Package ‘scater’

October 16, 2018

Type Package
Maintainer Davis McCarthy <davis@ebi.ac.uk>

Version 1.8.4

Date 2018-08-13

License GPL (>=2)

Title Single-Cell Analysis Toolkit for Gene Expression Data in R

Description A collection of tools for doing various analyses of
single-cell RNA-seq gene expression data, with a focus on
quality control.

Depends R (>=3.5), Biobase, ggplot2, SingleCellExperiment,
SummarizedExperiment

Imports BiocGenerics, data.table, dplyr, edgeR, ggbeeswarm, grid,
limma, Matrix, DelayedMatrixStats, methods, parallel, plyr,
reshape?2, rhdf5, rjson, S4Vectors, shiny, shinydashboard,
stats, tximport, utils, viridis, Repp (>= 0.12.14),
DelayedArray

Suggests BiocStyle, biomaRt, beachmat, cowplot, cluster, destiny,
knitr, monocle, mvoutlier, rmarkdown, Rtsne, testthat,
magrittr, pheatmap, DropletUtils, irlba

VignetteBuilder knitr
LazyData true

biocViews SingleCell, RNASeq, QualityControl, Preprocessing,
Normalization, Visualization, DimensionReduction,
Transcriptomics, GeneExpression, Sequencing, Software,
Datalmport, DataRepresentation, Infrastructure, Coverage

LinkingTo Rhdf5lib, Rcpp, beachmat
SystemRequirements C++11
RoxygenNote 6.0.1

NeedsCompilation yes
URL http://bioconductor.org/packages/scater/

BugReports https://support.bioconductor.org/
git_url https://git.bioconductor.org/packages/scater
git_branch RELEASE_3_7

http://bioconductor.org/packages/scater/
https://support.bioconductor.org/

2 R topics documented:

git_last_commit d560a9a
git_last_commit_date 2018-08-13
Date/Publication 2018-10-15

Author Davis McCarthy [aut, cre],
Kieran Campbell [aut],
Aaron Lun [aut, ctb],

Quin Wills [aut],
Vladimir Kiselev [ctb]

R topics documented:

scater-package L. 3
areSizeFactorsCentred e 3
ATANZE .+« o v o v v e 4
DOOLSIIaps o o e 5
calcAverage 6
calcISEXprs e 7
calculateCPM e e e e 8
calculateFPKM e e 9
calculateQCMELrICS o e e e e e e e 10
calculateTPM o e 14
centreSizeFactors 15
downsampleCounts e 16
filter e 16
findlmportantPCs 17
getBMFeatureAnnos L. 18
isOutlier L L 19
kallisto-wrapper 21
librarySizeFactors 23
multiplot L e 24
MULALE o oo e e e e e e e e e e e 25
NEXPIS o v v v v e 26
normalize 27
normalizeExXprs L 29
NOTIN_EXPIS v v v v v v e 31
plotColData e e e e e e 32
plotExplanatoryVariables 34
PIOEXPression e e e e e 35
plotExprsFreqVsMean 37
plotExprsVsTxLength 38
plotHeatmap e e e e e 40
plotHighestEXprs e e 42
plotPlatePosition e 43
PlotQC e e e 45
plotReducedDim e 46
PIORLE e e e 47
plotRowData e e 49
plotScatero e e e e e e 50
readlOxResults 52
readTxResults 53

Reduced dimension plots 54

scater-package 3

TENAME .« « . v v v v e 56
runDiffusionMap e e e 57
runMDS . . L e 58
runPCA . . . e e 60
runTSNE . . . o e 62
SAlMON-WIAPPET o v v et i e e e e e e 63
Scater-plot-args e e e e e e e e e e e 66
SCALET-VIS-VAL v vt e e e e e e e e e e e e 67
SCAET_GUL .+« v v v v v e 68
SCESet 69
sc_example_cell_info 70
sc_example_COUNtS e 70
summariseExprsAcrossFeatures L L L 71
uniquifyFeatureNames L 72
updateSCESet 73

Index 74

scater-package Single-cell analysis toolkit for expression in R
Description

scater provides a class and numerous functions for the quality control, normalisation and visualisa-
tion of single-cell RNA-seq expression data.

Details

In particular, scater provides easy generation of quality control metrics and simple functions to
visualise quality control metrics and their relationships.

areSizeFactorsCentred Check if the size factors are centred at unity

Description

Checks if each set of size factors is centred at unity, such that abundances can be reasonably com-
pared between features normalized with different sets of size factors.

Usage

areSizeFactorsCentred(object, centre = 1, tol = 1e-06)

Arguments
object A SingleCellExperiment object containing any number of (or zero) sets of size
factors.
centre a numeric scalar, the value around which all sets of size factors should be cen-
tred.
tol anumeric scalar, the tolerance for testing equality of the mean of each size factor

set to centre.

4 arrange

Value

A logical scalar indicating whether all sets of size factors are centered. If no size factors are avail-
able, TRUE is returned.

Author(s)

Aaron Lun

See Also

centreSizeFactors

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

sizeFactors(example_sce) <- runif(ncol(example_sce))
areSizeFactorsCentred(example_sce)
example_sce <- normalize(example_sce, centre = TRUE)
areSizeFactorsCentred(example_sce)

arrange Arrange columns (cells) of a SingleCellExperiment object

Description

The SingleCellExperiment returned will have cells ordered by the corresponding variable in
colData(object).

Usage

arrange(object, ...)

S4 method for signature 'SingleCellExperiment'

arrange(object, ...)
Arguments
object A SingleCellExperiment object.

Additional arguments to be passed to dplyr: :arrange to act on colData(object).

Value

An SingleCellExperiment object.

bootstraps 5

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- arrange(example_sce, Cell_Cycle)

bootstraps Accessor and replacement for bootstrap results in a
SingleCellExperiment object

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated

by the kallisto software for quantifying feature abundance). These functions conveniently access
and replace the bootstrap’ elements in the assays slot with the value supplied, which must be an
matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment
object as a whole.

Usage
bootstraps(object)
bootstraps(object) <- value

S4 method for signature 'SingleCellExperiment'’
bootstraps(object)

S4 replacement method for signature 'SingleCellExperiment,array’
bootstraps(object) <- value

Arguments

object a SingleCellExperiment object.

value an array of class "numeric” containing bootstrap expression values
Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values,
otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)

Davis McCarthy

6 calcAverage

Examples

data("sc_example_counts")

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
bootstraps(example_sce)

calcAverage Calculate average counts, adjusting for size factors or library size

Description

Calculate average counts per feature, adjusting them as appropriate to take into account for size
factors for normalization or library sizes (total counts).

Usage

calcAverage(object, exprs_values = "counts"”, use_size_factors = TRUE,
size_factor_grouping = NULL, subset_row = NULL)

Arguments

object A SingleCellExperiment object or count matrix.

exprs_values A string specifying the assay of object containing the count matrix, if object
is a SingleCellExperiment.

use_size_factors
a logical scalar specifying whetherthe size factors in object should be used to
construct effective library sizes.

size_factor_grouping
A factor to be passed to grouping=in centreSizeFactors.

subset_row A vector specifying whether the rows of object should be (effectively) subset-
ted before calcaulting feature averages.

Details

The size-adjusted average count is defined by dividing each count by the size factor and taking the
average across cells. All sizes factors are scaled so that the mean is 1 across all cells, to ensure that
the averages are interpretable on the scale of the raw counts.

Assuming that object is a SingleCellExperiment:
* If use_size_factors=TRUE, size factors are automatically extracted from the object. Note

that different size factors may be used for features marked as spike-in controls. This is due to
the presence of control-specific size factors in object, see normalizeSCE for more details.

» If use_size_factors=FALSE, all size factors in object are ignored. Size factors are instead
computed from the library sizes, using librarySizeFactors.

* Ifuse_size_factors is a numeric vector, it will override the any size factors for non-spike-in
features in object. The spike-in size factors will still be used for the spike-in transcripts.

calcIsExprs 7

If no size factors are available, they will be computed from the library sizes using librarySizeFactors.

If object is a matrix or matrix-like object, size factors can be supplied by setting use_size_factors
to a numeric vector. Otherwise, the sum of counts for each cell is used as the size factor through
librarySizeFactors.

Value

Vector of average count values with same length as number of features, or the number of features
in subset_row if supplied.

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
list(counts = sc_example_counts),
colData = sc_example_cell_info)

calculate average counts
ave_counts <- calcAverage(example_sce)

calcIsExprs Calculate which features are expressed in which cells using a thresh-
old on observed counts, transcripts-per-million, counts-per-million,
FPKM, or defined expression levels.

Description

Calculate which features are expressed in which cells using a threshold on observed counts, transcripts-
per-million, counts-per-million, FPKM, or defined expression levels.

Usage

calcIsExprs(object, detection_limit = @, exprs_values = "counts")
Arguments

object a SingleCellExperiment object with expression and/or count data.

detection_limit

numeric scalar giving the minimum expression level for an expression observa-
tion in a cell for it to qualify as expressed.

exprs_values character scalar indicating whether the count data (" counts”), the log-transformed
count data ("logcounts"), transcript-per-million (“tpm"), counts-per-million
("cpm") or FPKM ("fpkm") should be used to define if an observation is ex-
pressed or not. Defaults to the first available value of those options in the order
shown.

Value

a logical matrix indicating whether or not a feature in a particular cell is expressed.

8 calculateCPM

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
assay(example_sce, "is_exprs"”) <- calcIsExprs(example_sce,

detection_limit = 1, exprs_values = "counts")
calculateCPM Calculate counts per million (CPM)
Description

Calculate count-per-million (CPM) values from the count data.

Usage

calculateCPM(object, exprs_values = "counts"”, use_size_factors = TRUE,
size_factor_grouping = NULL, subset_row = NULL)

Arguments

object A SingleCellExperiment object or count matrix.

exprs_values A string specifying the assay of object containing the count matrix, if object
is a SingleCellExperiment.

use_size_factors
A logical scalar indicating whether size factors in object should be used to
compute effective library sizes. If not, all size factors are deleted and library
size-based factors are used instead (see librarySizeFactors. Alternatively, a
numeric vector containing a size factor for each cell, which is used in place of
sizeFactor(object).

size_factor_grouping
A factor to be passed to grouping=in centreSizeFactors.

subset_row A vector specifying whether the rows of object should be (effectively) subset-
ted before calcaulting feature averages.

Details

If requested, size factors are used to define the effective library sizes. This is done by scaling all size
factors such that the mean scaled size factor is equal to the mean sum of counts across all features.
The effective library sizes are then used to in the denominator of the CPM calculation.

Assuming that object is a SingleCellExperiment:

» If use_size_factors=TRUE, size factors are automatically extracted from the object. Note
that effective library sizes may be computed differently for features marked as spike-in con-
trols. This is due to the presence of control-specific size factors in object, see normalizeSCE
for more details.

* Ifuse_size_factors=FALSE, all size factors in object are ignored. The total count for each
cell will be used as the library size for all features (endogenous genes and spike-in controls).

calculateFPKM 9

» Ifuse_size_factors is a numeric vector, it will override the any size factors for non-spike-in
features in object. The spike-in size factors will still be used for the spike-in transcripts.
If no size factors are available, the library sizes will be used.

If object is a matrix or matrix-like object, size factors will only be used if use_size_factorsisa
numeric vector. Otherwise, the sum of counts for each cell is directly used as the library size.

Note that the rescaling is performed to the mean sum of counts for all features, regardless of whether
subset. row is specified. This ensures that the output of the function with subset. row is equivalent
(but more efficient) than subsetting the output of the function without subset. row.

Value

Matrix of CPM values.

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
list(counts = sc_example_counts),
colData = sc_example_cell_info)

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)

calculateFPKM Calculate fragments per kilobase of exon per million reads mapped
(FPKM)

Description

Calculate fragments per kilobase of exon per million reads mapped (FPKM) values for expression
from counts for a set of features.

Usage

calculateFPKM(object, effective_length, ...)
Arguments

object an SingleCellExperiment object

effective_length

vector of class "numeric” providing the effective length for each feature in the
SCESet object

Further arguments to pass to calculateCPM.

Value

Matrix of FPKM values.

10 calculateQCMetrics

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
effective_length <- rep(1000, 2000)

fpkm(example_sce) <- calculateFPKM(example_sce, effective_length,
use_size_factors = FALSE)

calculateQCMetrics Calculate QC metrics

Description

Compute quality control (QC) metrics for each feature and cell in a SingleCellExperiment object,
accounting for specified control sets.

Usage

calculateQCMetrics(object, exprs_values = "counts”, feature_controls = NULL,
cell_controls = NULL, percent_top = c(50, 100, 200, 500),
detection_limit = @, use_spikes = TRUE, compact = FALSE)

Arguments

object A SingleCellExperiment object containing expression values, usually counts.

exprs_values A string indicating which assays in the object should be used to define ex-
pression.

feature_controls
A named list containing one or more vectors (a character vector of feature
names, a logical vector, or a numeric vector of indices), used to identify fea-
ture controls such as ERCC spike-in sets or mitochondrial genes.

cell_controls A named list containing one or more vectors (a character vector of cell (sample)
names, a logical vector, or a numeric vector of indices), used to identify cell
controls, e.g., blank wells or bulk controls.

percent_top An integer vector. Each element is treated as a number of top genes to compute
the percentage of library size occupied by the most highly expressed genes in
each cell. See pct_X_top_Y_features below for more details.

detection_limit

A numeric scalar to be passed to nexprs, specifying the lower detection limit
for expression.

use_spikes A logical scalar indicating whether existing spike-in sets in object should be
automatically added to feature_controls, see ?isSpike.

compact A logical scalar indicating whether the metrics should be returned in a compact
format as a nested DataFrame.

calculateQCMetrics 11

Details
This function calculates useful quality control metrics to help with pre-processing of data and iden-
tification of potentially problematic features and cells.

