
Package ‘plaid’
January 27, 2026

Title PLAID ultrafast gene set enrichment scoring

Version 0.99.19

Description
PLAID (Pathway Level Average Intensity Detection) is an ultra-fast method to compute single-
sample enrichment scores for gene expression or proteomics data. For each sample, plaid com-
putes the gene set score as the average intensity of the genes/proteins in the gene set. The out-
put is a gene set score matrix suitable for further analyses.

License GPL-3

URL https://github.com/bigomics/plaid,

https://bigomics.github.io/plaid/

BugReports https://github.com/bigomics/plaid/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Suggests BiocStyle, knitr, rmarkdown, sparseMatrixStats, testthat (>=
3.0.0)

Config/testthat/edition 3

biocViews GeneSetEnrichment, GeneExpression, Proteomics

Depends R (>= 4.3.3)

Imports Matrix, MatrixGenerics, matrixStats, methods, parallel, Rfast,
qlcMatrix, GSVA, fgsea, SummarizedExperiment, BiocSet, stats,
utils

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/plaid

git_branch devel

git_last_commit ec5caa5

git_last_commit_date 2026-01-07

Repository Bioconductor 3.23

Date/Publication 2026-01-26

1

https://github.com/bigomics/plaid
https://bigomics.github.io/plaid/
https://github.com/bigomics/plaid/issues

2 chunked_crossprod

Author Ivo Kwee [aut] (ORCID: <https://orcid.org/0000-0002-2751-4218>),
Antonino Zito [cre] (ORCID: <https://orcid.org/0000-0003-1931-984X>)

Maintainer Antonino Zito <antonino.zito@bigomics.ch>

Contents

chunked_crossprod . 2
colranks . 3
cor_sparse_matrix . 4
dualGSEA . 5
fc_ttest . 6
fc_ztest . 7
gmt2mat . 8
gset.rankcor . 9
gset_averageCLR . 10
gset_ttest . 11
mat.rowsds . 11
mat2gmt . 12
matrix_metap . 12
matrix_onesample_ttest . 13
normalize_medians . 14
plaid . 14
read.gmt . 17
replaid.aucell . 18
replaid.gsva . 19
replaid.scse . 20
replaid.sing . 22
replaid.ssgsea . 23
replaid.ucell . 25
sparse_colranks . 26
write.gmt . 27

Index 28

chunked_crossprod Chunked computation of cross product

Description

Compute crossprod (t(x) %*% y) for very large y by computing in chunks.

Usage

chunked_crossprod(x, y, chunk = NULL)

https://orcid.org/0000-0002-2751-4218
https://orcid.org/0000-0003-1931-984X

colranks 3

Arguments

x Matrix First matrix for multiplication. Can be sparse.

y Matrix Second matrix for multiplication. Can be sparse.

chunk Integer Chunk size (max number of columns) for computation.

Value

Matrix. Result of matrix cross product.

colranks Compute columnwise ranks of matrix

Description

Computes columnwise rank of matrix. Can be sparse. Tries to call optimized functions from Rfast
or matrixStats.

Usage

colranks(
X,
sparse = NULL,
signed = FALSE,
keep.zero = FALSE,
ties.method = "average"

)

Arguments

X Input matrix

sparse Logical indicating to use sparse methods

signed Logical indicating using signed ranks

keep.zero Logical indicating whether to keep zero as ranked zero

ties.method Character Choice of ties.method

Value

Matrix of columnwise ranks with same dimensions as input.

