Using the attract Package To Find the Gene
Expression Modules That Represent The
Drivers of Kauffman’s Attractor Landscape

Jessica Mar

June 4, 2025

1 Introduction

A mammalian organism is made up of over 200 types of specialized cells.
Each cell type carries out a specific task integral to maintaining homeosta-
sis of the organism. Cell types can vary by morphology, structure, lifespan,
functional ability and much more. Despite such remarkable diversity, all cells
within an organism are derived from an original precursor cell, and in most
cases, share the same genome. Diversity comes about largely through differ-
ential expression programs where cells regulate the abundance of certain gene
transcripts and their downstream molecules such as proteins and microRNAs.
While epigenetic regulation also plays a role, finding the gene expression sig-
natures represents the key to understanding the mechanisms underlying the
unique properties that cells acquire. The attractor hypothesis proposed by
Stuart Kauffman [1] describes how cell fate transitions between cell types
occur through coordinated changes in genome-wide gene expression. In our
approach [2], we show how by identifying the biological processes that are dif-
ferentially activated between cell types, we can find the drivers of Kauffman’s
attractor landscape.

2 Filter Data Set

Before starting the analysis you may want to filter your data if using an RNA
sequencing data set. To do this use the funtion filterDataSet on a data frame

1

of expression data. To filter we remove all rows (genes) where the percentage
of samples with an expression value of 0 is 75 percent or higher. Then we add
1 to all the expression values and take the log base 2 of the data. You may
also change the minimum percentage of samples with an expression value of
0 to remove genes with the filterPerc parameter.

> library(attract)
> filteredData <- filterDataSet(data, filterPerc=0.75)

3 Experimental Data Set

To illustrate our approach, we demonstrate the functions in the attract
package on a gene expression data set published by Miiller et al. [3] (NCBI
GEO accession number GSE11508). The primary goal of this study was to
elucidate the transcription profiles characterizing different stem cell lines and
their progenitors. For our purposes, we have selected a subset of four cell lines
- embryonic stem cells, neural stem cells, neural progenitors and teratoma-
differentiated cells. These lines span a spectrum of pluripotent abilities and
have also been derived from a range of different tissue sources.

The Miiller expression data set is stored as a matrix object exprs.dat, and
the corresponding cell line information is in the data.frame samp.info.

> library(attract)
> data(exprs.dat)
> data(samp.info)

The functions in our package operate off Bioconductor ExpressionSet
objects.

> loring.eset <- new("ExpressionSet")

> loring.eset@assayData <- new.env()

> assign("exprs", exprs.dat, loring.eset@assayData)
> p.eset <- new("AnnotatedDataFrame", data=samp.info)
> loring.eset@phenoData <- p.eset

The first step of the analysis is to find the core pathway modules that show
the most differential expression changes between the four different cell
types. These core pathways represent the drivers of the attractor landscape.

4 Finding Core Attractor State Pathway Mod-

ules
The pathway modules as defined by KEGG or reactome and identified us-
ing the GSEAlm algorithm. These modules represent the pathways with the

expression profiles that discriminate between the different celltypes or exper-
imental groups of interest.

> attractor.states <- findAttractors(loring.eset,

+ "celltype', annotation = "illuminaHumanvl.db",
+ database = "KEGG", analysis = "microarray",
+ databaseGeneFormat = NULL, expressionSetGeneFormat = NULL)

You can also use MSigDB gene sets as well to find core attractor state
pathway modules. When doing this, you must specify the
databaseGeneFormat argument and the expressionSetGeneFormat
argument. These arguments specify the type of gene identifier in the
expression data set and the MSigDB gene sets. Since micro array data is
being used expressionSetGeneFormat is set to PROBEID. Since the
MSigDB genes are gene symbols, databaseGeneFormat is set to
ENTREZID. To get the full range of options of what databaseGeneFormat
and expressionSetGeneFormat can be set to, use the command
columns(<yourAnnotationPackage>) to get the options for
expressionSetGeneFormat and keytypes(<yourAnnotationPackage>) to get
the options for databaseGeneFormat. When using RNAseq data sets, the
argument expressionSetGeneFormat must always be declared. To get the
options of what to put in, use keytypes(<yourAnnotationPackage>).
Examples are "ENSEMBL", "ENTREZID", or "SYMBOL"