Underscores in assayNames(object) and in feature_controls or cell_controls can cause
theoretically cause ambiguities in the names of the output metrics. While problems are highly
unlikely, users are advised to avoid underscores when naming their controls/assays.

Value

A SingleCellExperiment object containing QC metrics in the row and column metadata.

Cell-level QC metrics

Denote the value of exprs_values as X. Cell-level metrics are:

total_X: Sum of expression values for each cell (i.e., the library size, when counts are the expres-
sion values).

logl0_total_X: LoglO-transformed total_X after adding a pseudo-count of 1.

total_features_by_X: The number of features that have expression values above the detection
limit.

log10_total_features_by_X: LoglO-transformed total_features_by_X after adding a pseudo-
count of 1.

pct_X_in_top_Y_features: The percentage of the total that is contained within the top Y most
highly expressed features in each cell. This is only reported when there are more than Y
features. The top numbers are specified via percent_top.

If any controls are specified in feature_controls, the above metrics will be recomputed using
only the features in each control set. The name of the set is appended to the name of the recom-
puted metric, e.g., total_X_F. A pct_X_F metric is also calculated for each set, representing the
percentage of expression values assigned to features in F.

In addition to the user-specified control sets, two other sets are automatically generated when
feature_controls is non-empty. The first is the "feature_control” set, containing a union
of all feature control sets; and the second is an "endogenous” set, containing all genes not in any
control set. Metrics are also computed for these sets in the same manner described above, suffixed
with _feature_control and _endogenous instead of _F.

Finally, there is the is_cell_control field, which indicates whether each cell has been defined as
a cell control by cell_controls. If multiple sets of cell controls are defined (e.g., blanks or bulk
libraries), a metric is_cell_control_C is produced for each cell control set C. The union of all
sets is stored in is_cell_control.

All of these cell-level QC metrics are added as columns to the colData slot of the SingleCellEx-
periment object. This allows them to be inspected by the user and makes them readily available for
other functions to use.

Feature-level QC metrics
Denote the value of exprs_values as X. Feature-level metrics are:
mean_X: Mean expression value for each gene across all cells.

log10_mean_X: LoglO-mean expression value for each gene across all cells.

n_cells_by_X: Number of cells with expression values above the detection limit for each gene.

12 calculateQCMetrics

pct_dropout_by_X: Percentage of cells with expression values below the detection limit for each
gene.

total_X: Sum of expression values for each gene across all cells.

log10_total_X: LoglO-sum of expression values for each gene across all cells.

If any controls are specified in cell_controls, the above metrics will be recomputed using only
the cells in each control set. The name of the set is appended to the name of the recomputed metric,
e.g., total_X_C. A pct_X_C metric is also calculated for each set, representing the percentage of
expression values assigned to cells in C.

In addition to the user-specified control sets, two other sets are automatically generated when
cell_controls is non-empty. The first is the "cell_control” set, containing a union of all
cell control sets; and the second is an "non_control” set, containing all genes not in any con-
trol set. Metrics are computed for these sets in the same manner described above, suffixed with
_cell_control and _non_control instead of_C.

Finally, there is the is_feature_control field, which indicates whether each feature has been
defined as a control by feature_controls. If multiple sets of feature controls are defined (e.g.,
ERCCs, mitochondrial genes), a metric is_feature_control_F is produced for each feature con-
trol set F. The union of all sets is stored in is_feature_control.

These feature-level QC metrics are added as columns to the rowData slot of the SingleCellExper-
iment object. They can be inspected by the user and are readily available for other functions to
use.

Compacted output

If compact=TRUE, the QC metrics are stored in the "scater_qc"” field of the colData and rowData
as a nested DataFrame. This avoids cluttering the metadata with QC metrics, especially if many
results are to be stored in a single SingleCellExperiment object.

Assume we have a feature control set F and a cell control set C. The nesting structure in scater_qc
in the colData is:

scater_qc

|-- is_cell_control

|-- is_cell_control_C

|-- all

| |-- total_counts

| |-- total_features_by_counts

| \—— ...

+-- endogenous

| |-- total_counts

| |-- total_features_by_counts
|-- pct_counts

| \-- ...

+-- feature_control

| |-- total_counts

| |-- total_features_by_counts
|-- pct_counts

| \-- ...

\-- feature_control_F
|-- total_counts
|-- total_features_by_counts
|-- pct_counts
\-- ...

calculateQCMetrics 13

The nesting in scater_qc in the rowData is:

scater_qc

|-- is_feature_control

|-- is_feature_control_F

[-- all

| |-- total_counts

| |-- total_features_by_counts

[

+-- non_control

| |-- total_counts

| |-- total_features_by_counts
|-- pct_counts

| \-—— ...

+-- cell_control

| |-- total_counts

| |-- total_features_by_counts
|-- pct_counts

[

\-- cell_control_C
|-- total_counts
|-- total_features_by_counts
|-- pct_counts
\-- ...

No suffixing of the metric names by the control names is performed here. This is not necessary
when each control set has its own nested DataFrame.

Renamed metrics

Several metric names have been changed in scater 1.7.5:
* total_features was changed to total_features_by_X where X is the exprs_values. This
avoids ambiguities if calculateQCMetrics is called multiple times with different exprs_values.
* n_cells_X was changed to n_cells_by_X, to provide a more sensible name for the metric.
* pct_dropout_X was changed to pct_dropout_by_X.
* pct_X_top_Y_features was changed to pct_X_in_top_Y_features.
All of the old metric names will be kept alongside the new metric names when compact=FALSE.

Otherwise, only the new metric names will be stored. The old metric names may be removed in
future releases of scater.

Author(s)

Davis McCarthy, with (many!) modifications by Aaron Lun

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

14 calculateTPM

)

example_sce <- calculateQCMetrics(example_sce)

with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(setl = 1:40))

with a named set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = 1list(ERCC = 1:40))

calculateTPM Calculate transcripts-per-million (TPM)

Description

Calculate transcripts-per-million (TPM) values for expression from counts for a set of features.

Usage

calculateTPM(object, effective_length = NULL, calc_from = "counts")

Arguments

object a SingleCellExperiment object

effective_length
vector of class "numeric” providing the effective length for each feature in the
SingleCellExperiment object

non

calc_from character string indicating whether to compute TPM from "counts”, "normcounts”
or "fpkm". Default is to use "counts”, in which case the effective_length
argument must be supplied.

Value

Matrix of TPM values.

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e04,
calc_from = "counts")

calculate from FPKM

fpkm(example_sce) <- calculateFPKM(example_sce, effective_length = 5e04,

use_size_factors = FALSE)

tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e04,
calc_from = "fpkm")

centreSizeFactors 15

centreSizeFactors Centre size factors at unity

Description

Scales all size factors so that the average size factor across cells is equal to 1.

Usage

centreSizeFactors(object, centre = 1, grouping = NULL)

Arguments
object A SingleCellExperiment object containing any number (or zero) sets of size
factors.
centre A numeric scalar, the value around which all sets of size factors should be cen-
tred.
grouping A factor specifying the grouping of cells, where size factors are centred to unity
within each group.
Details

Centering of size factors at unity ensures that division by size factors yields values on the same
scale as the raw counts. This is important for the interpretation of the normalized values, as well as
comaprisons between features normalized with different size factors (e.g., spike-ins).

Specification of grouping centres the size factors within each level of the provided factor. This is
useful if different batches are sequenced at different depth, by preserving the scale of counts within
each batch.

Value

A SingleCellExperiment with modified size factors that are centred at unity.

Author(s)

Aaron Lun

See Also

areSizeFactorsCentred

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

sizeFactors(example_sce) <- runif(ncol(example_sce))

16 filter

sizeFactors(example_sce, "ERCC") <- runif(ncol(example_sce))
example_sce <- centreSizeFactors(example_sce)

mean(sizeFactors(example_sce))
mean(sizeFactors(example_sce, "ERCC"))

downsampleCounts Downsample a count matrix

Description

Downsample a count matrix to a desired proportion.

Usage

downsampleCounts(x, prop)

Arguments
X matrix of counts
prop numeric scalar or vector of length ncol(x) in [0, 1] indicating the downsam-
pling proportion
Details

This function calls downsampleMatrix. from the DropletUtils package. It is deprecated and will
be removed in the next release.

Value

an integer matrix of downsampled counts

Examples

scel@x <- readl@xResults(system.file("extdata"”, package="scater"))
downsampled <- downsampleCounts(counts(scel@x), prop = 0.5)

filter Return SingleCellExperiment with cells matching conditions.

Description

Subsets the columns (cells) of a SingleCellExperiment based on matching conditions in the rows
of colData(object).

findImportantPCs

Usage

filter(object,

17

.2

S4 method for signature 'SingleCellExperiment'’

filter(object,

Arguments

object

Value

)

A SingleCellExperiment object.
Additional arguments to be passed to dplyr: :filter to act on colData(object).

An SingleCellExperiment object.

Examples

data("sc_example_counts")

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),

colData = sc_example_cell_info)

example_sce_treatl <- filter(example_sce, Treatment == "treatl"”)

findImportantPCs

Find most important principal components for a given variable

Description

Find most important principal components for a given variable

Usage

findImportantPCs(object, variable = "total_features”,

plot_type =
feature_set

Arguments

object

variable

plot_type

exprs_values

"pcs-vs-vars”, exprs_values = "logcounts”, ntop = 500,

NULL, scale_features = TRUE, theme_size = 10)

an SCESet object containing expression values and experimental information.
Must have been appropriately prepared.

character scalar providing a variable name (column from colData(object)) for
which to determine the most important PCs.

character string, indicating which type of plot to produce. Default, "pairs-pcs”
produces a pairs plot for the top 5 PCs based on their R-squared with the variable
of interest. A value of "pcs-vs-vars" produces plots of the top PCs against the
variable of interest.

which slot of the assayData in the object should be used to define expression?
Valid options are "counts", "tpm", "fpkm" and "logcounts" (default), or anything
else in the object added manually by the user.

18 getBMFeatureAnnos

ntop numeric scalar indicating the number of most variable features to use for the
PCA. Default is 500, but any ntop argument is overrided if the feature_set
argument is non-NULL.

feature_set character, numeric or logical vector indicating a set of features to use for the
PCA. If character, entries must all be in rownames(object). If numeric, values
are taken to be indices for features. If logical, vector is used to index features
and should have length equal to nrow(object).

scale_features logical, should the expression values be standardised so that each feature has
unit variance? Default is TRUE.

theme_size numeric scalar providing base font size for ggplot theme.

Details

Plot the top 5 or 6 most important PCs (depending on the plot_type argument for a given variable.
Importance here is defined as the R-squared value from a linear model regressing each PC onto the
variable of interest.

Value

a ggplot plot object

Examples

data("sc_example_counts™)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes,]

example_sce <- calculateQCMetrics(example_sce)
findImportantPCs(example_sce, variable="total_features")

getBMFeatureAnnos Get feature annotation information from Biomart

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage
getBMFeatureAnnos(object, filters = "ensembl_transcript_id",
attributes = c("ensembl_transcript_id", "ensembl_gene_id", feature_symbol,
"chromosome_name"”, "transcript_biotype", "transcript_start”, "transcript_end”,

"transcript_count”), feature_symbol = "mgi_symbol”,
feature_id = "ensembl_gene_id", biomart = "ENSEMBL_MART_ENSEMBL",
dataset = "mmusculus_gene_ensembl”, host = "www.ensembl.org")

isOutlier 19

Arguments
object A SingleCellExperiment object.
filters Character vector defining the filters to pass to the getBM function.
attributes Character vector defining the attributes to pass to getBM.

feature_symbol String specifying the attribute to be used to define the symbol to be used for each
feature Default is "mgi_symbol”, using gene symbols for mouse - this should
be changed if the organism is not Mus musculus.

feature_id String specifying the attribute to be used to define the ID to be used for each
feature. Default is "ensembl_gene_id", using the Ensembl gene IDs.

biomart String defining the biomaRt to be used, to be passed to useMart. Default is
"ENSEMBL _MART_ENSEMBL".

dataset String defining the dataset to use, to be passed to useMart. Defaultis "mmusculus_gene_ensembl”,
which should be changed if the organism is not mouse.

host Character string argument which can be used to select a particular "host” to
pass to useMart. Useful for accessing archived versions of biomaRt data. De-
fault is "www.ensembl.org", in which case the current version of the biomaRt
(now hosted by Ensembl) is used.

Value

A SingleCellExperiment object containing feature annotation. The input feature_symbol appears
as the feature_symbol field in the rowData of the output object.

Examples

Not run:
object <- getBMFeatureAnnos(object)

End(Not run)

isOutlier Identify outlier values

Description

Convenience function to determine which values in a numeric vector are outliers based on the
median absolute deviation (MAD).

Usage

isOutlier(metric, nmads = 5, type = c("both”, "lower”, "higher"),
log = FALSE, subset = NULL, batch = NULL, min_diff = NA)

20

Arguments

metric

nmads

type

log

subset

batch

min_diff

Value

isOutlier

Numeric vector of values.

A numeric scalar, specifying the minimum number of MADs away from median
required for a value to be called an outlier.

String indicating whether outliers should be looked for at both tails ("both"),
only at the lower tail ("lower") or the upper tail ("higher").

Logical scalar, should the values of the metric be transformed to the log10 scale
before computing MADs?