4 cor_sparse_matrix

Examples

Create example matrix
set.seed(123)
X <- matrix(rnorm(100), nrow = 10, ncol = 10)
rownames(X) <- paste0("Gene", 1:10)
colnames(X) <- paste0("Sample", 1:10)

Compute column ranks
ranks <- colranks(X)
print(ranks[1:5, 1:5])

Compute signed ranks
signed_ranks <- colranks(X, signed = TRUE)
print(signed_ranks[1:5, 1:5])

cor_sparse_matrix Calculate sparse correlation matrix handling missing values

Description

Calculate sparse correlation matrix handling missing values

Usage

cor_sparse_matrix(G, mat)

Arguments

G Sparse matrix containing gene sets

mat Matrix of values

Details

If mat has no missing values, calculates correlation directly using corSparse. Otherwise computes
column-wise correlations only using non-missing values.

Value

Correlation matrix between G and mat

dualGSEA 5

dualGSEA Reimplementation of dualGSEA (Bull et al., 2024) but defaults with
replaid backend. For the preranked test we still use fgsea. Should be
much faster than original using fgsea + GSVA::ssGSEA.

Description

Reimplementation of dualGSEA (Bull et al., 2024) but defaults with replaid backend. For the
preranked test we still use fgsea. Should be much faster than original using fgsea + GSVA::ssGSEA.

Usage

dualGSEA(
X,
y,
G,
gmt = NULL,
gsetX = NULL,
fc.method = c("fgsea", "rankcor", "ztest", "ttest", "cor")[2],
ss.method = c("plaid", "replaid.ssgsea", "replaid.gsva", "ssgsea", "gsva")[1],
metap.method = c("stouffer", "fisher", "maxp")[1],
pv1 = NULL,
pv2 = NULL,
sort.by = "p.dual"

)

Arguments

X Expression matrix with genes on rows and samples ont columns

y Binary vector (0/1) indicating group membership

G Sparse matrix of gene sets. Non-zero entry indicates gene/feature is part of gene
sets. Features on rows, gene sets on columns.

gmt List of gene sets in GMT format

gsetX Optional pre-computed matrix of gene set enrichment scores with gene sets on
rows and samples on columns. If NULL (default), scores will be computed using
the method specified by ss.method. Providing pre-computed scores improves
efficiency when running multiple analyses.

fc.method Method for fold change testing ("fgsea", "ztest", "ttest", "rankcor", "cor")

ss.method Method for single-sample enrichment ("plaid", "replaid.ssgsea", "replaid.gsva",
"ssgsea", "gsva")

metap.method Method for combining p-values ("stouffer", "fisher" or "maxp"). Default "stouf-
fer".

pv1 Pre-computed p-values from fold change test. If NULL, will be computed based
on fc.test.

6 fc_ttest

pv2 Pre-computed p-values from single sample test. If NULL, will be computed
using gset_ttest.

sort.by Column name to sort results by ("p.dual", "gsetFC", "p.fc", "p.ss"). Default
"p.dual".

Value

Data frame with columns: gsetFC (gene set fold change), size (gene set size), p.fc (p-value from
fold change test), p.ss (p-value from single sample test), p.dual (combined p-value), and q.dual
(FDR-adjusted combined p-value).

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(1000), nrow = 100, ncol = 20)
rownames(X) <- paste0("GENE", 1:100)
colnames(X) <- paste0("Sample", 1:20)

Create binary group vector
y <- rep(c(0, 1), each = 10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:20),
"Pathway2" = paste0("GENE", 15:35),
"Pathway3" = paste0("GENE", 30:50)

)

Perform dualGSEA with correlation test (fast method)
results_cor <- dualGSEA(X, y, G = NULL, gmt = gmt, fc.method = "cor", ss.method = "replaid.gsva")
print(head(results_cor))

Perform dualGSEA with fgsea (requires fgsea package)
if (requireNamespace("fgsea", quietly = TRUE)) {
results <- dualGSEA(X, y, G = NULL, gmt = gmt, fc.method = "fgsea", ss.method = "replaid.ssgsea")
print(head(results))

}

fc_ttest T-test statistical testing of differentially enrichment

Description

This function performs statistical testing for differential enrichment using plaid

fc_ztest 7

Usage

fc_ttest(fc, G, sort.by = "pvalue")