> columns (illuminaHumanvl.db)

(1] "ACCNUM" "ALTAS" "ENSEMBL"
[4] "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID"
(7] "ENZYME" "EVIDENCE" "EVIDENCEALL"
[10] "GENENAME" "GENETYPE" "Go"
[13] "GOALL" "IPI" "MAP"
[16] "OMIM" "ONTOLOGY" "ONTOLOGYALL"
[19] "PATH" "PFAM" "PMID"

[22] "PROBEID" "PROSITE" "REFSEQ"
[25] '"SYMBOL" "UCSCKG" "UNIPROT"

> keytypes (illuminaHumanvl.db)

(1] "ACCNUM" "ALTAS" "ENSEMBL"

[4] "ENSEMBLPROT" "ENSEMBLTRANS" "ENTREZID"
(7] "ENZYME" "EVIDENCE" "EVIDENCEALL"
[10] "GENENAME" "GENETYPE" "Go"

[13] "GOALL" "IPI" "MAP"

[16] "OMIM" "ONTOLOGY" "ONTOLOGYALL"
[19] "PATH" "PFAM" "PMID"

[22] "PROBEID" "PROSITE" "REFSEQ"

[25] "SYMBOL" "UCSCKG" "UNIPROT"

> MSigDBpath <- system.file("extdata'", '"c4.cgn.v5.0.entrez.gmt",

+ package = "attract")

> attractor.states.cutsom <- findAttractors(loring.eset,

+ "celltype', annotation = "illuminaHumanvl.db",

+ database = MSigDBpath, analysis = '"microarray",

+ databaseGeneFormat = "ENTREZID", expressionSetGeneFormat = "PROBEID")

The output of the findAttractors object is an S4 class
AttractorModuleSet object.

It contains the following slots:
> class(attractor.states)
[1] "AttractorModuleSet"
attr(, "package")

[1] "attract"

> slotNames (attractor.states)

[1] "eSet" "cellTypeTag" "incidenceMatrix"
[4] "rankedPathways"

where:

e eSet - is the ExpressionSet object that was supplied as input to the
findAttractors function.

e cellTypeTag - is the character string denoting which variable in the
pData(eSet) object stores the cell type or experimental group of inter-
est info. Note that cel1TypeTag must be one of colnames (pData(eSet)).

e incidenceMatrix - isincidence matrix where rows correspond to KEGG
or reactome pathways, columns correspond to genes. An entry of 1 at
location (X,Y) in the matrix indicates membership of gene Y in path-
way X (0 indicates non-membership).

e rankedPathways - is a data.frame object that lists the KEGG or re-
actome pathway modules, ranked from most to least significant. The
permutation P-values represent over-enrichment for each KEGG or re-
actome pathway from the GSEAlm package.

5 Removing Flat or Uninformative Genes

We next remove genes that show no significant expression changes across the
four cell types.

> remove.these.genes <- removeFlatGenes(loring.eset,
+ "celltype", contrasts = NULL, limma.cutoff = 0.05)

This step runs a LIMMA model which tests for differences in expression
between any of the four cell types. More specific differences can be tested
instead by inputing these as a set of contrasts and supplying this object to
the contrasts argument. See ?removeFlatGenes for more info.

6 Finding the Synexpression Groups

Different cell or tissue types acquire their diversity by driving differentially
coordinated expression patterns through interacting gene networks that are
broadly captured by the pathways listed in the KEGG or reactome database.
We next focus on elucidating what this repertoire of transcriptionally-coherent
expression patterns being sustained within a pathway are, in other words the
synexpression groups.