Logical or integer vector, which subset of values should be used to calculate
the median/MAD? If NULL, all values are used. Missing values will trigger a
warning and will be automatically ignored.

Factor of length equal to metric, specifying the batch to which each observation
belongs. A median/MAD is calculated for each batch, and outliers are then
identified within each batch.

A numeric scalar indicating the minimum difference from the median to con-
sider as an outlier. The outlier threshold is defined from the larger of nmads
MADs and min_diff, to avoid calling many outliers when the MAD is very
small. If NA, it is ignored.

A logical vector of the same length as the metric argument, specifying the observations that are
considered as outliers.

Author(s)

Aaron Lun

Examples

data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),

colData

)

sc_example_cell_info

example_sce <- calculateQCMetrics(example_sce)

with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(setl = 1:40))
isOutlier(example_sce$total_counts, nmads = 3)

kallisto-wrapper 21

kallisto-wrapper kallisto wrapper functions

Description

Run the abundance quantification tool kallisto on a set of FASTQ files. Requires kallisto
(http://pachterlab.github.io/kallisto/) to be installed and a kallisto feature index must
have been generated prior to using this function. See the kallisto website for installation and basic
usage instructions.

Read kallisto results for a single sample into a list

After generating transcript/feature abundance results using kallisto for a batch of samples, read
these abundance values into a SingleCellExperiment object.

Usage

runKallisto(targets_file, transcript_index, single_end = TRUE,
output_prefix = "output”, fragment_length = NULL,
fragment_standard_deviation = NULL, n_cores = 2,
n_bootstrap_samples = @, bootstrap_seed = NULL, correct_bias = TRUE,
plaintext = FALSE, kallisto_version = "current”, verbose = TRUE,
dry_run = FALSE, kallisto_cmd = "kallisto")

readkallistoResultsOneSample(directory, read_h5 = FALSE,
kallisto_version = "current")

readkallistoResults(kallisto_log = NULL, samples = NULL,
directories = NULL, read_h5 = FALSE, kallisto_version = "current”,
verbose = TRUE)

Arguments

targets_file character string giving the path to a tab-delimited text file with either 2 columns
(single-end reads) or 3 columns (paired-end reads) that gives the sample names
(first column) and FastQ file names (column 2 and if applicable 3). The file is
assumed to have column headers, although these are not used.
transcript_index
character string giving the path to the kallisto index to be used for the feature
abundance quantification.

single_end logical, are single-end reads used, or paired-end reads?

output_prefix character string giving the prefix for the output folder that will contain the
kallisto results. The default is "output” and the sample name (column 1 of
targets_file) is appended (preceded by an underscore).

fragment_length
scalar integer or numeric giving the estimated average fragment length. Re-
quired argument if single_end is TRUE, optional if FALSE (kallisto default for
paired-end data is that the value is estimated from the input data).

fragment_standard_deviation
scalar numeric giving the estimated standard deviation of read fragment length.
Required argument if single_end is TRUE, optional if FALSE (kallisto default
for paired-end data is that the value is estimated from the input data).

http://pachterlab.github.io/kallisto/

22 kallisto-wrapper

n_cores integer giving the number of cores (nodes/threads) to use for the kallisto jobs.
The package parallel is used. Default is 2 cores.

n_bootstrap_samples
integer giving the number of bootstrap samples that kallisto should use (default
is 0). With bootstrap samples, uncertainty in abundance can be quantified.

bootstrap_seed scalar integer or numeric giving the seed to use for the bootstrap sampling (de-
fault used by kallisto is 42). Optional argument.

correct_bias logical, should kallisto’s option to model and correct abundances for sequence
specific bias? Requires kallisto version 0.42.2 or higher.

plaintext logical, if TRUE then bootstrapping results are returned in a plain text file rather
than an HDF5 https://www.hdfgroup.org/HDF5/ file.

kallisto_version
character string indicating whether or not the version of kallisto to be used is
"pre-0.42.2" or "current”. This is required because the kallisto developers
changed the output file extensions and added features in version 0.42.2.

verbose logical, should timings for the run be printed?

dry_run logical, if TRUE then a list containing the kallisto commands that would be run
and the output directories is returned. Can be used to read in results if kallisto is
run outside an R session or to produce a script to run outside of an R session.

kallisto_cmd (optional) string giving full command to use to call kallisto, if simply typing
"kallisto" at the command line does not give the required version of kallisto or
does not work. Default is simply "kalliso". If used, this argument should give
the full path to the desired kallisto binary.

directory character string giving the path to the directory containing the kallisto results for
the sample.

read_h5 logical, if TRUE then read in bootstrap results from the HDF5 object produced
by kallisto.

kallisto_log list, generated by runKallisto. If provided, then samples and directories
arguments are ignored.

samples character vector providing a set of sample names to use for the abundance re-
sults.
directories character vector providing a set of directories containing kallisto abundance re-

sults to be read in.

Details

A kallisto transcript index can be built from a FASTA file: kallisto index [arguments] FASTA-file.
See the kallisto documentation for further details.

The directory is expected to contain results for just a single sample. Putting more than one sam-
ple’s results in the directory will result in unpredictable behaviour with this function. The function
looks for the files (with the default names given by kallisto) abundance.txt’, 'run_info.json’ and (if
read_h5=TRUE) ’abundance/h5’. If these files are missing, or if results files have different names,
then this function will not find them.

This function expects to find only one set of kallisto abundance results per directory; multiple
adundance results in a given directory will be problematic.

https://www.hdfgroup.org/HDF5/

librarySizeFactors 23

Value

A list containing three elements for each sample for which feature abundance has been quantified:
(1) kallisto_call, the call used for kallisto, (2) kallisto_log the log generated by kallisto, and
(3) output_dir the directory in which the kallisto results can be found.

A list with two elements: (1) a data.frame abundance with columns for ’target_id’ (feature, tran-
script, gene etc), 'length’ (feature length), *eff_length’ (effective feature length), *est_counts’ (esti-
mated feature counts), 'tpm’ (transcripts per million) and possibly many columns containing boot-
strap estimated counts; and (2) a list run_info with details about the kallisto run that generated the
results.

a SingleCellExperiment object

Examples

Not run:

If in kallisto's 'test' directory, then try these calls:

Generate 'targets.txt' file:

write.table(data.frame(Sample="samplel”, Filel="reads_1.fastq.gz", File2="reads_1.fastq.gz"),

file="targets.txt"”, quote=FALSE, row.names=FALSE, sep="\t")

kallisto_log <- runKallisto("targets.txt"”, "transcripts.idx”, single_end=FALSE,
output_prefix="output”, verbose=TRUE, n_bootstrap_samples=10,
dry_run = FALSE)

End(Not run)

If kallisto results are in the directory "output”, then call:

readKallistoResultsOneSample("output”)

Not run:

kallisto_log <- runKallisto("targets.txt"”, "transcripts.idx"”, single_end=FALSE,
output_prefix="output”, verbose=TRUE, n_bootstrap_samples=10)

sceset <- readKallistoResults(kallisto_log)

End(Not run)

librarySizeFactors Compute library size factors

Description

Define size factors from the library sizes after centering. This ensures that the library size adjust-
ment yields values comparable to those generated after normalization with other sets of size factors.

Usage
librarySizeFactors(object, exprs_values = "counts")
Arguments
object A count matrix or SingleCellExperiment object containing counts.

exprs_values A string indicating the assay of object containing the counts, if object is a
SingleCellExperiment.

24 multiplot

Value

A numeric vector of size factors.

Examples

data("sc_example_counts”)
summary (librarySizeFactors(sc_example_counts))

multiplot Multiple plot function for ggplot2 plots

Description

Place multiple ggplot plots on one page.

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
Arguments

One or more ggplot objects.

plotlist A list of ggplot objects, as an alternative to

cols A numeric scalar giving the number of columns in the layout.

layout A matrix specifying the layout. If present, cols is ignored.
Details

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then:

* plot 1 will go in the upper left;
* plot 2 will go in the upper right;

* and plot 3 will go all the way across the bottom.

There is no way to tweak the relative heights or widths of the plots with this simple function. It was

adapted from http: //www. cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)
/

Value

A ggplot object.

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

mutate 25

Examples

library(ggplot2)

This example uses the ChickWeight dataset, which comes with ggplot2

First plot

pl <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet, group = Chick)) +
geom_line() +
ggtitle("Growth curve for individual chicks")

Second plot

p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +
geom_point(alpha = .3) +
geom_smooth(alpha = .2, size = 1) +
ggtitle("Fitted growth curve per diet")

Third plot

p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x
geom_density() +
ggtitle("Final weight, by diet”)

Fourth plot

p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, fill = Diet)) +
geom_histogram(colour = "black”, binwidth = 50)
facet_grid(Diet ~ .) +
ggtitle("Final weight, by diet") +
theme(legend.position = "none") # No legend (redundant in this graph)

weight, colour = Diet)) +

+

Combine plots and display
multiplot(pl, p2, p3, p4, cols = 2)

mutate Add new variables to colData(object).

Description

Adds ne

Usage

mutate(object, ...)

S4 method for signature 'SingleCellExperiment'’

mutate(object, ...)
Arguments
object a SingleCellExperiment object.

Additional arguments to be passed to dplyr: :mutate to act on colData(object).

Value

An SingleCellExperiment object.

26 nexprs

Examples

data("sc_example_counts”)
data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)

example_sce <- mutate(example_sce, is_quiescent = Cell_Cycle == "G@")
nexprs Count the number of expressed genes per cell
Description

An efficient internal function that avoids the need to construct *is_exprs_mat’ by counting the num-
ber of expressed genes per cell on the fly.

Usage

nexprs(object, detection_limit = @, exprs_values = "counts”,
byrow = FALSE, subset_row = NULL, subset_col = NULL)

Arguments

object a SingleCellExperiment object or a numeric matrix of expression values.
detection_limit

numeric scalar providing the value above which observations are deemed to be
expressed. Defaults to object@detection_limit.

exprs_values character scalar indicating whether the count data ("counts"), the log-transformed
count data ("logcounts"), transcript-per-million (“tpm"), counts-per-million
("cpm") or FPKM ("fpkm") should be used to define if an observation is ex-
pressed or not. Defaults to the first available value of those options in the or-
der shown. However, if is_exprs(object) is present, it will be used directly;
exprs_values and detection_limit are ignored.

byrow logical scalar indicating if TRUE to count expressing cells per feature (i.e. gene)
and if FALSE to count expressing features (i.e. genes) per cell.
subset_row logical, integeror character vector indicating which rows (i.e. features/genes) to
use.
subset_col logical, integer or character vector indicating which columns (i.e., cells) to use.
Details

Setting subset_row or subset_col is equivalent to subsetting object before calling nexprs, but
more efficient as a new copy of the matrix is not constructed.

Value
If byrow=TRUE, an integer vector containing the number of cells expressing each feature, of the same
length as the number of features in subset_row (all features in exprs_mat if subset_row=NULL).

If byrow=FALSE, an integer vector containing the number of genes expressed in each cell, of the
same length as the number of cells specified in subset_col (all cells in exprs_mat if subset_col=NULL).

normalize 27

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
nexprs(example_sce)[1:10]

nexprs(example_sce, byrow = TRUE)[1:10]

normalize Normalise a SingleCellExperiment object using pre-computed size
factors

Description

Compute normalised expression values from count data in a SingleCellExperiment object, using the
size factors stored in the object.

Usage

normalizeSCE(object, exprs_values = "counts”, return_log = TRUE,
log_exprs_offset = NULL, centre_size_factors = TRUE,
size_factor_grouping = NULL)

S4 method for signature 'SingleCellExperiment'’

normalize(object, exprs_values = "counts”,
return_log = TRUE, log_exprs_offset = NULL, centre_size_factors = TRUE,
size_factor_grouping = NULL)

normalise(...)

Arguments

object A SingleCellExperiment object.

exprs_values String indicating which assay contains the count data that should be used to
compute log-transformed expression values.

return_log Logical scalar, should normalized values be returned on the log2 scale?
log_exprs_offset
Numeric scalar specifying the offset to add when log-transforming expression
values. If NULL, value is taken from metadata(object)$log.exprs.offset if
defined, otherwise 1.
centre_size_factors
Logical scalar indicating whether size fators should be centred.
size_factor_grouping
Factor specifying groups of cells in which size factors should be centred, see
centreSizeFactors for details.

Arguments passed to normalize when calling normalise.

28 normalize

Details

Normalized expression values are computed by dividing the counts for each cell by the size factor
for that cell. This aims to remove cell-specific scaling biases, e.g., due to differences in sequenc-
ing coverage or capture efficiency. If 1og=TRUE, log-normalized values are calculated by adding
log_exprs_offset to the normalized count and performing a log2 transformation.

Features marked as spike-in controls will be normalized with control-specific size factors, if these
are available. This reflects the fact that spike-in controls are subject to different biases than those
that are removed by gene-specific size factors (namely, total RNA content). If size factors for a
particular spike-in set are not available, a warning will be raised.

Size factors will be centred to have a mean of unity if centre_size_factors=TRUE, prior to cal-
culation of normalized expression values. This ensures that the computed exprs can be interpreted
as being on the same scale as log-counts. It also standardizes the effect of the log_exprs_offset
addition, and ensures that abundances are roughly comparable between features normalized with
different sets of size factors.

If size_factor_grouping is specified and centre_size_factors=TRUE, this is equivalent to sub-
setting the SingleCellExperiment; centering the size factors within each subset; normalizing within
each subset; and then merging the subsets back together for output. This enables convenient nor-
malization of multiple batches separately.