Arguments

fc Vector of logFC values

G Sparse matrix of gene sets. Non-zero entry indicates gene/feature is part of gene
sets. Features on rows, gene sets on columns.

sort.by Column name to sort results by ("pvalue", "gsetFC", or "none")

Value

Data frame with columns: gsetFC (gene set fold change), pvalue (p-value from one-sample t-test),
and qvalue (FDR-adjusted p-value).

fc_ztest Z-test statistical testing of differentially enrichment

Description

This function performs statistical testing for differential enrichment using plaid

Usage

fc_ztest(fc, G, zmat = FALSE, alpha = 0.5)

Arguments

fc Vector of logFC values

G Sparse matrix of gene sets. Non-zero entry indicates gene/feature is part of gene
sets. Features on rows, gene sets on columns.

zmat Logical indicating to return z-matrix

alpha Scalar weight for SD estimation. Default 0.5.

Value

List with element: z_statistic (z-statistic from one-sample z-test), p_value (p-value from one-sample
z-test), and zmat (z-matrix).

8 gmt2mat

gmt2mat Convert GMT to Binary Matrix

Description

Convert a GMT file (Gene Matrix Transposed) to a binary matrix, where rows represent genes and
columns represent gene sets. The binary matrix indicates presence or absence of genes in a gene
set.

Usage

gmt2mat(
gmt,
max.genes = -1,
ntop = -1,
sparse = TRUE,
bg = NULL,
use.multicore = TRUE

)

Arguments

gmt List representing the GMT file: each element is a character vector representing
a gene set.

max.genes Max number of genes to include in the binary matrix. Default = -1 to include all
genes.

ntop Number of top genes to consider for each gene set. Default = -1 to include all
genes.

sparse Logical: create a sparse matrix. Default TRUE. If FALSE creates a dense matrix.

bg Character vector of background gene set. Default NULL to consider all unique
genes.

use.multicore Logical: use parallel processing (’parallel’ R package). Default TRUE.

Value

A binary matrix representing the presence or absence of genes in each gene set. Rows correspond
to genes, and columns correspond to gene sets.

Examples

Create example GMT data
gmt <- list(

"Pathway1" = c("GENE1", "GENE2", "GENE3"),
"Pathway2" = c("GENE2", "GENE4", "GENE5"),
"Pathway3" = c("GENE1", "GENE5", "GENE6")

)

gset.rankcor 9

Convert to binary matrix
mat <- gmt2mat(gmt)
print(mat)

Create dense matrix instead of sparse
mat_dense <- gmt2mat(gmt, sparse = FALSE)
print(mat_dense)

gset.rankcor Calculate gene set rank correlation

Description

Compute rank correlation between a gene rank vector/matrix and gene sets

Usage

gset.rankcor(rnk, gset, compute.p = FALSE, use.rank = TRUE)

Arguments

rnk Numeric vector or matrix of gene ranks, with genes as row names

gset Numeric matrix of gene sets, with genes as row/column names

compute.p Logical indicating whether to compute p-values

use.rank Logical indicating whether to rank transform rnk before correlation

Details

This function calculates sparse rank correlation between rnk and each column of gset using qlcMatrix::corSparse().
It handles missing values in rnk by computing column-wise correlations.

P-values are computed from statistical distribution

Value

Named list with components:

• rho - Matrix of correlation coefficients between rnk and gset

• p.value - Matrix of p-values for correlation (if compute.p = TRUE)

• q.value - Matrix of FDR adjusted p-values (if compute.p = TRUE)

10 gset_averageCLR

Examples

Create example rank vector
set.seed(123)
ranks <- rnorm(100)
names(ranks) <- paste0("GENE", 1:100)

Create example gene sets as sparse matrix
gmt <- list(

"Pathway1" = paste0("GENE", 1:20),
"Pathway2" = paste0("GENE", 15:35),
"Pathway3" = paste0("GENE", 30:50)

)
genesets <- gmt2mat(gmt)

Calculate rank correlation
result <- gset.rankcor(ranks, genesets, compute.p = TRUE)
print(result$rho)
print(result$p.value)

gset_averageCLR Compute geneset expression as the average log-ration of genes in the
geneset. Requires log-expression matrix X and (sparse) geneset matrix
matG.

