
Package ‘BiocSingular’
October 16, 2019

Version 1.0.0

Date 2019-04-19

Title Singular Value Decomposition for Bioconductor Packages

Imports BiocGenerics, S4Vectors, Matrix, methods, utils, DelayedArray,
BiocParallel, irlba, rsvd, Rcpp

Suggests testthat, BiocStyle, knitr, rmarkdown, beachmat

biocViews Software, DimensionReduction, PrincipalComponent

Description Implements exact and approximate methods for singular value
decomposition and principal components analysis, in a framework that
allows them to be easily switched within Bioconductor packages or
workflows. Where possible, parallelization is achieved using
the BiocParallel framework.

License GPL-3

LinkingTo Rcpp, beachmat

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 6.1.1

BugReports https://github.com/LTLA/BiocSingular/issues

URL https://github.com/LTLA/BiocSingular

git_url https://git.bioconductor.org/packages/BiocSingular

git_branch RELEASE_3_9

git_last_commit d2b091c

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

R topics documented:
BiocSingular options . 2
BiocSingularParam . 3
DeferredMatrix . 5

1

https://github.com/LTLA/BiocSingular/issues
https://github.com/LTLA/BiocSingular

2 BiocSingular options

LowRankMatrix . 6
runExactSVD . 7
runIrlbaSVD . 9
runPCA . 10
runRandomSVD . 11
runSVD . 13

Index 15

BiocSingular options Global SVD options

Description

An overview of the available options when performing SVD with any algorithm.

Computing the cross-product

If the dimensions of the input matrix are very different, it may be faster to compute the cross-
product and perform the SVD on the resulting square matrix, rather than performing SVD directly
on a very fat or tall input matrix. The cross-product can often be computed very quickly due to good
data locality, yielding a small square matrix that is easily handled by any SVD algorithm. This is
especially true in cases where the input matrix is not held in memory. Calculation of the cross-
product only involves one read across the entire data set, while direct application of approximate
methods like irlba or rsvd would need to access the data multiple times.

The various BiocSingular SVD functions allow users to specify the minimum fold difference (via
the fold argument) at which a cross-product should be computed. Setting fold=1 will always
compute the cross-product for any matrix - this is probably unwise. By contrast, setting fold=Inf
means that the cross-product is never computed. This is currently the default in all functions, to
provide the most expected behaviour unless specifically instructed otherwise.

Centering and scaling

In general, each SVD function performs the SVD on t((t(x) -C)/S) where C and S are numeric
vectors of length equal to ncol(x). The values of C and S are defined according to the center and
scale options.

• If center=TRUE, C is defined as the column sums of x. If center=NULL or FALSE, all elements
of C are set to zero. If center is a numeric vector with length equal to ncol(x), it is used to
directly define C.

• If scale=TRUE, the ith element of S is defined as the square root of sum((x[,i] -C[i])^2)/(ncol(x)-1),
for whatever C was defined above. This mimics the behaviour of scale. If scale=NULL or
FALSE, all elements of S are set to unity. If scale is a numeric vector with length equal to
ncol(x), it is used to directly define S.

Setting center or scale is more memory-efficient than modifiying the input x directly. This is
because the function will avoid constructing intermediate centered (possibly non-sparse) matrices.

BiocSingularParam 3

Deferred centering and scaling

Many of the SVD algorithms (and computation of the cross-product) involve repeated matrix multi-
plications. The BiocSingular package has a specialized DeferredMatrix class that defers centering
(and to some extent, scaling) during matrix multiplication. The matrix multiplication is performed
on the original matrix, and then the centering/scaling operations are applied to the matrix product.
This allows direct use of the %*% method for each matrix representation, to exploit features of the
underlying representation (e.g., sparsity) for greater speed.

Unfortunately, the speed-up with deferred centering comes at the cost of increasing the risk of
catastrophic cancellation. The procedure requires subtraction of one large intermediate number
from another to obtain the values of the final matrix product. This could result in a loss of numerical
precision that compromises the accuracy of the various SVD algorithms.