Note that normalize is exactly the same as normalise.

Value

A SingleCellExperiment object containing normalized expression values in "normcounts” if 1og=FALSE,
and log-normalized expression values in "logcounts” if 1og=TRUE. All size factors will also be
centred in the output object if centre_size_factors=TRUE.

Warning about centred size factors

Generally speaking, centering does not affect relative comparisons between cells in the same object,
as all size factors are scaled by the same amount. However, if two different SingleCellExperiment
objects are run separately through normalize, the size factors in each object will be rescaled dif-
ferently. This means that the size factors and log-expression values will not be comparable between
objects.

This lack of comparability is not always obvious. For example, if we subsetted an existing Sin-
gleCellExperiment object, and ran normalize separately on each subset, the resulting expression
values in each subsetted object would not be comparable to each other. This is despite the fact that
all cells were originally derived from a single SingleCellExperiment object.

In general, it is advisable to only compare size factors and expression values between cells in one
SingleCellExperiment object, from a single normalize call with size_factor_grouping=NULL. If
objects are to be combined, new size factors should be computed using all cells in the combined
object, followed by a single normalize call. If size_factor_grouping is specified, expression
values should only be compared within each level of the specified factor.

Author(s)

Davis McCarthy and Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")

normalizeExprs 29

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)
keep_gene <- rowSums(counts(example_sce)) > @
example_sce <- example_sce[keep_gene,]

Apply TMM normalisation taking into account all genes

example_sce <- normaliseExprs(example_sce, method = "TMM")
Scale counts relative to a set of control features (here the first 100 features)
example_sce <- normaliseExprs(example_sce, method = "none”,

feature_set = 1:100)

normalize the object using the saved size factors
example_sce <- normalize(example_sce)

normalizeExprs Normalise expression levels for a SingleCellExperiment object

Description

Compute normalised expression values from a SingleCellExperiment object and return the object
with the normalised expression values added.

Usage
normalizeExprs(object, method = "none"”, design = NULL, feature_set = NULL,
exprs_values = "counts"”, return_norm_as_exprs = TRUE, return_log = TRUE,
)
normaliseExprs(...)
Arguments
object A SingleCellExperiment object.
method character string specified the method of calculating normalisation factors. Passed
to calcNormFactors.
design design matrix defining the linear model to be fitted to the normalised expression
values. If not NULL, then the residuals of this linear model fit are used as the
normalised expression values.
feature_set character, numeric or logical vector indicating a set of features to use for calcu-

lating normalisation factors. If character, entries must all be in featureNames (object).
If numeric, values are taken to be indices for features. If logical, vector is used
to index features and should have length equal to nrow(object).

exprs_values character string indicating which slot of the assayData from the SingleCellExperiment
object should be used for the calculations. Valid options are 'counts', 'tpm',
‘cpm', 'fpkm' and 'exprs'. Defaults to the first available value of these op-

tions in in order shown.

30 normalizeExprs

return_norm_as_exprs
logical, should the normalised expression values be returned to the exprs slot
of the object? Default is TRUE. If FALSE, values in the exprs slot will be
left untouched. Regardless, normalised expression values will be returned to the
norm_exprs slot of the object.

return_log logical(1), should normalized values be returned on the log scale? Default is
TRUE. If TRUE and return_norm_as_exprs is TRUE then normalised output is
stored as "logcounts” in the returned object; if TRUE and return_norm_as_exprs
is FALSE then normalised output is stored as "norm_exprs"”; if FALSE output is
stored as "normcounts”

arguments passed to normaliseExprs (in the case of normalizeExprs) or to
calcNormFactors.

Details

This function allows the user to compute normalised expression values from an SingleCellExperi-
ment object. The ’raw’ values used can be the values in the 'counts' (default), or another speci-
fied assay slot of the SingleCellExperiment. Normalised expression values are computed through
normalizeSCE and are on the log2-scale by default (if return_log is TRUE), with an offset de-
fined by the metadata(object)$log.exprs.offset value in the SingleCellExperiment object.
These are added to the 'norm_exprs' slot of the returned object. If 'exprs_values' argument is
"counts' and return_log is FALSE a 'normcounts" slot is added, containing normalised counts-
per-million values.

If the raw values are counts, this function will compute size factors using methods in calcNormFactors.
Library sizes are multiplied by size factors to obtain an "effective library size" before calculation of
the aforementioned normalized expression values. If feature_set is specified, only the specified
features will be used to calculate the size factors.

If the user wishes to remove the effects of certain explanatory variables, then the 'design' argu-
ment can be defined. The design argument must be a valid design matrix, for example as produced
by model.matrix, with the relevant variables. A linear model is then fitted using 1mFit on expres-
sion values after any size-factor and library size normalisation as descrived above. The returned
values in 'norm_exprs' are the residuals from the linear model fit.

After normalisation, normalised expression values can be accessed with the norm_exprs function
(with corresponding accessor functions for counts, tpm, fpkm, cpm). These functions can also be
used to assign normalised expression values produced with external tools to a SingleCellExperiment
object.

normalizeExprs is exactly the same as normaliseExprs, provided for those who prefer North
American spelling.
Value

an SingleCellExperiment object

Author(s)
Davis McCarthy

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

norm_exprs 31

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
keep_gene <- rowSums(counts(example_sce)) > @
example_sce <- example_sce[keep_gene,]

Apply TMM normalisation taking into account all genes

example_sce <- normaliseExprs(example_sce, method = "TMM")
Scale counts relative to a set of control features (here the first 100 features)
example_sce <- normaliseExprs(example_sce, method = "none”,

feature_set = 1:100)

norm_exprs Additional accessors for the typical elements of a SingleCellExperi-
ment object.

Description

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

Usage

norm_exprs(object)
norm_exprs(object) <- value
stand_exprs(object)
stand_exprs(object) <- value
fpkm(object)

fpkm(object) <- value

Arguments
object SingleCellExperiment class object from which to access or to which to as-
sign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The
following are imported from SingleCellExperiment: "counts”, "normcounts",
"logcounts”, "cpm", "tpm".
value a numeric matrix (e.g. for exprs)
Value

a matrix of normalised expression data
a matrix of standardised expressiond data
a matrix of FPKM values

A matrix of numeric, integer or logical values.

Author(s)
Davis McCarthy

32 plotColData

Examples

data("sc_example_counts”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

example_sce <- normalize(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) # identical to logcounts()

example_sce <- SingleCellExperiment(
assays = list(norm_counts = sc_example_counts), colData = sc_example_cell_info)

counts(example_sce) <- sc_example_counts
norm_exprs(example_sce) <- log2(calculateCPM(example_sce, use_size_factors = FALSE) + 1)

stand_exprs(example_sce) <- log2(calculateCPM(example_sce, use_size_factors = FALSE) + 1)

tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e4)

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)

fpkm(example_sce)

plotColData Plot column metadata

Description

Plot column-level (i.e., cell) metadata in an SingleCellExperiment object.

Usage

plotColData(object, y, x = NULL, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = "logcounts”, by_show_single = FALSE,
)
plotPhenoData(...)

plotCellData(...)

Arguments
object A SingleCellExperiment object containing expression values and experimental
information.
y Specification of the column-level metadata to show on the y-axis, see ?"scater-vis-var”
for possible values. Note that only metadata fields will be searched, assays will
not be used.
X Specification of the column-level metadata to show on the x-axis, see ?"scater-vis-var”

for possible values. Again, only metadata fields will be searched, assays will
not be used.

plotColData 33

colour_by Specification of a column metadata field or a feature to colour by, see ?”scater-vis-var’
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var”
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"”scater-vis-var”
for possible values.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Note that plotPhenoData and plotCellData are synonyms for plotColData. These are artifacts
of the transition from the old SCESet class, and will be deprecated in future releases.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)
example_sce <- calculateQCMetrics(example_sce)
example_sce <- normalize(example_sce)

plotColData(example_sce, y = "total_features_by_counts”,
x = "logl@_total_counts”, colour_by = "Mutation_Status")

plotColData(example_sce, y = "total_features_by_counts”,
x = "logl@_total_counts"”, colour_by = "Mutation_Status”,
size_by = "Gene_0001", shape_by = "Treatment")

plotColData(example_sce, y = "Treatment”,
x = "logl@_total_counts”, colour_by = "Mutation_Status")

34 plotExplanatory Variables

plotColData(example_sce, y = "total_features_by_counts”,
x = "Cell_Cycle"”, colour_by = "Mutation_Status")

plotExplanatoryVariables

Plot explanatory variables ordered by percentage of phenotypic vari-
ance explained

Description

Plot explanatory variables ordered by percentage of phenotypic variance explained

Usage
plotExplanatoryVariables(object, method = "density"”,
exprs_values = "logcounts”, nvars_to_plot = 10, min_marginal_r2 = 0,
variables = NULL, return_object = FALSE, theme_size = 10, ...)
Arguments
object an SingleCellExperiment object containing expression values and experimental

information. Must have been appropriately prepared.

method character scalar indicating the type of plot to produce. If "density", the function
produces a density plot of R-squared values for each variable when fitted as
the only explanatory variable in a linear model. If "pairs", then the function
produces a pairs plot of the explanatory variables ordered by the percentage
of feature expression variance (as measured by R-squared in a marginal linear
model) explained.

exprs_values which slot of the assayData in the object should be used to define expression?

non

Valid options are "logcounts" (default), "tpm", "fpkm", "cpm", and "counts".

nvars_to_plot integer, the number of variables to plot in the pairs plot. Default value is 10.
min_marginal_r2
numeric scalar giving the minimal value required for median marginal R-squared
for a variable to be plotted. Only variables with a median marginal R-squared
strictly larger than this value will be plotted.

variables optional character vector giving the variables to be plotted. Default is NULL, in
which case all variables in colData(object) are considered and the nvars_to_plot
variables with the highest median marginal R-squared are plotted.

return_object logical, should an SingleCellExperiment object with median marginal R-
squared values added to varMetadata(object) be returned?

theme_size numeric scalar giving font size to use for the plotting theme

parameters to be passed to pairs.

Details

If the method argument is "pairs", then the function produces a pairs plot of the explanatory vari-
ables ordered by the percentage of feature expression variance (as measured by R-squared in a
marginal linear model) explained by variable. Median percentage R-squared is reported on the plot
for each variable. Discrete variables are coerced to a factor and plotted as integers with jittering.
Variables with only one unique value are quietly ignored.

plotExpression 35

Value

A ggplot object

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 03})
example_sce <- example_sce[!drop_genes,]

example_sce <- calculateQCMetrics(example_sce)

vars <- names(colData(example_sce))[c(2:3, 5:14)]
plotExplanatoryVariables(example_sce, variables=vars)

plotExpression Plot expression values for all cells

Description

Plot expression values for a set of features (e.g. genes or transcripts) in a SingleExperiment object,
against a continuous or categorical covariate for all cells.

Usage

plotExpression(object, features, x = NULL, exprs_values = "logcounts”,
log2_values = FALSE, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = exprs_values, by_show_single = FALSE,
xlab = NULL, feature_colours = TRUE, one_facet = TRUE, ncol = 2,

scales = "fixed"”, ...)
Arguments
object A SingleCellExperiment object containing expression values and other meta-
data.
features A character vector (of feature names), a logical vector or numeric vector (of

indices) specifying the features to plot.

X Specification of a column metadata field or a feature to show on the x-axis, see
?"scater-vis-var” for possible values.

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

log2_values Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"”scater-vis-var”
for possible values.

36 plotExpression

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var”
for possible values.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

x1ab String specifying the label for x-axis. If NULL (default), x will be used as the
x-axis label.

feature_colours
Logical scalar indicating whether violins should be coloured by feature when x
and colour_by are not specified and one_facet=TRUE.

one_facet Logical scalar indicating whether grouped violin plots for multiple features should
be put onto one facet. Only relevant when x=NULL.

ncol Integer scalar, specifying the number of columns to be used for the panels of a
multi-facet plot.

scales String indicating whether should multi-facet scales be fixed ("fixed"), free
("free"), or free in one dimension ("free_x", "free_y"). Passed to the scales
argument in the facet_wrap when multiple facets are generated.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

This function plots expression values for one or more features. If x is not specified, a violin plot
will be generated of expression values. If x is categorical, a grouped violin plot will be generated,
with one violin for each level of x. If x is continuous, a scatter plot will be generated.

If multiple features are requested and x is not specified and one_facet=TRUE, a grouped violin plot
will be generated with one violin per feature. This will be coloured by feature if colour_by=NULL
and feature_colours=TRUE, to yield a more aesthetically pleasing plot. Otherwise, if x is speci-
fied or one_facet=FALSE, a multi-panel plot will be generated where each panel corresponds to a
feature. Each panel will be a scatter plot or (grouped) violin plot, depending on the nature of x.

Note that this assumes that the expression values are numeric. If not, and x is continuous, horizontal
violin plots will be generated. If x is missing or categorical, rectangule plots will be generated where
the area of a rectangle is proportional to the number of points for a combination of factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

prepare data
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

plotExprsFreqVsMean 37

)

example_sce <- calculateQCMetrics(example_sce)
sizeFactors(example_sce) <- colSums(counts(example_sce))
example_sce <- normalize(example_sce)

default plot
plotExpression(example_sce, 1:15)

plot expression against an x-axis value
plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Mutation_Status")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Gene_0002")

add visual options

plotExpression(example_sce, 1:6, colour_by = "Mutation_Status")

plotExpression(example_sce, 1:6, colour_by = "Mutation_Status”,
shape_by = "Treatment”, size_by = "Gene_0010")

plot expression against expression values for Gene_0004
plotExpression(example_sce, 1:4, "Gene_0004", show_smooth = TRUE)

plotExprsFreqVsMean Plot frequency against mean for each feature

Description

Plot the frequency of expression (i.e., percentage of expressing cells) against the mean expression
level for each feature in a SingleCellExperiment object.