Description

Compute geneset expression as the average log-ration of genes in the geneset. Requires log-
expression matrix X and (sparse) geneset matrix matG.

Usage

gset_averageCLR(X, matG, center = TRUE)

Arguments

X Log-expression matrix with genes on rows and samples on columns

matG Sparse gene set matrix with genes on rows and gene sets on columns

center Logical indicating whether to center the results

Value

Matrix of gene set expression scores with gene sets on rows and samples on columns.

gset_ttest 11

gset_ttest Perform t-test on gene set scores

Description

Perform t-test on gene set scores

Usage

gset_ttest(gsetX, y)

Arguments

gsetX Matrix of gene set scores with gene sets on rows and samples on columns

y Binary vector (0/1) indicating group membership

Value

Data frame with columns: diff (difference in means), statistic (t-statistic), pvalue (p-value), and
other t-test results.

mat.rowsds Calculate row standard deviations for matrix

Description

Calculate row standard deviations for matrix

Usage

mat.rowsds(X)

Arguments

X Input matrix (can be sparse or dense)

Value

Vector of row standard deviations.

12 matrix_metap

mat2gmt Convert Binary Matrix to GMT

Description

Convert binary matrix to a GMT (Gene Matrix Transposed) list. The binary matrix indicates pres-
ence or absence of genes in each gene set. Rows represent genes and columns represent gene sets.

Usage

mat2gmt(mat)

Arguments

mat Matrix with non-zero entries representing genes in each gene set. Rows repre-
sent genes and columns represent gene sets.

Value

A list of vector representing each gene set. Each list element correspond to a gene set and is a vector
of genes

Examples

Create example binary matrix
mat <- matrix(0, nrow = 6, ncol = 3)
rownames(mat) <- paste0("GENE", 1:6)
colnames(mat) <- paste0("Pathway", 1:3)
mat[1:3, 1] <- 1 # Pathway1: GENE1, GENE2, GENE3
mat[c(2,4,5), 2] <- 1 # Pathway2: GENE2, GENE4, GENE5
mat[c(1,5,6), 3] <- 1 # Pathway3: GENE1, GENE5, GENE6

Convert to GMT list
gmt <- mat2gmt(mat)
print(gmt)

matrix_metap Matrix version for combining p-values using fisher or stouffer method.
Much faster than doing metap::sumlog() and metap::sumz()

Description

Matrix version for combining p-values using fisher or stouffer method. Much faster than doing
metap::sumlog() and metap::sumz()

matrix_onesample_ttest 13

Usage

matrix_metap(plist, method = "stouffer")

Arguments

plist List of p-value vectors or matrix of p-values

method Method for combining p-values ("fisher"/"sumlog" or "stouffer"/"sumz")

Value

Vector of combined p-values.

matrix_onesample_ttest

Perform one-sample t-test on matrix with gene sets

Description

Perform one-sample t-test on matrix with gene sets

Usage

matrix_onesample_ttest(Fm, G)

Arguments

Fm Vector of feature values (e.g., fold changes)

G Sparse matrix of gene sets with genes on rows and gene sets on columns

Value

List containing mean, t-statistic, and p-value matrices.

14 plaid

normalize_medians Normalize column medians of matrix

Description

This function normalizes the column medians of matrix x. It calls optimized functions from the
matrixStats package.

Usage

normalize_medians(x, ignore.zero = NULL)

Arguments

x Input matrix

ignore.zero Logical indicating whether to ignore zeros to exclude for median calculation

Value

Matrix with normalized column medians.