The default approach is to explicitly create a dense in-memory centred/scaled matrix via block pro-
cessing (see blockGrid in the DelayedArray package). This avoids problems with numerical pre-
cision as large intermediate values are not formed. In doing so, we consistently favour accuracy over
speed unless the functions are specifically instructed to do otherwise, i.e., with deferred=TRUE.

Author(s)

Aaron Lun

BiocSingularParam BiocSingularParam classes

Description

Classes for specifying the type of singular value decomposition (SVD) algorithm and associated
parameters.

Usage

ExactParam(deferred=FALSE, fold=Inf)

IrlbaParam(deferred=FALSE, fold=Inf, extra.work=7, ...)

RandomParam(deferred=FALSE, fold=Inf, ...)

bsfold(object)

bsdeferred(object)

Arguments

deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options".

fold Numeric scalar specifying the minimum fold-difference for cross-product cal-
culation, see ?"BiocSingular-options".

extra.work Integer scalar, additional dimensionality of the workspace in runIrlbaSVD.

... Additional arguments to pass to runIrlbaSVD or runRandomSVD.

object A BiocSingularParam object.

4 BiocSingularParam

Details

The BiocSingularParam class is a virtual base class on which other parameter objects are built.
There are 3 concrete subclasses:

ExactParam: exact SVD with runExactSVD.

IrlbaParam: approximate SVD with irlba via runIrlbaSVD.

RandomParam: approximate SVD with rsvd via runRandomSVD.

These objects hold parameters specifying how each algorithm should be run on an arbitrary data
set. See the associated documentation pages for more details.

Value

The constructors return a BiocSingularParam subclass of the same type, containing the specified
parameters.

Methods

show(object): Display the class of a BiocSingularParam object, and a summary of the set pa-
rameters.

bsfold(object): Return a numeric scalar specifying the fold-difference for cross-product calcu-
lation.

bsdeferred(object): Return a logical scalar indicating whether centering and scaling should be
deferred.

Author(s)

Aaron Lun

See Also

runSVD for generic dispatch.

runExactSVD, runIrlbaSVD and runRandomSVD for specific methods.

Examples

ExactParam()

IrlbaParam(tol=1e-8)

RandomParam(q=20)

DeferredMatrix 5

DeferredMatrix The DeferredMatrix class

Description

Definitions of the DeferredMatrixSeed and DeferredMatrix classes and their associated methods.
These classes are designed to support deferred centering and scaling of the columns prior to a
principal components analysis.

Usage

DeferredMatrixSeed(x, center=NULL, scale=NULL)

DeferredMatrix(x, center=NULL, scale=NULL)

Arguments

x A matrix-like object.
This can alternatively be a DeferredMatrixSeed, in which case any values of
center and scale are ignored.

center A numeric vector of length equal to ncol(x), where each element is to be sub-
tracted from the corresponding column of x. A NULL value indicates that no
subtraction is to be performed.

scale A numeric vector of length equal to ncol(x), where each element is to divide
from the corresponding column of x (after subtraction). A NULL value indicates
that no division is to be performed.

Value

The DeferredMatrixSeed constructor will return a DeferredMatrixSeed object.

The DeferredMatrix constructor will return a DeferredMatrix object equivalent to t((t(x) -center)/scale).

Methods for DeferredMatrixSeed objects

DeferredMatrixSeed objects are implemented as DelayedMatrix backends. They support standard
operations like dim, dimnames and extract_array.

Passing a DeferredMatrixSeed object to the DelayedArray constructor will create a DeferredMatrix
object.

It is possible for x to contain a DeferredMatrix, thus nesting one DeferredMatrix inside another.
This can occasionally be useful in combination with transposition to achieve centering/scaling in
both dimensions.

Methods for DeferredMatrix objects

DeferredMatrix objects are derived from DelayedMatrix objects and support all of valid operations
on the latter. Several functions are specialized for greater efficiency when operating on Deferred-
Matrix instances, including:

• Subsetting, transposition and replacement of row/column names. These will return a new
DeferredMatrix rather than a DelayedMatrix.

6 LowRankMatrix

• Matrix multiplication via %*%, crossprod and tcrossprod. These functions will return a
DelayedMatrix. Also see ?"BiocSingular-options".

