underlying tools: - infer_networks(): Now supports all method-specific parameters (GENIE3, GRNBoost2, ZILGM, JRF, PCzinb) - create_consensus(): Now supports all INetTool parameters (tolerance, nitermax, verbose) - community_path(): Now supports all robin package parameters (method-specific args, comparison params, parallel processing) - Verbose Output: Added verbose parameter to track progress across all functions - Seed Support: Added seed parameter for reproducible results - Internal Dependencies: Integrated ZILGM and JRF functions internally with proper GPL-2 attribution Internal Dependencies Integration - ZILGM Functions: Integrated find_lammax() and zilgm() functions from ZILGM package (Park et al., 2021) - JRF Functions: Added fallback implementation for JRF functionality when package not available - INet-Tool: Maintained as external dependency (already in imports) - License Update: Changed to GPL (>= 2) to accommodate integrated GPL-2 code Breaking Changes - License changed from MIT to GPL (>= 2) due to integrated GPL-2 code - ZILGM no longer required as external dependency (functions integrated) - JRF now optional with internal fallback implementation Bug Fixes & Improvements - Improved parameter validation and error handling - Better documentation with comprehensive parameter descriptions - Enhanced examples showing new parameter capabilities ๐Ÿš€ Initial Release - Released the first development version of scGraphVerse. - Provides gene regulatory network (GRN) inference from single-cell RNA-seq data. - Supports multiple network inference methods: - GENIE3 (tree-based ensemble method) - GRNBoost2 (Python-based gradient boosting) - ZILGM (zero-inflated Gaussian graphical model) - PCzinb (partial correlation with zero-inflated negative binomial model) - JRF (joint random forests for multi-dataset inference) โœจ Major Features - infer_networks(): Infer regulatory networks from count matrices. - cutoff_adjacency(): Apply null model thresholding to weighted adjacency matrices. - create_consensus(): Build consensus networks across methods or datasets. - plotROC(), community_similarity(): Performance evaluation tools using ROC curves, AUC, and community structure metrics. - plotg(), community_path(): Network visualization functions based on ggraph. ๐Ÿงช Testing and Documentation - Added runnable examples to all major exported functions. - Built a comprehensive README and External Dependencies installation guide. - Set up internal unit tests for core network inference and evaluation functionalities. - Prepared detailed documentation with reproducible examples. ๐Ÿ› Project Funding - Supported by the National Centre for HPC, Big Data and Quantum Computing under the European Union โ€“ Next Generation EU โ€“ CN00000013 (CUP: B93C22000620006).