Usage
plotExprsFreqVsMean(object, freq_exprs, mean_exprs, controls,
by_show_single = FALSE, show_smooth = TRUE, show_se = TRUE, ...)
Arguments
object A SingleCellExperiment object.
freq_exprs Specification of the row-level metadata field containing the number of express-

ing cells per feature, see ?"scater-vis-var” for possible values. Note that
only metadata fields will be searched, assays will not be used. If not supplied
or NULL, this defaults to "n_cells_by_counts"” or equivalent for compacted
data.

mean_exprs Specification of the row-level metadata field containing the mean expression of
each feature, see ?"scater-vis-var” for possible values. Again, only metadata
fields will be searched, assays will not be used. If not supplied or NULL, this
defaults to "mean_counts” or equivalent for compacted data.

controls Specification of the row-level metadata column indicating whether a feature is
a control, see ?"scater-vis-var" for possible values. Only metadata fields
will be searched, assays will not be used. If not supplied, this defaults to
"is_feature_control” or equivalent for compacted data.

by_show_single Logical scalar specifying whether a single-level factor for controls should be
used for colouring, see ?"”scater-vis-var” for details.

38 plotExprsVsTxLength

show_smooth Logical scalar, should a smoothed fit (through feature controls if available; all
features otherwise) be shown on the plot? See geom_smooth for details.

show_se Logical scalar, should the standard error be shown for a smoothed fit?

Further arguments passed to plotRowData.

Details

This function plots gene expression frequency versus mean expression level, which can be useful
to assess the effects of technical dropout in the dataset. We fit a non-linear least squares curve for
the relationship between expression frequency and mean expression. We use this curve to define
the number of genes above high technical dropout and the numbers of genes that are expressed in
at least 50% and at least 25% of cells.

The plot will attempt to colour the points based on whether the corresponding features are labelled
as feature controls in object. This can be turned off by setting controls=NULL.

Value

A ggplot object.

See Also

plotRowData

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)

example_sce <- normalize(example_sce)
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(setl = 1:500))

plotExprsFreqVsMean(example_sce)

plotExprsFreqVsMean(example_sce, size_by = "is_feature_control”)

plotExprsVsTxLength Plot expression against transcript length

Description

Plot mean expression values for all features in a SingleCellExperiment object against transcript
length values.

plotExprsVsTxLength 39

Usage

plotExprsVsTxLength(object, tx_length = "median_feat_eff_len",
length_is_assay = FALSE, exprs_values = "logcounts”,
log2_values = FALSE, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = exprs_values, by_show_single = FALSE,

xlab = "Median transcript length”, show_exprs_sd = FALSE, ...)
Arguments
object A SingleCellExperiment object.
tx_length Transcript lengths for all features, to plot on the x-axis. If length_is_assay=FALSE,

this can take any of the values described in ?"scater-vis-var" for feature-
level metadata; data in assays(object) will not be searched. Otherwise, if
length_is_assay=TRUE, tx_length should be the name or index of an assay
in object.

length_is_assay
Logical scalar indicating whether tx_length refers to an assay of object con-
taining transcript lengths for all features in all cells.

exprs_values A string or integer scalar specifying which assay in assays(object) to obtain
expression values from.

log2_values Logical scalar, specifying whether the expression values be transformed to the
log2-scale for plotting (with an offset of 1 to avoid logging zeroes).

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var”
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var”
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var”
for possible values.

by_exprs_values

A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var"” for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

xlab String specifying the label for x-axis.

show_exprs_sd Logical scalar indicating whether the standard deviation of expression values for
each feature should be plotted.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If length_is_assay=TRUE, the median transcript length of each feature across all cells is used.
This may be necessary if the effective transcript length differs across cells, e.g., as observed in the
results from pseudo-aligners.

Value

A ggplot object.

40 plotHeatmap

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts")

data("sc_example_cell_info")

rd <- DataFrame(gene_id = rownames(sc_example_counts),
feature_id = paste("feature”, rep(1:500, each = 4), sep = "_"),
median_tx_length = rnorm(2000, mean = 5000, sd = 500),
other = sample(LETTERS, 2000, replace = TRUE)

)

rownames(rd) <- rownames(sc_example_counts)

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info, rowData = rd

)

example_sce <- normalize(example_sce)

plotExprsVsTxLength(example_sce, "median_tx_length")

plotExprsVsTxLength(example_sce, "median_tx_length”, show_smooth = TRUE)

plotExprsVsTxLength(example_sce, "median_tx_length”, show_smooth = TRUE,
colour_by = "other”, show_exprs_sd = TRUE)

using matrix of tx length values in assays(object)

mat <- matrix(rnorm(ncol(example_sce) * nrow(example_sce), mean = 5000,
sd = 500), nrow = nrow(example_sce))

dimnames(mat) <- dimnames(example_sce)

assay(example_sce, "tx_len") <- mat

plotExprsVsTxLength(example_sce, "tx_len"”, show_smooth = TRUE,
length_is_assay = TRUE, show_exprs_sd = TRUE)

using a vector of tx length values
plotExprsVsTxLength(example_sce,
data.frame(rnorm(2000, mean = 5000, sd = 500)))

plotHeatmap Plot heatmap of gene expression values

Description

Create a heatmap of expression values for each cell and specified features in a SingleCellExperiment
object.

Usage

plotHeatmap(object, features, columns = NULL, exprs_values = "logcounts”,
center = FALSE, zlim = NULL, symmetric = FALSE, color = NULL,
colour_columns_by = NULL, by_exprs_values = exprs_values,
by_show_single = FALSE, ...)

plotHeatmap 41

Arguments
object A SingleCellExperiment object.
features A character vector of row names, a logical vector of integer vector of indices
specifying rows of object to show in the heatmap.
columns A vector specifying the subset of columns in object to show as columns in the

heatmp. By default, all columns are used in their original order.

exprs_values A string or integer scalar indicating which assay of object should be used as
expression values for colouring in the heatmap.

center A logical scalar indicating whether each row should have its mean expression
centered at zero prior to plotting.

zlim A numeric vector of length 2, specifying the upper and lower bounds for the
expression values. This winsorizes the expression matrix prior to plotting (but
after centering, if center=TRUE). If NULL, it defaults to the range of the expres-
sion matrix.

symmetric A logical scalar specifying whether the default z1im should be symmetric around
zero. If TRUE, the maximum absolute value of z1im will be computed and mul-
tiplied by c(-1, 1) to redefine z1im.

color A vector of colours specifying the palette to use for mapping expression values
to colours. This defaults to the default setting in pheatmap.

colour_columns_by
A list of values specifying how the columns should be annotated with colours.
Each entry of the list can be of the form described by ?"scater-vis-var”. A
character vector can also be supplied and will be treated as a list of strings.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for colouring of column-level data - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for column-
level colouring, see ?"scater-vis-var” for details.

Additional arguments to pass to pheatmap.

Details

Setting center=TRUE is useful for examining log-fold changes of each cell’s expression profile
from the average across all cells. This avoids issues with the entire row appearing a certain colour
because the gene is highly/lowly expressed across all cells.

Setting z1lim preserves the dynamic range of colours in the presence of outliers. Otherwise, the
plot may be dominated by a few genes, which will “flatten” the observed colours for the rest of the
heatmap.

Value

A heatmap is produced on the current graphics device. The output of pheatmap is invisibly returned.

Author(s)

Aaron Lun

See Also

pheatmap

42 plotHighestExprs

Examples

example(normalizeSCE) # borrowing the example objects in here.

plotHeatmap(example_sce, features=rownames(example_sce)[1:10])

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
center=TRUE, symmetric=TRUE)

plotHeatmap(example_sce, features=rownames(example_sce)[1:10],
colour_columns_by=c("Mutation_Status”, "Cell_Cycle"))

plotHighestExprs Plot the highest expressing features

Description

Plot the features with the highest average expression across all cells, along with their expression in
each individual cell.

Usage

plotHighestExprs(object, n = 50, controls, colour_cells_by,
drop_features = NULL, exprs_values = "counts”,
by_exprs_values = exprs_values, by_show_single = TRUE,
feature_names_to_plot = NULL, as_percentage = TRUE)

Arguments
object A SingleCellExperiment object.
n A numeric scalar specifying the number of the most expressed features to show.
controls Specification of the row-level metadata column indicating whether a feature is

a control, see ?"scater-vis-var"” for possible values. Only metadata fields
will be searched, assays will not be used. If not supplied, this defaults to
"is_feature_control” or equivalent for compacted data.

colour_cells_by
Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values. If not supplied, this defaults to "total_features_by_counts”
or equivalent for compacted data.

drop_features A character, logical or numeric vector indicating which features (e.g. genes,
transcripts) to drop when producing the plot. For example, spike-in transcripts
might be dropped to examine the contribution from endogenous genes.

exprs_values A integer scalar or string specifying the assay to obtain expression values from.
by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in colouring - see ?"scater-vis-var"” for details.
by_show_single Logical scalar specifying whether single-level factors should be used for colour-
ing, see ?"scater-vis-var" for details. Defaultis NULL, in which case rownames(object)
are used.
feature_names_to_plot
Specification of which row-level metadata column contains the feature names,
see ?"scater-vis-var" for possible values.

as_percentage logical scalar indicating whether percentages should be plotted. If FALSE, the
raw exprs_values are shown instead.

plotPlatePosition 43

Details

This function will plot the percentage of counts accounted for by the top n most highly expressed
features across the dataset. Each feature corresponds to a row on the plot, sorted by average expres-
sion (denoted by the point).

The plot will attempt to colour the points based on whether the corresponding feature is labelled as
a control in object. This can be turned off by setting controls=NULL.

The distribution of expression across all cells is shown as tick marks for each feature. These
ticks can be coloured according to cell-level metadata, as specified by colour_cells_by. Setting
colour_cells_by=NULL will disable all tick colouring.

Value

A ggplot object.

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(setl = 1:500)

)

plotHighestExprs(example_sce, colour_cells_by ="total_features")
plotHighestExprs(example_sce, controls = NULL)
plotHighestExprs(example_sce, colour_cells_by="Mutation_Status")

plotPlatePosition Plot cells in plate positions

Description

Plots cells in their position on a plate, coloured by metadata variables or feature expression values
from a SingleCellExperiment object.

Usage

plotPlatePosition(object, plate_position = NULL, colour_by = NULL,
size_by = NULL, shape_by = NULL, by_exprs_values = "logcounts",
by_show_single = FALSE, legend = TRUE, theme_size = 24, alpha = 0.6,
size = 24)

Arguments

object A SingleCellExperiment object.

44 plotPlatePosition

plate_position A character vector specifying the plate position for each cell (e.g., AO1, B12,
and so on, where letter indicates row and number indicates column). If NULL,
the function will attempt to extract this from object$plate_position. Alter-
natively, a list of two factors ("row” and "column”) can be supplied, specifying
the row and column for each cell in object.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var”
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var”
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var”
for possible values.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

legend Logical scalar specifying whether a legend should be shown.
theme_size Numeric scalar, see ?"scater-plot-args” for details.
alpha Numeric scalar specifying the transparency of the points, see ?"scater-plot-args”
for details.
size Numeric scalar specifying the size of the points, see ?"scater-plot-args” for
details.
Details

This function expects plate positions to be given in a charcter format where a letter indicates the
row on the plate and a numeric value indicates the column. Each cell has a plate position such
as "AO1", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter,
and the column as the numeric part. Alternatively, the row and column identities can be directly
supplied by setting plate_position as a list of two factors.

Value

A ggplot object.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

prepare data
data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)
example_sce <- normalize(example_sce)
example_sce <- calculateQCMetrics(example_sce)

define plate positions

plotQC 45

example_sce$plate_position <- paste@(
rep(LETTERS[1:5], each = 8),
rep(formatC(1:8, width = 2, flag = "@"), 5)
)

plot plate positions
plotPlatePosition(example_sce, colour_by = "Mutation_Status")

plotPlatePosition(example_sce, shape_by = "Treatment”, colour_by = "Gene_0004")

plotPlatePosition(example_sce, shape_by = "Treatment”, size_by = "Gene_0001",
colour_by = "Cell_Cycle")

plotQC Produce QC diagnostic plots

Description

Produce QC diagnostic plots

Usage
plotQC(object, type = "highest-expression”, ...)
Arguments
object an SingleCellExperiment object containing expression values and experimental
information. Must have been appropriately prepared.
type character scalar providing type of QC plot to compute: "highest-expression"
(showing features with highest expression), "find-pcs" (showing the most impor-
tant principal components for a given variable), "explanatory-variables" (show-
ing a set of explanatory variables plotted against each other, ordered by marginal
variance explained), or "exprs-mean-vs-freq" (plotting the mean expression lev-
els against the frequency of expression for a set of features).
arguments passed to plotHighestExprs, findImportantPCs, plotExplanatoryVariables
and {plotExprsMeanVsFreq} as appropriate.
Details

Display useful quality control plots to help with pre-processing of data and identification of poten-
tially problematic features and cells.

Value

a ggplot plot object

46 plotReducedDim

Examples

data("sc_example_counts”)
data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes,]

example_sce <- calculateQCMetrics(example_sce)

plotQC(example_sce, type="high"”, colour_cells_by="Mutation_Status")
plotQC(example_sce, type="find", variable="total_features"”)

vars <- names(colData(example_sce))[c(2:3, 5:14)]

plotQC(example_sce, type="expl”, variables=vars)

plotReducedDim Plot reduced dimensions

Description

Plot cell-level reduced dimension results stored in a SingleCellExperiment object.