• Calculation of row and column sums and means by colSums, rowSums, etc.

All other operations applied to a DeferredMatrix will use the underlying DelayedArray machin-
ery. Unary or binary operations will generally create a new DelayedMatrix instance containing a
DeferredMatrixSeed.

Tranposition can effectively be used to allow centering/scaling on the rows if the input x is trans-
posed.

Author(s)

Aaron Lun

See Also

?"BiocSingular-options" for comments about numerical precision with deferred centering and
scaling.

Examples

library(Matrix)
y <- DeferredMatrix(rsparsematrix(10, 20, 0.1),

center=rnorm(20), scale=1+runif(20))
y

crossprod(y)
tcrossprod(y)
y %*% rnorm(20)

LowRankMatrix The LowRankMatrix class

Description

Definitions of the LowRankMatrixSeed and LowRankMatrix classes and their associated methods.
These classes are designed to provide a memory-efficient representation of a low-rank reconstruc-
tion, e.g., after a principal components analysis.

Usage

LowRankMatrixSeed(rotation, components)

LowRankMatrix(rotation, components)

Arguments

rotation A matrix-like object where each row corresponds to a row of the LowRankMa-
trix object.
This can alternatively be a LowRankMatrixSeed, in which case any value of
components is ignored.

components A matrix-like object where each row corresponds to a column of the LowRankMa-
trix object.

runExactSVD 7

Value

The LowRankMatrixSeed constructor will return a LowRankMatrixSeed object.

The LowRankMatrix constructor will return a LowRankMatrix object equivalent to tcrossprod(rotation,components).

Methods for LowRankMatrixSeed objects

LowRankMatrixSeed objects are implemented as DelayedMatrix backends. They support standard
operations like dim, dimnames and extract_array.

Passing a LowRankMatrixSeed object to the DelayedArray constructor will create a LowRankMa-
trix object.

Methods for LowRankMatrix objects

LowRankMatrix objects are derived from DelayedMatrix objects and support all of valid opera-
tions on the latter. Subsetting, transposition and replacement of row/column names are special-
ized for greater efficiency when operating on LowRankMatrix instances, and will return a new
LowRankMatrix rather than a DelayedMatrix.

All other operations applied to a LowRankMatrix will use the underlying DelayedArray machin-
ery. Unary or binary operations will generally create a new DelayedMatrix instance containing a
LowRankMatrixSeed.

Author(s)

Aaron Lun

See Also

runPCA to generate the rotation and component matrices.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runPCA(a, rank=10)

lr <- LowRankMatrix(out$rotation, out$x)

runExactSVD Exact SVD

Description

Perform an exact singular value decomposition.

Usage

runExactSVD(x, k=min(dim(x)), nu=k, nv=k, center=FALSE, scale=FALSE,
deferred=FALSE, fold=Inf, BPPARAM=SerialParam())

8 runExactSVD

Arguments

x A numeric matrix-like object to use in the SVD.

k Integer scalar specifying the number of singular values to return.

nu Integer scalar specifying the number of left singular vectors to return.

nv Integer scalar specifying the number of right singular vectors to return.

center A logical scalar indicating whether columns should be centered. Alternatively,
a numeric vector or NULL - see ?"BiocSingular-options".

scale A logical scalar indicating whether columns should be scaled. Alternatively, a
numeric vector or NULL - see ?"BiocSingular-options".

deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options".

fold Numeric scalar specifying the minimum fold difference between dimensions of
x to compute the cross-product, see ?"BiocSingular-options".

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

Details

If any of k, nu or nv exceeds min(dim(x)), they will be capped and a warning will be raised. The
exception is when they are explicitly set to Inf, in which case all singular values/vectors of x are
returned without any warning.

Note that parallelization via BPPARAM is only applied to the calculation of the cross-product. It has
no effect for near-square matrices where the SVD is computed directly.

Value

A list containing:

• d, a numeric vector of the first k singular values.

• u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

• u, a numeric matrix with ncol(x) rows and nv columns. Each column contains a right singular
vector.