Examples

Create example matrix
set.seed(123)
x <- matrix(rnorm(100), nrow = 10, ncol = 10)
x[1:3, 1:3] <- 0 # Add some zeros

Normalize medians
x_norm <- normalize_medians(x)
head(x_norm)

plaid Compute PLAID single-sample enrichment score

Description

Compute single-sample geneset expression as the average log-expression f genes in the geneset.
Requires log-expression matrix X and (sparse) geneset matrix matG. If you have gene sets as a gmt
list, please convert it first using the function gmt2mat().

plaid 15

Usage

plaid(
X,
matG,
stats = c("mean", "sum"),
chunk = NULL,
normalize = TRUE,
nsmooth = 3,
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Log-transformed expr. matrix. Genes on rows, samples on columns. Also ac-
cepts SummarizedExperiment or SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists (named list of gene vectors).

stats Score computation stats: mean or sum of intensity. Default ’mean’.

chunk Logical: use chunks for large matrices. Default ’NULL’ for autodetect.

normalize Logical: median normalize results or not. Default ’TRUE’.

nsmooth Smoothing parameter for more stable average when stats="mean". Default 3.

assay Character: assay name to extract from SummarizedExperiment/SingleCellExperiment.
Default "logcounts".

min.genes Integer: minimum genes per gene set (for BiocSet/GMT input). Default 5.

max.genes Integer: maximum genes per gene set (for BiocSet/GMT input). Default 500.

Details

PLAID needs the gene sets as sparse matrix. If you have your collection of gene sets a a list, we
need first to convert the gmt list to matrix format.

We recommend to run PLAID on the log transformed expression matrix, not on the counts, as the
average in the logarithmic space is more robust and is in concordance to calculating the geometric
mean.

It is not necessary to normalize your expression matrix before running PLAID because PLAID
performs median normalization of the enrichment scores afterwards.

It is recommended to use sparse matrix as PLAID relies on sparse matrix computations. But, PLAID
is also fast for dense matrices.

PLAID can also be run on the ranked matrix. This corresponds to the singscore (Fouratan et al.,
2018). PLAID can also be run on the (non-logarithmic) counts which can be used to calculate the
scSE score (Pont et al., 2019).

PLAID is fast and memery efficient because it uses efficient sparse matrix computation. When input
matrix is very large, PLAID performs ’chunked’ computation by splitting the matrix in chunks.

16 plaid

Although X and matG are generally sparse, the result matrix gsetX generally is dense and can thus
be very large. Example: computing gene set scores for 10K gene sets on 1M cells will create a 10K
x 1M dense matrix which requires ~75GB memory.

PLAID now automatically detects and handles Bioconductor objects. If X is a SummarizedExperi-
ment or SingleCellExperiment, it will extract the appropriate assay. If matG is a BiocSet object or
GMT list, it will be converted to sparse matrix format automatically.

Value

Matrix of single-sample enrichment scores. Gene sets on rows, samples on columns.

Examples

library(plaid)

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(1000), nrow = 100, ncol = 10)
rownames(X) <- paste0("GENE", 1:100)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:20),
"Pathway2" = paste0("GENE", 15:35),
"Pathway3" = paste0("GENE", 30:50)

)
matG <- gmt2mat(gmt)

Compute PLAID scores
gsetX <- plaid(X, matG)
print(dim(gsetX))
print(gsetX[1:3, 1:5])

Use sum statistics instead of mean
gsetX_sum <- plaid(X, matG, stats = "sum")

Using real data (if available in package)
extdata_path <- system.file("extdata", "pbmc3k-50cells.rda", package = "plaid")
if (file.exists(extdata_path)) {

load(extdata_path)
hallmarks <- system.file("extdata", "hallmarks.gmt", package = "plaid")
gmt <- read.gmt(hallmarks)
matG <- gmt2mat(gmt)
gsetX <- plaid(X, matG)

}

read.gmt 17

read.gmt Read GMT File

Description

Read data from a GMT file (Gene Matrix Transposed). The GMT format is commonly used to store
gene sets or gene annotations.