Usage

plotReducedDim(object, use_dimred, ncomponents = 2, percentVar = NULL,
colour_by = NULL, shape_by = NULL, size_by = NULL,
by_exprs_values = "logcounts"”, by_show_single = FALSE, ...,
add_ticks = TRUE)

Arguments

object A SingleCellExperiment object.

use_dimred A string or integer scalar indicating the reduced dimension result in reducedDims (object)
to plot.

ncomponents A numeric scalar indicating the number of dimensions to plot, starting from the
first dimension. Alternatively, a numeric vector specifying the dimensions to be
plotted.

percentVar A numeric vector giving the proportion of variance in expression explained by
each reduced dimension. Only expected to be used in PCA settings, e.g., in the
plotPCA function.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var"
for possible values.

shape_by Specification of a column metadata field or a feature to shape by, see ?"scater-vis-var”
for possible values.

size_by Specification of a column metadata field or a feature to size by, see ?"scater-vis-var”

for possible values.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

plotRLE 47

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

Additional arguments for visualization, see ?"scater-plot-args” for details.

add_ticks Logical scalar indicating whether ticks should be drawn on the axes correspond-
ing to the location of each point.

Details

If ncomponents is a scalar and equal to 2, a scatterplot of the first two dimensions is produced. If
ncomponents is greater than 2, a pairs plots for the top dimensions is produced.

Alternatively, if ncomponents is a vector of length 2, a scatterplot of the two specified dimensions
is produced. If it is of length greater than 2, a pairs plot is produced containing all pairwise plots
between the specified dimensions.

Value

A ggplot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

Examples

data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)

example_sce <- normalize(example_sce)

example_sce <- runPCA(example_sce, ncomponents=5)
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")

plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle",
shape_by="Treatment")

plotRLE Plot a relative log expression (RLE) plot

Description

Produce a relative log expression (RLE) plot of one or more transformations of cell expression
values.

48

plotRLE

Usage

plotRLE(object, exprs_mats = list(logcounts = "logcounts"),
exprs_logged = c(TRUE), colour_by = NULL, style = "minimal”,

legend = "auto”, order_by_colour = TRUE, ncol =1, ...)
Arguments
object an SingleCellExperiment object
exprs_mats named list of expression matrices. Entries can either be a character string, in

which case the corresponding expression matrix will be extracted from the Sin-
gleCellExperiment object, or a matrix of expression values.

exprs_logged logical vector of same length as exprs_mats indicating whether the correspond-
ing entry in exprs_mats contains logged expression values (TRUE) or not (FALSE).

colour_by character string defining the column of colData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column, containing values to map to colours for all cells.

style character(1), either "minimal” (default) or "full”, defining the boxplot style to
use. "minimal” uses Tufte-style boxplots and is fast for large numbers of cells.
"full" uses the usual ggplot2 and is more detailed and flexible, but can take a
long time to plot for large datasets.

legend character, specifying how the legend(s) be shown? Default is "auto”, which
hides legends that have only one level and shows others. Alternative is "none"
(hide all legends).

order_by_colour
logical, should cells be ordered (grouped) by the colour_by variable? Default
is TRUE. Useful for visualising differences between batches or experimental con-
ditions.

ncol integer, number of columns for the facetting of the plot. Default is 1.

further arguments passed to geom_boxplot.

Details

Unwanted variation can be highly problematic and so its detection is often crucial. Relative log
expression (RLE) plots are a powerful tool for visualising such variation in high dimensional data.
RLE plots are particularly useful for assessing whether a procedure aimed at removing unwanted
variation, i.e. a normalisation procedure, has been successful. These plots, while originally devised
for gene expression data from microarrays, can also be used to reveal unwanted variation in single-
cell expression data, where such variation can be problematic.

If style is "full", as usual with boxplots, the box shows the inter-quartile range and whiskers extend
no more than 1.5 * IQR from the hinge (the 25th or 75th percentile). Data beyond the whiskers are
called outliers and are plotted individually. The median (50th percentile) is shown with a white bar.

If style is "minimal", then median is shown with a circle, the IQR in a grey line, and "whiskers" (as
defined above) for the plots are shown with coloured lines. No outliers are shown for this plot style.

Value

a ggplot plot object

Author(s)

Davis McCarthy

plotRowData 49

References

Gandolfo LC, Speed TP. RLE Plots: Visualising Unwanted Variation in High Dimensional Data.
arXiv [stat. ME]. 2017. Available: http://arxiv.org/abs/1704.03590

Examples

data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(logcounts(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes,]

plotRLE (example_sce, list(logcounts= "logcounts”, counts = "counts"), c(TRUE, FALSE),
colour_by = "Mutation_Status”, style = "minimal")

plotRLE (example_sce, list(logcounts = "logcounts”, counts = "counts"), c(TRUE, FALSE),
colour_by = "Mutation_Status”, style = "full”,
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = @)

plotRowData Plot row metadata

Description

Plot row-level (i.e., gene) metadata from a SingleCellExperiment object.

Usage

plotRowData(object, y, x = NULL, colour_by = NULL, shape_by = NULL,
size_by = NULL, by_exprs_values = "logcounts”, by_show_single = FALSE,
)

plotFeatureData(...)

Arguments

object A SingleCellExperiment object containing expression values and experimental
information.

y Specification of the row-level metadata to show on the y-axis, see ?"scater-vis-var"”
for possible values. Note that only metadata fields will be searched, assays will
not be used.

X Specification of the row-level metadata to show on the x-axis, see ?"scater-vis-var"”
for possible values. Again, only metadata fields will be searched, assays will
not be used.

colour_by Specification of a row metadata field or a cell to colour by, see ?"scater-vis-var”

for possible values.

50 plotScater

shape_by Specification of a row metadata field or a cell to shape by, see ?"scater-vis-var’
for possible values.

size_by Specification of a row metadata field or a cell to size by, see ?"”scater-vis-var’
for possible values.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in point aesthetics - see ?"scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for point
aesthetics, see ?"scater-vis-var" for details.

Additional arguments for visualization, see ?"scater-plot-args” for details.

Details

If y is continuous and x=NULL, a violin plot is generated. If x is categorical, a grouped violin plot
will be generated, with one violin for each level of x. If x is continuous, a scatter plot will be
generated.

If y is categorical and x is continuous, horizontal violin plots will be generated. If x is missing or
categorical, rectangule plots will be generated where the area of a rectangle is proportional to the
number of points for a combination of factors.

Note that plotFeatureData is a synonym for plotRowData. This is an artifact of the transition
from the old SCESet class, and will be deprecated in future releases.

Value

A ggplot object.

Examples

data("sc_example_counts”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

example_sce <- calculateQCMetrics(example_sce,
feature_controls = 1ist(ERCC=1:40))

example_sce <- normalize(example_sce)

plotRowData(example_sce, y="n_cells_by_counts”, x="logl@_total_counts")
plotRowData(example_sce, y="n_cells_by_counts”,
size_by ="logl@_total_counts”,

colour_by = "is_feature_control”)
plotScater Plot an overview of expression for each cell
Description

Plot the relative proportion of the library size that is accounted for by the most highly expressed
features for each cell in a SingleCellExperiment object.

plotScater 51

Usage

plotScater(x, nfeatures = 500, exprs_values = "counts”, colour_by = NULL,
by_exprs_values = exprs_values, by_show_single = FALSE, blockl = NULL,
block2 = NULL, ncol = 3, line_width = 1.5, theme_size = 10)

Arguments
X A SingleCellExperiment object.
nfeatures Numeric scalar indicating the number of top-expressed features to show n the

plot.

exprs_values String or integer scalar indicating which assay of object should be used to
obtain the expression values for this plot.

colour_by Specification of a column metadata field or a feature to colour by, see ?"scater-vis-var”
for possible values. The curve for each cell will be coloured according to this
specification.

by_exprs_values
A string or integer scalar specifying which assay to obtain expression values
from, for use in line colouring - see ?"”scater-vis-var" for details.

by_show_single Logical scalar specifying whether single-level factors should be used for line
colouring, see ?"scater-vis-var" for details.

block Specification of a factor by which to separate the cells into blocks (separate pan-
els) in the plot. This can be any type of value described in ?"”scater-vis-var”
for column-level metadata. Default is NULL, in which case there is no blocking.

block2 Same as block1, providing another level of blocking.

ncol Number of columns to use for facet_wrap if only one block is defined.

line_width Numeric scalar specifying the line width.

theme_size Numeric scalar specifying the font size to use for the plotting theme.
Details

For each cell, the features are ordered from most-expressed to least-expressed. The cumulative
proportion of the total expression for the cell is computed across the top nfeatures features. These
plots can flag cells with a very high proportion of the library coming from a small number of
features; such cells are likely to be problematic for downstream analyses.

Using the colour and blocking arguments can flag overall differences in cells under different ex-
perimental conditions or affected by different batch and other variables. If only one of block1 and
block2 are specified, each panel corresponds to a separate level of the specified blocking factor. If
both are specified, each panel corresponds to a combination of levels.

Value

a ggplot plot object

Author(s)

Davis McCarthy, with modifications by Aaron Lun

52 readlOxResults

Examples

Set up an example SingleCellExperiment
data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

plotScater(example_sce)
plotScater(example_sce, exprs_values = "counts”, colour_by = "Cell_Cycle")
plotScater(example_sce, blockl = "Treatment”, colour_by = "Cell_Cycle")

cpm(example_sce) <- calculateCPM(example_sce, use_size_factors = FALSE)
plotScater(example_sce, exprs_values = "cpm”, blockl = "Treatment”,
block2 = "Mutation_Status”, colour_by = "Cell_Cycle"”)

read10xResults Load in data from 10x experiment

Description

Creates a full or sparse matrix from a sparse data matrix provided by 10X genomics.

Usage

read10xResults(data_dir, min_total_cell_counts = NULL,
min_mean_gene_counts = NULL)

read10XResults(...)

Arguments

data_dir Directory containing the matrix.mtx, genes.tsv, and barcodes.tsv files provided
by 10x. A vector or named vector can be given in order to load several data
directories. If a named vector is given, the cell barcode names will be prefixed
with the name.

min_total_cell_counts
integer(1) threshold such that cells (barcodes) with total counts below the thresh-
old are filtered out

min_mean_gene_counts
numeric(1) threshold such that genes with mean counts below the threshold are
filtered out.

passed arguments

Details

This function calls read10xCounts from the DropletUtils package. It is deprecated and will be
removed in the next release.

readTxResults 53

Value

Returns an SingleCellExperiment object with counts data stored as a sparse matrix. Rows are
named with the gene name and columns are named with the cell barcode (if data_dir contains one
element; otherwise the columns are unnamed to avoid problems with non-unique barcodes).

Examples

scel@x <- readl1@xResults(system.file("extdata”, package="scater"))

readTxResults Read transcript quantification data with tximport package

Description
After generating transcript/feature abundance results using kallisto, Salmon, Sailfish or RSEM for
a batch of samples, read these abundance values into an SCESet object.

Usage

readTxResults(samples = NULL, files = NULL, log = NULL,
type = "kallisto”, txOut = TRUE, logExprsOffset = 1, verbose = TRUE,

.2
Arguments
samples character vector providing a set of sample names to use for the abundance re-
sults.
files character vector providing a set of filenames containing kallisto abundance re-
sults to be read in.
log list (optional), generated by runKallisto. If provided, then samples and files
arguments are ignored.
type character, the type of software used to generate the abundances. Options are
"kallisto", "salmon", "sailfish", "rsem". This argument is passed to tximport.
txOut logical, whether the function should just output transcript-level (default TRUE)

logExprsOffset numeric scalar, providing the offset used when doing log2-transformations of
expression data to avoid trying to take logs of zero. Default offset value is 1.

verbose logical, should function provide output about progress?

optional parameters passed to tximport. See documentation for tximport for
options and details.
Details
Note: tximport does not import bootstrap estimates from kallisto, Salmon, or Sailfish. If you want
bootstrap estimates use the readKallistoResults or readSalmonResults functions.
Value

an SCESet object containing the abundance, count and feature length data from the supplied sam-
ples.

54 Reduced dimension plots

References

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates
improve gene-level inferences. F1000Res. 2015;4: 1521.

Examples

Not run:

this example requires installation of the tximportData package from
Bioconductor

library(tximportData)

dir <- system.file("extdata”, package = "tximportData")
list.files(dir)

samples <- read.table(file.path(dir, "samples.txt"”), header = TRUE)
samples

directories <- file.path(dir, "kallisto”, samples$run)
names(directories) <- paste@("sample”, 1:6)

files <- file.path(directories, "abundance.tsv")

sce_example <- readTxResults(samples = names(directories),

files = files, type = "kallisto")

for faster reading of results use the read_tsv function from the readr pkg
library(readr)

sce_example <- readTxResults(samples = names(directories),

files = files, type = "kallisto”, reader = read_tsv)

End(Not run)

Reduced dimension plots
Plot specific reduced dimensions

Description
Wrapper functions to create plots for specific types of reduced dimension results in a SingleCellEx-
periment object, or, if they are not already present, to calculate those results and then plot them.
Usage
plotPCASCE(object, ..., return_SCE = FALSE, draw_plot = TRUE,

rerun = FALSE, ncomponents = 2, run_args = list())

plotTSNE (object, ..., return_SCE = FALSE, draw_plot = TRUE, rerun = FALSE,
ncomponents = 2, run_args = list())

plotDiffusionMap(object, ..., return_SCE = FALSE, draw_plot = TRUE,
rerun = FALSE, ncomponents = 2, run_args = list())

plotMDS(object, ..., ncomponents = 2, return_SCE = FALSE, rerun = FALSE,
draw_plot = TRUE, run_args = list())

S4 method for signature 'SingleCellExperiment'’
plotPCA(object, ..., return_SCE = FALSE,
draw_plot = TRUE, rerun = FALSE, ncomponents = 2, run_args = list())

Reduced dimension plots 55

Arguments

object

return_SCE

draw_plot

rerun

ncomponents

run_args

Details

A SingleCellExperiment object.
Additional arguments to pass to plotReducedDim.