Author(s)

Aaron Lun

See Also

svd for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runExactSVD(a)
str(out)

runIrlbaSVD 9

runIrlbaSVD Approximate SVD with irlba

Description

Perform an approximate singular value decomposition with the augmented implicitly restarted
Lanczos bidiagonalization algorithm.

Usage

runIrlbaSVD(x, k=5, nu=k, nv=k, center=FALSE, scale=FALSE, deferred=FALSE,
extra.work=7, ..., fold=Inf, BPPARAM=SerialParam())

Arguments

x A numeric matrix-like object to use in the SVD.
k Integer scalar specifying the number of singular values to return.
nu Integer scalar specifying the number of left singular vectors to return.
nv Integer scalar specifying the number of right singular vectors to return.
center A logical scalar indicating whether columns should be centered. Alternatively,

a numeric vector or NULL - see ?"BiocSingular-options".
scale A logical scalar indicating whether columns should be scaled. Alternatively, a

numeric vector or NULL - see ?"BiocSingular-options".
deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options".
extra.work Integer scalar specifying the additional number of dimensions to use for the

working subspace.
... Further arguments to pass to irlba.
fold Numeric scalar specifying the minimum fold difference between dimensions of

x to compute the cross-product, see ?"BiocSingular-options".
BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

Details

If BPPARAM has only 1 worker and a cross-product is not being computed, this function will use
irlba’s own center and scale arguments. This is effectively equivalent to deferred centering and
scaling, despite the setting of deferred=FALSE.

For multiple workers, this function will parallelize all multiplication operations involving x accord-
ing to the supplied BPPARAM.

The total dimensionality of the working subspace is defined as the maximum of k, nu and nv, plus
the extra.work.

Value

A list containing:

• d, a numeric vector of the first k singular values.
• u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular

vector.
• u, a numeric matrix with ncol(x) rows and nv columns. Each column contains a right singular

vector.

10 runPCA

Author(s)

Aaron Lun

See Also

irlba for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runIrlbaSVD(a)
str(out)

runPCA Principal components analysis

Description

Perform a principal components analysis (PCA) on a target matrix with a specified SVD algorithm.

Usage

runPCA(x, ...)

S4 method for signature 'ANY'
runPCA(x, rank, center=TRUE, scale=FALSE, get.rotation=TRUE,

get.pcs=TRUE, ...)

Arguments

x A numeric matrix-like object with samples as rows and variables as columns.

rank Integer scalar specifying the number of principal components to retain.

center A logical scalar indicating whether columns of x should be centered before the
PCA is performed. Alternatively, a numeric vector of length ncol(x) containing
the value to subtract from each column of x.

scale A logical scalar indicating whether columns of x should be scaled to unit vari-
ance before the PCA is performed. Alternatively, a numeric vector of length
ncol(x) containing the scaling factor for each column of x.

get.rotation A logical scalar indicating whether rotation vectors should be returned.

get.pcs A logical scalar indicating whether the principal component scores should be
returned.

... For the generic, this contains arguments to pass to methods upon dispatch.
For the ANY method, this contains further arguments to pass to runSVD. This
includes BSPARAM to specify the algorithm that should be used, and BPPARAM to
control parallelization.

runRandomSVD 11

Details

This function simply calls runSVD and converts the results into a format similar to that returned by
prcomp.

The generic is exported to allow other packages to implement their own runPCA methods for other
x objects, e.g., scater for SingleCellExperiment inputs.

Value

A list is returned containing:

• sdev, a numeric vector of length rank containing the standard deviations of the first rank
principal components.

• rotation, a numeric matrix with rank columns and nrow(x) rows, containing the first rank
rotation vectors. This is only returned if get.rotation=TRUE.

• x, a numeric matrix with rank columns and ncol(x) rows, containing the scores for the first
rank principal components. This is only returned if get.pcs=TRUE.

Author(s)

Aaron Lun

See Also

runSVD for the underlying SVD function.

?BiocSingularParam for details on the algorithm choices.

Examples

a <- matrix(rnorm(100000), ncol=20)
str(out <- runPCA(a, rank=10))

runRandomSVD Approximate SVD with rsvd

Description

Perform a randomized singular value decomposition.