Usage

read.gmt(gmt.file, dir = NULL, add.source = FALSE, nrows = -1)

Arguments

gmt.file Path to GMT file.

dir (Optional) The directory where the GMT file is located.

add.source (optional) Include the source information in the gene sets’ names.

nrows (optional) Number of rows to read from the GMT file.

Value

A list of gene sets: each gene set is represented as a character vector of gene names.

Examples

Read GMT file (requires file to exist)
gmt_file <- system.file("extdata", "hallmarks.gmt", package = "plaid")
if (file.exists(gmt_file)) {

gmt <- read.gmt(gmt_file)
print(names(gmt))
print(head(gmt[[1]]))

Read with source information
gmt_with_source <- read.gmt(gmt_file, add.source = TRUE)
print(head(names(gmt_with_source)))

}

18 replaid.aucell

replaid.aucell Fast calculation of AUCell

Description

Calculates single-sample enrichment AUCell (Aibar et al., 2017) using plaid back-end. The com-
putation is 10-100x faster than the original code.

Usage

replaid.aucell(
X,
matG,
aucMaxRank = NULL,
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

aucMaxRank Rank threshold (see AUCell paper). Default aucMaxRank = 0.05*nrow(X).

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing the AUCell score requires to compute the ranks of the expression matrix and approxi-
mating the AUC of a gene set. We have wrapped this in a single convenience function.

We have extensively compared the results of replaid.aucell and from the original AUCell R
package and we showed good concordance of results in the score, logFC and p-values.

Value

Matrix of single-sample AUCell enrichment scores. Gene sets on rows, samples on columns.

replaid.gsva 19

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(500), nrow = 50, ncol = 10)
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute AUCell scores
scores <- replaid.aucell(X, matG)
print(scores[1:2, 1:5])

replaid.gsva Fast approximation of GSVA

Description

Calculates single-sample enrichment GSVA (Hänzelmann et al., 2013) using plaid back-end. The
computation is 10-100x faster than the original code.

Usage

replaid.gsva(
X,
matG,
tau = 0,
rowtf = c("z", "ecdf")[1],
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

tau Rank weight parameter (see GSVA publication). Default tau=0.

20 replaid.scse

rowtf Row transformation method ("z" or "ecdf"). Default "z".

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing the GSVA score requires to compute the CDF of the expression matrix, ranking and
scoring the genesets. We have wrapped this in a single convenience function.

We have extensively compared the results of replaid.gsva and from the original GSVA R package
and we showed good concordance of results in the score, logFC and p-values.

In the original formulation, GSVA uses an emperical CDF to transform expression of each feature to
a (0;1) relative expression value. For efficiency reasons, this is here approximated by a z-transform
(center+scale) of each row.

Value

Matrix of single-sample GSVA enrichment scores. Gene sets on rows, samples on columns.

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(500), nrow = 50, ncol = 10)
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute GSVA scores
scores <- replaid.gsva(X, matG)
print(scores[1:2, 1:5])

replaid.scse Fast calculation of scSE score

Description

Calculates Single-Cell Signature Explorer (Pont et al., 2019) scores using plaid back-end. The
computation is 10-100x faster than the original code.

replaid.scse 21

Usage

replaid.scse(
X,
matG,
removeLog2 = NULL,
scoreMean = FALSE,
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

removeLog2 Logical for whether to remove the Log2, i.e. will apply power transform (base2)
on input (default TRUE).

scoreMean Logical for whether computing sum or mean as score (default FALSE).

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing the scSE requires running plaid on the linear (not logarithmic) score and perform addi-
tional normalization by the total UMI per sample. We have wrapped this in a single convenience
function:

To replicate the original "sum-of-UMI" scSE score, set removeLog2=TRUE and scoreMean=FALSE.
scSE and plaid scores become more similar for removeLog2=FALSE and scoreMean=TRUE.