Logical, should the function return a SingleCellExperiment object with reduced
dimension results in the reducedDim slot? Default is FALSE, in which case a
ggplot object is returned. This will be deprecated in the next release in favour
of directly calling the underlying run* functions to compute the results.

Logical, should the plot be drawn on the current graphics device? Only used if
return_SCE is TRUE, otherwise the plot is always produced.

Logical, should the reduced dimensions be recomputed even if object contains
an appropriately named set of results in the reducedDims slot?

Numeric scalar indicating the number of dimensions components to (calculate
and) plot. This can also be a numeric vector, see ?plotReducedDim for details.

Arguments to pass to runPCA.

Each function will search the reducedDims slot for an appropriately named set of results and pass
those coordinates onto plotReducedDim. If the results are not present or rerun=TRUE, they will
be computed using the relevant runx function. The result name and run* function for each plot=

function are:

e "PCA" and runPCA for plotPCA
e "TSNE" and runTSNE for plotTSNE

e "DiffusionMap” and runDiffusionMap for plotDiffusionMap
e "MDS" and runMDS for "plotMDS”

Users can specify arguments to the run#* functions via run_args.

If ncomponents is a numeric vector, the maximum value will be used to determine the required
number of dimensions to compute in the run* functions. However, only the specified dimensions
in ncomponents will be plotted.

Value

A ggplot object or an SingleCellExperiment object, depending on return_SCE.

Author(s)

Davis McCarthy, with modifications by Aaron Lun

See Also

runPCA, runDiffusionMap, runTSNE, runMDS, plotReducedDim

Examples

Set up an example SingleCellExperiment
data("sc_example_counts”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),

56 rename

colData = sc_example_cell_info

)

example_sce <- normalize(example_sce)

Examples plotting PC1 and PC2

plotPCA(example_sce)

plotPCA(example_sce, colour_by = "Cell_Cycle")

plotPCA(example_sce, colour_by = "Cell_Cycle”, shape_by = "Treatment")

plotPCA(example_sce, colour_by = "Cell_Cycle"”, shape_by = "Treatment”,
size_by = "Mutation_Status”)

Force legend to appear for shape:

example_subset <- example_sce[, example_sce$Treatment == "treat1"]

plotPCA(example_subset, colour_by = "Cell_Cycle", shape_by = "Treatment”,
by_show_single = TRUE)

Examples plotting more than 2 PCs
plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment”,
shape_by = "Mutation_Status")

Same for TSNE:
plotTSNE (example_sce, perplexity = 10)

Same for DiffusionMaps:
plotDiffusionMap(example_sce)

Same for MDS plots:
plotMDS (example_sce)

rename Rename variables of colData(object).

Description

Rename variables of colData(object).

Usage

rename(object, ...)

S4 method for signature 'SingleCellExperiment'’

rename (object, ...)
Arguments
object A SingleCellExperiment object.

Additional arguments to be passed to dplyr: : rename to act on colData(object).

Value

An SingleCellExperiment object.

runDiffusionMap 57

Examples

data("sc_example_counts"”)

data("sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),

colData = sc_example_cell_info)

example_sce <- rename(example_sce, Cell_Phase = Cell_Cycle)

runDiffusionMap Create a diffusion map from cell-level data

Description

Produce a diffusion map for the cells, based on the data in a SingleCellExperiment object.

Usage
runDiffusionMap(object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts"”", scale_features = TRUE, use_dimred = NULL,
n_dimred = NULL, rand_seed = NULL, ...)
Arguments
object A SingleCellExperiment object
ncomponents Numeric scalar indicating the number of diffusion components to obtain.
ntop Numeric scalar specifying the number of most variable features to use for con-

structing the diffusion map.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use to construct the diffusion map. This will over-
ride any ntop argument if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to DiffusionMap. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

rand_seed Numeric scalar that can be passed to set . seed to make the results reproducible.

Additional arguments to pass to DiffusionMap.

Details

The function DiffusionMap is used internally to compute the diffusion map.

Setting use_dimred allows users to easily construct a diffusion map from low-rank approxima-
tions of the original expression matrix (e.g., after PCA). In such cases, arguments such as ntop,
feature_set, exprs_values and scale_features will be ignored.

58 runMDS

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent diffusion map
components for each cell. This is stored in the "DiffusionMap"” entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics. 2015; doi:10.1093/bioinformatics/btv325

See Also

destiny, plotDiffusionMap

Examples

Set up an example SingleCellExperiment
data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)

example_sce <- normalize(example_sce)

example_sce <- runDiffusionMap(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

runMDS Perform MDS on cell-level data

Description

Perform multi-dimensional scaling (MDS) on cells, based on the data in a SingleCellExperiment
object.

Usage

runMDS(object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts”, scale_features = TRUE, use_dimred = NULL,
n_dimred = NULL, method = "euclidean”)

runMDS

Arguments

object
ncomponents
ntop
feature_set
exprs_values
scale_features
use_dimred
n_dimred

method

Details

59

A SingleCellExperiment object.
Numeric scalar indicating the number of MDS dimensions to obtain.
Numeric scalar specifying the number of most variable features to use for MDS.

Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for MDS. This will override any ntop argument
if specified.

Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

Logical scalar, should the expression values be standardised so that each feature
has unit variance?

String or integer scalar specifying the entry of reducedDims (object) to use as
input to cmdscale. Default is to not use existing reduced dimension results.
Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

String specifying the type of distance to be computed between cells.

The function cmdscale is used internally to compute the multidimensional scaling components to

plot.

Setting use_dimred allows users to easily perform MDS on low-rank approximations of the orig-
inal expression matrix (e.g., after PCA). In such cases, arguments such as ntop, feature_set,
exprs_values and scale_features will be ignored.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent MDS dimen-
sions for each cell. This is stored in the "MDS" entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

cmdscale, plotMDS

Examples

Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

example_sce <- normalize(example_sce)

example_sce <- runMDS(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

60 runPCA

runPCA Perform PCA on cell-level data

Description

Perform a principal components analysis (PCA) on cells, based on the data in a SingleCellExperi-
ment object.

Usage
runPCA(object, ncomponents = 2, method = c("prcomp”, "irlba"), ntop = 500,
exprs_values = "logcounts”, feature_set = NULL, scale_features = TRUE,
use_coldata = FALSE, selected_variables = NULL, detect_outliers = FALSE,
rand_seed = NULL, ...)
Arguments
object A SingleCellExperiment object.
ncomponents Numeric scalar indicating the number of principal components to obtain.
method String specifying how the PCA should be performed.
ntop Numeric scalar specifying the number of most variable features to use for PCA.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

feature_set Character vector of row names, a logical vector or a numeric vector of indices
indicating a set of features to use for PCA. This will override any ntop argument
if specified.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_coldata Logical scalar specifying whether the column data should be used instead of
expression values to perform PCA.

selected_variables
List of strings or a character vector indicating which variables in colData(object)
to use for PCA when use_coldata=TRUE. If a list, each entry can take the form
described in ?"scater-vis-var”.

detect_outliers
Logical scalar, should outliers be detected based on PCA coordinates generated
from column-level metadata?

rand_seed Numeric scalar specifying the random seed when using method="irlba".

Additional arguments to pass to prcomp_irlba when method="irlba".

Details

The function prcomp is used internally to do the PCA when method="prcomp”. Alternatively, the
irlba package can be used, which performs a fast approximation of PCA through the prcomp_irlba
function. This is especially useful for large, sparse matrices.

If use_coldata=TRUE, PCA will be performed on column-level metadata. The selected_variables
defaults to a vector containing:

runPCA 61

e "pct_counts_top_100_features”
* "total_features”
e "pct_counts_feature_control”
* "total_features_feature_control”
* "logl@_total_counts_endogenous”
* "logl@_total_counts_feature_control”
This can be useful for identifying outliers cells based on QC metrics, especially when combined

with detect_outliers=TRUE. If outlier identification is enabled, the outlier field of the output
colData will contain the identified outliers.

Value

A SingleCellExperiment object containing the first ncomponent principal coordinates for each cell.
If use_coldata=FALSE, this is stored in the "PCA" entry of the reducedDims slot. Otherwise, it is
stored in the "PCA_coldata” entry.

The proportion of variance explained by each PC is stored as a numeric vector in the "percentVar”
attribute of the reduced dimension matrix. Note that this will only be of length equal to ncomponents
when method is not "prcomp”. This is because approximate PCA methods do not compute singular
values for all components.

Author(s)

Aaron Lun, based on code by Davis McCarthy

See Also

prcomp, plotPCA

Examples

Set up an example SingleCellExperiment
data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
)

example_sce <- normalize(example_sce)

example_sce <- runPCA(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

62 runTSNE

runTSNE Perform t-SNE on cell-level data

Description

Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCell-
Experiment object.

Usage
runTSNE (object, ncomponents = 2, ntop = 500, feature_set = NULL,
exprs_values = "logcounts"”, scale_features = TRUE, use_dimred = NULL,
n_dimred = NULL, rand_seed = NULL, perplexity = min(50,
floor(ncol(object)/5)), pca = TRUE, initial_dims = 50, ...)
Arguments
object A SingleCellExperiment object.
ncomponents Numeric scalar indicating the number of t-SNE dimensions to obtain.
ntop Numeric scalar specifying the number of most variable features to use for t-SNE.
feature_set Character vector of row names, a logical vector or a numeric vector of indices

indicating a set of features to use for t-SNE. This will override any ntop argu-
ment if specified.

exprs_values Integer scalar or string indicating which assay of object should be used to ob-
tain the expression values for the calculations.

scale_features Logical scalar, should the expression values be standardised so that each feature
has unit variance?

use_dimred String or integer scalar specifying the entry of reducedDims(object) to use as
input to Rtsne. Default is to not use existing reduced dimension results.

n_dimred Integer scalar, number of dimensions of the reduced dimension slot to use when
use_dimred is supplied. Defaults to all available dimensions.

rand_seed Numeric scalar that can be passed to set. seed to make the results reproducible.

perplexity Numeric scalar defining the perplexity parameter, see ?Rtsne for more details.

pca Logical scalar passed to Rtsne, indicating whether an initial PCA step should

be performed. This is ignored if use_dimred is specified.

initial_dims Integer scalar passed to Rtsne, specifying the number of principal components
to be retained if pca=TRUE.

Additional arguments to pass to Rtsne.

Details

The function Rtsne is used internally to compute the t-SNE. Note that the algorithm is not deter-
ministic, so different runs of the function will produce differing results. Users are advised to test
multiple random seed, and then use rand_seed to set a random seed for replicable results.

The value of the perplexity parameter can have a large effect on the results. By default, the
function will try to provide a reasonable setting, by scaling the perplexity with the number of cells

salmon-wrapper 63

until it reaches a maximum of 50. However, it is often worthwhile to manually try multiple values
to ensure that the conclusions are robust.

Setting use_dimred allows users to easily perform t-SNE on low-rank approximations of the orig-
inal expression matrix (e.g., after PCA). In such cases, arguments such as ntop, feature_set,
exprs_values and scale_features will be ignored.

Value

A SingleCellExperiment object containing the coordinates of the first ncomponent t-SNE dimen-
sions for each cell. This is stored in the "TSNE” entry of the reducedDims slot.

Author(s)

Aaron Lun, based on code by Davis McCarthy

References

L.J.P. van der Maaten. Barnes-Hut-SNE. In Proceedings of the International Conference on Learn-
ing Representations, 2013.

See Also

Rtsne, plotTSNE

Examples

Set up an example SingleCellExperiment
data("sc_example_counts"”)
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info

)

example_sce <- normalize(example_sce)

example_sce <- runTSNE(example_sce)
reducedDimNames (example_sce)
head(reducedDim(example_sce))

salmon-wrapper Salmon wrapper functions

Description

Salmon wrapper functions

After generating transcript/feature abundance results using Salmon for a batch of samples, read
these abundance values into a SingleCellExperiment object.