Usage

runRandomSVD(x, k=5, nu=k, nv=k, center=FALSE, scale=FALSE, deferred=FALSE,
..., fold=Inf, BPPARAM=SerialParam())

12 runRandomSVD

Arguments

x A numeric matrix-like object to use in the SVD.

k Integer scalar specifying the number of singular values to return.

nu Integer scalar specifying the number of left singular vectors to return.

nv Integer scalar specifying the number of right singular vectors to return.

center A logical scalar indicating whether columns should be centered. Alternatively,
a numeric vector or NULL - see ?"BiocSingular-options".

scale A logical scalar indicating whether columns should be scaled. Alternatively, a
numeric vector or NULL - see ?"BiocSingular-options".

deferred Logical scalar indicating whether centering/scaling should be deferred, see ?"BiocSingular-options".

... Further arguments to pass to rsvd.

fold Numeric scalar specifying the minimum fold difference between dimensions of
x to compute the cross-product, see ?"BiocSingular-options".

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

Details

All multiplication operations in rsvd involving x will be parallelized according to the supplied
BPPARAM.

The dimensionality of the working subspace is defined as the maximum of k, nu and nv, plus the q
specified in

Value

A list containing:

• d, a numeric vector of the first k singular values.

• u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

• u, a numeric matrix with ncol(x) rows and nv columns. Each column contains a right singular
vector.

Author(s)

Aaron Lun

See Also

rsvd for the underlying algorithm.

Examples

a <- matrix(rnorm(100000), ncol=20)
out <- runRandomSVD(a)
str(out)

runSVD 13

runSVD Run SVD

Description

Perform a singular value decomposition on an input matrix with a specified algorithm.

Usage

runSVD(x, k, nu=k, nv=k, center=FALSE, scale=FALSE, BPPARAM=SerialParam(),
..., BSPARAM=ExactParam())

Arguments

x A numeric matrix-like object to use in the SVD.

k Integer scalar specifying the number of singular values to return.

nu Integer scalar specifying the number of left singular vectors to return.

nv Integer scalar specifying the number of right singular vectors to return.

center Numeric vector, logical scalar or NULL, specifying values to subtract from each
column of x - see ?"BiocSingular-options".

scale Numeric vector, logical scalar or NULL, specifying values to divide each column
of x - see ?"BiocSingular-options".

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

... Further arguments to pass to specific methods.

BSPARAM A BiocSingularParam object specifying the type of algorithm to run.

Details

The class of BSPARAM will determine the algorithm that is used, see ?BiocSingularParam for more
details. The default is to use an exact SVD via runExactSVD.

Value

A list containing:

• d, a numeric vector of the first k singular values.

• u, a numeric matrix with nrow(x) rows and nu columns. Each column contains a left singular
vector.

• u, a numeric matrix with ncol(x) rows and nv columns. Each column contains a right singular
vector.

Author(s)

Aaron Lun

See Also

runExactSVD, runIrlbaSVD and runRandomSVD for the specific functions.

14 runSVD

Examples

a <- matrix(rnorm(100000), ncol=20)

out.exact0 <- runSVD(a, k=4)
str(out.exact0)

out.exact <- runSVD(a, k=4, BSPARAM=ExactParam())
str(out.exact)

out.irlba <- runSVD(a, k=4, BSPARAM=IrlbaParam())
str(out.exact)

out.random <- runSVD(a, k=4, BSPARAM=RandomParam())
str(out.random)

Index

[,DeferredMatrix,ANY,ANY,ANY-method
(DeferredMatrix), 5

[,LowRankMatrix,ANY,ANY,ANY-method
(LowRankMatrix), 6

%*%,ANY,DeferredMatrix-method
(DeferredMatrix), 5

%*%,DeferredMatrix,ANY-method
(DeferredMatrix), 5

%*%,DeferredMatrix,DeferredMatrix-method
(DeferredMatrix), 5

BiocParallelParam, 8, 9, 12, 13
BiocSingular options, 2
BiocSingular-options (BiocSingular