We have extensively compared the results from replaid.scse and from the original scSE (imple-
mented in GO lang) and we showed almost identical results in the score, logFC and p-values.

Value

Matrix of single-sample scSE enrichment scores. Gene sets on rows, samples on columns.

Examples

Create example expression matrix (log-transformed)
set.seed(123)
X <- log2(matrix(rpois(500, lambda = 10) + 1, nrow = 50, ncol = 10))
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

22 replaid.sing

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute scSE scores (original method)
scores <- replaid.scse(X, matG, removeLog2 = TRUE, scoreMean = FALSE)
print(scores[1:2, 1:5])

Compute scSE scores (mean method)
scores_mean <- replaid.scse(X, matG, removeLog2 = TRUE, scoreMean = TRUE)
print(scores_mean[1:2, 1:5])

replaid.sing Fast calculation of singscore

Description

Calculates single-sample enrichment singscore (Fouratan et al., 2018) using plaid back-end. The
computation is 10-100x faster than the original code.

Usage

replaid.sing(X, matG, assay = "logcounts", min.genes = 5, max.genes = 500)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing the singscore requires to compute the ranks of the expression matrix. We have wrapped
this in a single convenience function.

We have extensively compared the results of replaid.sing and from the original singscore R
package and we showed identical result in the score, logFC and p-values.

replaid.ssgsea 23

Value

Matrix of single-sample singscore enrichment scores. Gene sets on rows, samples on columns.

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(500), nrow = 50, ncol = 10)
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute singscore
scores <- replaid.sing(X, matG)
print(scores[1:2, 1:5])

replaid.ssgsea Fast calculation of ssGSEA

Description

Calculates single-sample enrichment singscore (Barbie et al., 2009; Hänzelmann et al., 2013) using
plaid back-end. The computation is 10-100x faster than the original code.

Usage

replaid.ssgsea(
X,
matG,
alpha = 0,
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

24 replaid.ssgsea

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

alpha Weighting factor for exponential weighting of ranks

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing ssGSEA score requires to compute the ranks of the expression matrix and weighting of
the ranks. We have wrapped this in a single convenience function.

We have extensively compared the results of replaid.ssgsea and from the original GSVA R pack-
age and we showed highly similar results in the score, logFC and p-values. For alpha=0 we obtain
exact results, for alpha>0 the results are highly similar but not exactly the same.

Value

Matrix of single-sample ssGSEA enrichment scores. Gene sets on rows, samples on columns.

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(500), nrow = 50, ncol = 10)
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute ssGSEA scores (alpha = 0)
scores <- replaid.ssgsea(X, matG, alpha = 0)
print(scores[1:2, 1:5])

Compute ssGSEA scores with weighting (alpha = 0.25)
scores_weighted <- replaid.ssgsea(X, matG, alpha = 0.25)
print(scores_weighted[1:2, 1:5])

replaid.ucell 25

replaid.ucell Fast calculation of UCell

Description

Calculates single-sample enrichment UCell (Andreatta et al., 2021) using plaid back-end. The
computation is 10-100x faster than the original code.

Usage

replaid.ucell(
X,
matG,
rmax = 1500,
assay = "logcounts",
min.genes = 5,
max.genes = 500

)

Arguments

X Gene or protein expression matrix. Generally log transformed. See details.
Genes on rows, samples on columns. Also accepts SummarizedExperiment or
SingleCellExperiment objects.

matG Gene sets sparse matrix. Genes on rows, gene sets on columns. Also accepts
BiocSet objects or GMT lists.

rmax Rank threshold (see Ucell paper). Default rmax = 1500.

assay Character: assay name for Bioconductor objects. Default "logcounts".

min.genes Integer: minimum genes per gene set. Default 5.

max.genes Integer: maximum genes per gene set. Default 500.