A synexpression group contains genes that share similar expression profiles
across the four groups.

As an example, we use the MAPK signaling pathway module:

> mapk.syn <- findSynexprs("04010", attractor.states,
+ "celltype", remove.these.genes)

[1] "04010"

The output of findSynexpress is an 5S4 class SynExpressionSet object
> class(mapk.syn)

[1] "SynExpressionSet"

attr(, "package")

[1] "attract"

> slotNames (mapk.syn)

[1] "groups" ‘"profiles"

where:

e groups - is a list object containing the genes in each synexpression
group (each component corresponds to a different synexpression group).

e profiles -isamatrix object that stores the average expression profiles
for each synexpression group. The rows of the matrix correspond to
the synexpression groups, the columns correspond to the samples in
the data set.

> length(mapk.syn@groups)
(1] 8
> sapply(mapk.syn@groups, length)

[1] 42 23 28 28 9 20 8 8

The number of synexpression groups is determined by an informativeness
metric [4]. There are 3 synexpression groups for the MAPK pathway
module.

Using the same findSynexprs function, we can find the synexpression
groups for the top 5 pathway modules:

> top5.syn <- findSynexprs(attractor.states@rankedPathways([1:5,

+ 1], attractor.states, '"celltype', removeGenes = remove.these.genes)
[1] "03010"
[1] "04512"
[1] "04510"
[1] "05146"
[1] "00190"

Note in this case, the output object of findSynexprs is an environment
variable.

The keys are given as:
> 1s(top5.syn)

[1] "pway00190synexprs" "pway03010synexprs"
[3] "pway04510synexprs" "pway04512synexprs"
[6] "pway05146synexprs"

Each of the values is stored as an individual SynExpressionSet object:
> class(get(1s(top5.syn) [1], top5.syn))
[1] "SynExpressionSet"

attr(,"package")
[1] "attract"

7 Visualizing the Synexpression Groups for a
Core Attractor Pathway

We can visualize the average expression profiles of the synexpression groups
using base R’s plot functions or alternatively using plotsynexprs.

> par(mfrow = c(2, 2))
> pretty.col <- rainbow(3)
> for (i in 1:3) {

+ plotsynexprs(mapk.syn, tickMarks = c(6, 28,
+ 47, 60), tickLabels = c("ESC", "PRO",
+ "NSC", "TER"), vertLines = c(12.5, 43.5,
+ 51.5), index = i, main = paste("Synexpression Group ",
+ i, sep = ""), col = pretty.col[il)
+ }
Synexpression Group 1 Synexpression Group 2
o
S N
,E — E o
Q2 n k=) —
g o 7 g @ |
o 9 ©
S pl F]
7 7 o]
T T T T ® T T T T
ESC PRO NSC ESC PRO NSC
Groups Groups
Synexpression Group 3
§ o |
g [}
g o
N ©
[}
3 o
2

T T T T
ESC PRO NSC

Groups

Figure 1: Average Expression Pr%ﬁles of the Synexpression Groups

8 Finding Correlated Partners of the Synex-
pression Groups

In our approach so far, the attractor pathway modules and their following
synexpression groups have been inferred from information restricted to
well-curated sources like KEGG. As a result, these inferences are of high
quality and we have strong confidence in their applicability to the system
under study. These benefits in accuracy clearly come at the expense of low
coverage because we are ultimately only describing a small proportion of
the genome.

However by using the synexpression groups to pick up genes with highly
correlated expression profiles, we can then extrapolate out to make
inferences about the entire set of genes in the genome. Genes with highly
correlated profiles to the synexpression groups (e.g. R > 0.85) are also
likely to be integral in maintaining cell type-specific differences, however
due to their lack of inclusion in resources like KEGG, would not have been
picked up by the first GSEA step.

For the MAPK synexpression groups, we can find out what other genes on
the chip share similar expression profiles.