options), 2
BiocSingularParam, 3, 11, 13
BiocSingularParam-class

(BiocSingularParam), 3
blockGrid, 3
bsdeferred (BiocSingularParam), 3
bsfold (BiocSingularParam), 3

colMeans,DeferredMatrix-method
(DeferredMatrix), 5

colSums,DeferredMatrix-method
(DeferredMatrix), 5

crossprod,ANY,DeferredMatrix-method
(DeferredMatrix), 5

crossprod,DeferredMatrix,ANY-method
(DeferredMatrix), 5

crossprod,DeferredMatrix,DeferredMatrix-method
(DeferredMatrix), 5

crossprod,DeferredMatrix,missing-method
(DeferredMatrix), 5

DeferredMatrix, 3, 5
DeferredMatrix-class (DeferredMatrix), 5
DeferredMatrixSeed (DeferredMatrix), 5
DeferredMatrixSeed-class

(DeferredMatrix), 5
DelayedArray, 5, 7
DelayedArray,DeferredMatrixSeed-method

(DeferredMatrix), 5

DelayedArray,LowRankMatrixSeed-method
(LowRankMatrix), 6

DelayedMatrix, 5, 7
dim,DeferredMatrixSeed-method

(DeferredMatrix), 5
dim,LowRankMatrixSeed-method

(LowRankMatrix), 6
dimnames,DeferredMatrixSeed-method

(DeferredMatrix), 5
dimnames,LowRankMatrixSeed-method

(LowRankMatrix), 6
dimnames<-,DeferredMatrix,ANY-method

(DeferredMatrix), 5
dimnames<-,LowRankMatrix,ANY-method

(LowRankMatrix), 6

ExactParam, 4
ExactParam (BiocSingularParam), 3
ExactParam-class (BiocSingularParam), 3
extract_array,DeferredMatrixSeed-method

(DeferredMatrix), 5
extract_array,LowRankMatrixSeed-method

(LowRankMatrix), 6

irlba, 2, 9, 10
IrlbaParam, 4
IrlbaParam (BiocSingularParam), 3
IrlbaParam-class (BiocSingularParam), 3

LowRankMatrix, 6
LowRankMatrix-class (LowRankMatrix), 6
LowRankMatrixSeed (LowRankMatrix), 6
LowRankMatrixSeed-class

(LowRankMatrix), 6

prcomp, 11

RandomParam, 4
RandomParam (BiocSingularParam), 3
RandomParam-class (BiocSingularParam), 3
rowMeans,DeferredMatrix-method

(DeferredMatrix), 5
rowSums,DeferredMatrix-method

(DeferredMatrix), 5
rsvd, 2, 12

15

16 INDEX

runExactSVD, 4, 7, 13
runIrlbaSVD, 3, 4, 9, 13
runPCA, 7, 10
runPCA,ANY-method (runPCA), 10
runRandomSVD, 3, 4, 11, 13
runSVD, 4, 10, 11, 13
runSVD,ExactParam-method (runSVD), 13
runSVD,IrlbaParam-method (runSVD), 13
runSVD,missing-method (runSVD), 13
runSVD,RandomParam-method (runSVD), 13

scale, 2
show,BiocSingularParam-method

(BiocSingularParam), 3
show,DeferredMatrixSeed-method

(DeferredMatrix), 5
show,IrlbaParam-method

(BiocSingularParam), 3
show,LowRankMatrixSeed-method

(LowRankMatrix), 6
show,RandomParam-method

(BiocSingularParam), 3
svd, 8

t,DeferredMatrix-method
(DeferredMatrix), 5

t,LowRankMatrix-method (LowRankMatrix),
6

tcrossprod,ANY,DeferredMatrix-method
(DeferredMatrix), 5

tcrossprod,DeferredMatrix,ANY-method
(DeferredMatrix), 5

tcrossprod,DeferredMatrix,DeferredMatrix-method
(DeferredMatrix), 5

tcrossprod,DeferredMatrix,missing-method
(DeferredMatrix), 5

	BiocSingular options
	BiocSingularParam
	DeferredMatrix
	LowRankMatrix
	runExactSVD
	runIrlbaSVD
	runPCA
	runRandomSVD
	runSVD
	Index