Details

Computing ssGSEA score requires to compute the ranks of the expression matrix and truncation of
the ranks. We have wrapped this in a single convenience function.

We have extensively compared the results of replaid.ucell and from the original UCell R pack-
age and we showed near exacct results in the score, logFC and p-values.

Value

Matrix of single-sample UCell enrichment scores. Gene sets on rows, samples on columns.

26 sparse_colranks

Examples

Create example expression matrix
set.seed(123)
X <- matrix(rnorm(500), nrow = 50, ncol = 10)
rownames(X) <- paste0("GENE", 1:50)
colnames(X) <- paste0("Sample", 1:10)

Create example gene sets
gmt <- list(

"Pathway1" = paste0("GENE", 1:15),
"Pathway2" = paste0("GENE", 10:25)

)
matG <- gmt2mat(gmt)

Compute UCell scores (default rmax = 1500)
scores <- replaid.ucell(X, matG)
print(scores[1:2, 1:5])

Compute UCell scores with custom rmax
scores_custom <- replaid.ucell(X, matG, rmax = 1000)
print(scores_custom[1:2, 1:5])

sparse_colranks Compute columm ranks for sparse matrix. Internally used by col-
ranks()

Description

Compute columm ranks for sparse matrix. Internally used by colranks()

Usage

sparse_colranks(X, signed = FALSE, ties.method = "average")

Arguments

X Input matrix

signed Logical: use or not signed ranks

ties.method Character Choice of ties.method

Value

Sparse matrix of columnwise ranks with same dimensions as input.

write.gmt 27

write.gmt Write GMT File

Description

Write gene sets to GMT file (Gene Matrix Transposed). The GMT format is commonly used to
store gene sets or gene annotations.

Usage

write.gmt(gmt, file, source = NA)

Arguments

gmt A list of gene sets in GMT format: each gene set is represented as a vector of
gene names.

file The file path to write the GMT file.

source A character vector specifying the source of each gene set. If not provided, the
names of the gene sets are used as the source.

Value

Does not return anything.

Examples

Create example GMT data
gmt <- list(

"Pathway1" = c("GENE1", "GENE2", "GENE3"),
"Pathway2" = c("GENE2", "GENE4", "GENE5"),
"Pathway3" = c("GENE1", "GENE5", "GENE6")

)

Write to GMT file (creates file in temp directory)
temp_file <- tempfile(fileext = ".gmt")
write.gmt(gmt, temp_file)

Write with custom source information
temp_file2 <- tempfile(fileext = ".gmt")
write.gmt(gmt, temp_file2, source = c("DB1", "DB2", "DB3"))

Clean up
unlink(c(temp_file, temp_file2))

Index

chunked_crossprod, 2
colranks, 3
cor_sparse_matrix, 4

dualGSEA, 5

fc_ttest, 6
fc_ztest, 7

gmt2mat, 8
gset.rankcor, 9
gset_averageCLR, 10
gset_ttest, 11

mat.rowsds, 11
mat2gmt, 12
matrix_metap, 12
matrix_onesample_ttest, 13

normalize_medians, 14

plaid, 14

read.gmt, 17
replaid.aucell, 18
replaid.gsva, 19
replaid.scse, 20
replaid.sing, 22
replaid.ssgsea, 23
replaid.ucell, 25

sparse_colranks, 26

write.gmt, 27

28

	chunked_crossprod
	colranks
	cor_sparse_matrix
	dualGSEA
	fc_ttest
	fc_ztest
	gmt2mat
	gset.rankcor
	gset_averageCLR
	gset_ttest
	mat.rowsds
	mat2gmt
	matrix_metap
	matrix_onesample_ttest
	normalize_medians
	plaid
	read.gmt
	replaid.aucell
	replaid.gsva
	replaid.scse
	replaid.sing
	replaid.ssgsea
	replaid.ucell
	sparse_colranks
	write.gmt
	Index