> mapk.cor <- findCorrPartners(mapk.syn, loring.eset, remove.these.genes)

The output of findCorrPartners is a list which stores vectors of genes
that are highly correlated with at least one gene in the synexpression
expression group. More or less stringent criterion can be applied by
changing the cor.cutoff argument (default setting is 0.85).

> sapply(mapk.cor@groups, length)

[1] 1513 356 343 1460 3 99 756 28

9 Functional Enrichment Analysis of the Syn-
expression Groups

For each of these correlated sets, we look for functional enrichment using
GO terms to learn about any trends in common roles that these genes may
potentially share.

> mapk.func <- calcFuncSynexprs(mapk.syn, attractor.states,
+ "CC", annotation = "illuminaHumanvl.db", analysis = "microarray",
+ expressionSetGeneFormat = NULL)

10 References

[1] Kauffman S. 2004. A proposal for using the ensemble approach to
understand genetic regulatory networks. J Theor Biol. 230:581.

[2] Mar JC, Matigian NA, Quackenbush J, Wells CA. 2011. attract: A
method for identifying core pathways that define cellular phenotypes. PLos
One. 6(10):e25445

|3] Miiller F et al. 2008. Regulatory networks define phenotypic classes of
human stem cell lines. Nature. 455(7211): 401.

[4] Mar JC, Wells CA, Quackenbush J. 2011. Defining an informativeness
metric for clustering gene expression data. Bioinformatics. 27(8): 1094.

11 Session Information

R version 4.5.0 (2025-04-11 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default
LAPACK version 3.12.1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[6] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

10

attached base packages:
[1] stats4 stats graphics grDevices utils
[6] datasets methods base

other attached packages:

[1] GO.db_3.21.0 illuminaHumanvl.db_1.26.0
[3] org.Hs.eg.db_3.21.0 attract_1.61.0
[56] AnnotationDbi_1.71.0 IRanges_2.43.0
[7] S4Vectors_0.47.0 Biobase_2.69.0
[9] BiocGenerics_0.55.0 generics_0.1.4

loaded via a namespace (and not attached):

[1] Category_2.75.0 bitops_1.0-9

[3] RSQLite_2.4.0 lattice_0.22-7
(6] grid_4.5.0 genefilter_1.91.0
[7] fastmap_1.2.0 blob_1.2.4

[9] jsonlite_2.0.0 Matrix_1.7-3

[11] GSEABase_1.71.0 graph_1.87.0

[13] GenomeInfoDb_1.45.4 DBI_1.2.3

[15] limma_3.65.1 survival_3.8-3
[17] httr_1.4.7 UCSC.utils_1.5.0
[19] XML_3.99-0.18 Rgraphviz_2.53.0
[21] Biostrings_2.77.1 cli_3.6.5

[23] rlang_1.1.6 crayon_1.5.3

[26] XVector_0.49.0 AnnotationForge_1.51.0
[27] bit64_4.6.0-1 splines_4.5.0
[29] cachem_1.1.0 tools_4.5.0

[31] memoise_2.0.1 annotate_1.87.0
[33] reactome.db_1.92.0 GOstats_2.75.0
[35] curl 6.2.3 vetrs_0.6.5

[37] R6_2.6.1 png_0.1-8

[39] matrixStats_1.5.0 KEGGREST_1.49.0
[41] RBGL_1.85.0 bit_4.6.0

[43] cluster_2.1.8.1 pkgconfig_2.0.3
[45] statmod_1.5.0 MatrixGenerics_1.21.0
[47] xtable_1.8-4 compiler_4.5.0

[49] RCurl_1.98-1.17

11

	Introduction
	Filter Data Set
	Experimental Data Set
	Finding Core Attractor State Pathway Modules
	Removing Flat or Uninformative Genes
	Finding the Synexpression Groups
	Visualizing the Synexpression Groups for a Core Attractor Pathway
	Finding Correlated Partners of the Synexpression Groups
	Functional Enrichment Analysis of the Synexpression Groups
	References
	Session Information