Run the abundance quantification tool Salmon on a set of FASTQ files. Requires Salmon (https:
//combine-1lab.github.io/salmon/) to be installed and a Salmon transcript index must have
been generated prior to using this function. See the Salmon website for installation and basic usage
instructions.

https://combine-lab.github.io/salmon/
https://combine-lab.github.io/salmon/

64

Usage

salmon-wrapper

readSalmonResultsOneSample(directory)

readSalmonResults(Salmon_log = NULL, samples = NULL, directories = NULL,
logExprsOffset = 1, verbose = TRUE)

runSalmon(targets_file, transcript_index, single_end = FALSE,

output_prefix

= "output”, lib_type = "A", n_processes = 2,

n_thread_per_process = 4, n_bootstrap_samples = @, seqBias = TRUE,
gcBias = TRUE, posBias = FALSE, allowOrphans = FALSE,

advanced_opts
salmon_cmd =

Arguments

directory

Salmon_log

samples

directories

logExprsOffset

verbose

targets_file

= NULL, verbose = TRUE, dry_run = FALSE,

"salmon")

character string giving the path to the directory containing the Salmon results
for the sample.

list, generated by runSalmon. If provided, then samples and directories ar-
guments are ignored.

character vector providing a set of sample names to use for the abundance re-
sults.

character vector providing a set of directories containing Salmon abundance re-
sults to be read in.

numeric scalar, providing the offset used when doing log2-transformations of
expression data to avoid trying to take logs of zero. Default offset value is 1.

logical, should function provide output about progress?

character string giving the path to a tab-delimited text file with either 2 columns
(single-end reads) or 3 columns (paired-end reads) that gives the sample names
(first column) and FastQ file names (column 2 and if applicable 3). The file is
assumed to have column headers, although these are not used.

transcript_index

single_end

output_prefix

lib_type

n_processes

character string giving the path to the Salmon index to be used for the feature
abundance quantification.
logical, are single-end reads used, or paired-end reads?

character string giving the prefix for the output folder that will contain the
Salmon results. The default is "output” and the sample name (column 1 of
targets_file) is appended (preceded by an underscore).

scalar, indicating RNA-seq library type. See Salmon documentation for details.
Default is "A", for automatic detection.

integer giving the number of processes to use for parallel Salmon jobs across
samples. The package parallel is used. Default is 2 concurrent processes.

n_thread_per_process

integer giving the number of threads for Salmon to use per process (to parallelize
Salmon for a given sample). Default is 4.

n_bootstrap_samples

segBias

integer giving the number of bootstrap samples that Salmon should use (default
is 0). With bootstrap samples, uncertainty in abundance can be quantified.

logical, should Salmon’s option be used to model and correct abundances for
sequence specific bias? Default is TRUE.

salmon-wrapper 65

gcBias logical, should Salmon’s option be used to model and correct abundances for
GC content bias? Requires Salmon version 0.7.2 or higher. Default is TRUE.

posBias logical, should Salmon’s option be used to model and correct abundances for
positional biases? Requires Salmon version 0.7.3 or higher. Default is FALSE.

allowOrphans logical, Consider orphaned reads as valid hits when performing lightweight-
alignment. This option will increase sensitivity (allow more reads to map and
more transcripts to be detected), but may decrease specificity as orphaned align-
ments are more likely to be spurious. For more details see Salmon documenta-
tion.

advanced_opts character scalar supplying list of advanced option arguments to apply to each
Salmon call. For details see Salmon documentation or type salmon quant --help-reads
at the command line.

dry_run logical, if TRUE then a list containing the Salmon commands that would be run
and the output directories is returned. Can be used to read in results if Salmon
is run outside an R session or to produce a script to run outside of an R session.

salmon_cmd (optional) string giving full command to use to call Salmon, if simply typing
"salmon" at the command line does not give the required version of Salmon or
does not work. Default is simply "salmon". If used, this argument should give
the full path to the desired Salmon binary.

Details

The directory is expected to contain results for just a single sample. Putting more than one sample’s
results in the directory will result in unpredictable behaviour with this function. The function looks
for the files (with the default names given by Salmon) ’quant.sf’, ’stats.tsv’, ’libFormatCounts.txt’
and the sub-directories ’logs’ (which contains a log file) and ’libParams’ (which contains a file
detailing the fragment length distribution). If these files are missing, or if results files have different
names, then this function will not find them.

This function will work for Salmon v0.7.x and greater, as the name of one of the default output
directories was changed from "aux" to "aux_info" in Salmon v0.7.

This function expects to find only one set of Salmon abundance results per directory; multiple
adundance results in a given directory will be problematic.

A Salmon transcript index can be built from a FASTA file: salmon index [arguments] FASTA-file.
See the Salmon documentation for further details. This simple wrapper does not give access to all
nuances of Salmon usage. For finer-grained usage of Salmon please run it at the command line -
results can still be read into R with readSalmonResults.

Value

A list with two elements: (1) a data.frame abundance with columns for ’target_id’ (feature, tran-
script, gene etc), ’length’ (feature length), ’est_counts’ (estimated feature counts), ’tpm’ (transcripts
per million); (2) a list, run_info, with metadata about the Salmon run that generated the results,
including number of reads processed, mapping percentage, the library type used for the RNA-
sequencing, including details about number of reads that did not match the given or inferred library
type, details about the Salmon command used to generate the results, and so on.

an SingleCellExperiment object

A list containing three elements for each sample for which feature abundance has been quantified:
(1) salmon_call, the call used for Salmon, (2) salmon_log the log generated by Salmon, and (3)
output_dir the directory in which the Salmon results can be found.

66 scater-plot-args

Examples

Not run:
If Salmon results are in the directory "output”, then call:
readSalmonResultsOneSample("output”)

End(Not run)

Not run:

Define output directories in a vector called here "Salmon_dirs"
and sample names as "Salmon_samples”

sceset <- readSalmonResults(samples = Salmon_samples,

directories = Salmon_dirs)

End(Not run)

Not run:

If in Salmon's 'test' directory, then try these calls:

Generate 'targets.txt' file:

write.table(data.frame(Sample="samplel”, Filel="reads_1.fastq.gz", File2="reads_1.fastq.gz"),

file="targets.txt", quote=FALSE, row.names=FALSE, sep="\t")

Salmon_log <- runSalmon("targets.txt"”, "transcripts.idx”, single_end=FALSE,
output_prefix="output”, verbose=TRUE, n_bootstrap_samples=10,
dry_run = FALSE)

End(Not run)

scater-plot-args General visualization parameters

Description

scater functions that plot points share a number of visualization parameters, which are described
on this page.

Aesthetic parameters

legend: Logical scalar, specifying whether a legend should be shown. Defaults to TRUE.
theme_size: Integer scalar, specifying the font size. Defaults to 10.

alpha: Numeric scalar in [0, 1], specifying the transparency. Defaults to 0.6.

size: Numeric scalar, specifying the size of the points. Defaults to NULL.

jitter: String to define whether points are to be jittered (" jitter") or presented in a “beeswarm”
style (if "swarm”, default). The latter usually looks more attractive, but for datasets with a
large number of cells, or for dense plots, the jitter option may work better.

Distributional calculations
show_median: Logical, should the median of the distribution be shown for violin plots? Defaults
to FALSE.
show_violin: Logical, should the outline of a violin plot be shown? Defaults to TRUE.
show_smooth: Logical, should a smoother be fitted to a scatter plot? Defaults to FALSE.

show_se: Logical, should standard errors for the fitted line be shown on a scatter plot when show_smooth=TRUE?
Defaults to TRUE.

scater-vis-var 67

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

scater-vis-var Variable selection for visualization

Description

A number of scater functions accept a SingleCellExperiment object and extract (meta)data from it
for use in a plot. These values are then used on the x- or y-axes (e.g., plotColData) or for tuning
visual parameters, e.g., colour_by, shape_by, size_by. This page describes how the selection of
these values can be controlled by the user, by passing appropriate values to the arguments of the
desired plotting function.

When plotting by cells

Here, we assume that each visual feature of interest (e.g., point or line) corresponds to a cell in the
SingleCellExperiment object sce. We will also assume that the user wants to change the colour of
each feature according to the cell (meta)data. To do so, the user can pass to colour_by:

* An unnamed character string. This is initially assumed to be the name of a column-level
metadata field. The function will first search the column names of colData(sce), and extract
metadata for all cells if a matching field is found. If no match is found, the function will
assume that the string represents a gene name. It will search rownames (sce) and extract gene
expression values for any matching row across all cells. Otherwise, an error is raised.

* A named character string, where the name is either "exprs” or "metadata”. This forces
the function to only search for the string in rownames(sce) or colnames(colData(sce)),
respectively. Adding an explicit name is useful when the same field exists in both the row
names and column metadata names.

* A character vector of length greater than 1. This will search for nested fields in colData(sce).
For example, supplying a character vector c("A", "B", "C") will retrieve colData(sce) AB$C,
where both A and B contain nested DataFrames. See calculateQCMetrics with compact=TRUE
for an example of how these can be constructed. The concatenated name "A:B:C" will be used
in the legend.

* A data frame with one column and number of rows equal to the number of cells. This should
contain values to use for visualization (in this case, for colouring by). In this manner, the user
can use new information without manually adding it to the SingleCellExperiment object. The
column name of the data frame will be used in the legend.

The same logic applies for other visualization parameters such as shape_by and size_by. Other
arguments may also use the same scheme, but this depends on the context; see the documentation
for each function for details. In particular, if an argument explicitly refers to a metadata field, any
names for the character string will be ignored. Similarly, a character vector of length > 1 is not
allowed for an argument that explicitly refers to expression values.

68 scater_gui

When plotting by features

Here, we assume that each visual feature of interest (e.g., point or line) corresponds to a feature in
the SingleCellExperiment object sce. The scheme is mostly the same as described above, with a
few differences:

* rowData is searched instead of colData, as we are extracting metadata for each feature.

* When extracting expression values, the name of a single cell must be specified. Visualization
will then use the expression profile for all features in that cell. (This tends to be a rather
unusual choice for colouring.)

* Character strings named with "exprs” will search for the string in colnames(sce).

* A data frame input should have number of rows equal to the number of features.

Miscellaneous details

Most functions will have a by_exprs_values parameter. This defines the assay of the Single-
CellExperiment object from which expression values are extracted for use in colouring, shaping or
sizing the points. The setting of by_exprs_values will usually default to "logcounts”, or to the
value of exprs_values in functions such as plotExpression. However, it can be specified sepa-
rately from exprs_values, which is useful for visualizing two different types of expression values
on the same plot.

Most functions will also have a by_show_single parameter. If FALSE, variables with only one level
are not used for visualization, i.e., the visual aspect (colour or shape or size) is set to the default
for all points. No guide is created for this aspect, avoiding clutter in the legend when that aspect
provides no information. If TRUE, all supplied variables are used for visualization, regardless of how
many levels they have.

See Also

plotColData, plotRowData, plotReducedDim, plotExpression, plotPlatePosition, and most
other plotting functions.

scater_gui scater GUI function

Description
scater shiny app GUI for workflow for less programmatically inclined users or those who would
like a quick and easy way to view multiple plots.

Usage

scater_gui(object)

Arguments

object SinglCellExperiment object after running calculateQCMetrics on it

Value

Opens a browser window with an interactive shiny app and visualize all possible plots included in
the scater

SCESet 69

Author(s)
Davis McCarthy and Vladimir Kiselev

Examples

data("sc_example_counts™)

data(”"sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 03})
example_sce <- example_sce[!drop_genes,]

example_sce <- calculateQCMetrics(example_sce,

feature_controls = list(setl = 1:40))

Not run:

scater_gui(example_sce)

End(Not run)

SCESet The "Single Cell Expression Set" (SCESet) class

Description

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the
basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values.

Methods that operate on SCESet objects constitute the basic scater workflow.

Slots

logExprsOffset: Scalar of class "numeric”, providing an offset applied to expression data in the
‘exprs‘ slot when undergoing log2-transformation to avoid trying to take logs of zero.

lowerDetectionLimit: Scalar of class "numeric”, giving the lower limit for an expression value
to be classified as "expressed".

cellPairwiseDistances: Matrix of class "numeric”, containing pairwise distances between cells.

featurePairwiseDistances: Matrix of class "numeric”, containing pairwise distances between
features.

reducedDimension: Matrix of class "numeric”, containing reduced-dimension coordinates for
cells (generated, for example, by PCA).

bootstraps: Array of class "numeric” that can contain bootstrap estimates of the expression or
count values.

sc3: List containing results from consensus clustering from the SC3 package.

featureControlInfo: Data frame of class "AnnotatedDataFrame” that can contain informa-
tion/metadata about sets of control features defined for the SCESet object. bootstrap estimates
of the expression or count values.

70 sc_example_counts

References

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet
class, which provided the inspiration and template for SCESet.

sc_example_cell_info Cell information for the small example single-cell counts dataset to
demonstrate capabilities of scater

Description
This data.frame contains cell metadata information for the 40 cells included in the example counts
dataset included in the package.

Usage

sc_example_cell_info

Format

a data.frame instance, 1 row per cell.

Value

NULL, but makes aavailable a data frame with cell metadata

Author(s)
Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

sc_example_counts A small example of single-cell counts dataset to demonstrate capabil-
ities of scater

Description
This data set contains counts for 2000 genes for 40 cells. They are from a real experiment, but
details have been anonymised.

Usage

sc_example_counts

Format

a matrix instance, 1 row per gene.

summariseExprsAcrossFeatures 71
Value

NULL, but makes aavailable a matrix of count data

Author(s)

Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

summariseExprsAcrossFeatures
Summarise expression values across feature

Description

Create anew SingleCellExperiment with counts summarised at a different feature level. A typical
use would be to summarise transcript-level counts at gene level.

Usage
summariseExprsAcrossFeatures(object, exprs_values = "tpm”,
summarise_by = "feature_id", scaled_tpm_counts = TRUE, lib_size = NULL)
Arguments
object an SingleCellExperiment object.

exprs_values character string indicating which slot of the assayData from the SingleCellExperiment
object should be used as expression values. Valid options are 'counts' the
counts slot, 'tpm' the transcripts-per-million slot or ' fpkm' the FPKM slot.

summarise_by character string giving the column of rowData(object) that will be used as the
features for which summarised expression levels are to be produced. Default is
'feature_id".

scaled_tpm_counts
logical, should feature-summarised counts be computed from summed TPM val-
ues scaled by total library size? This approach is recommended (see https:
//f1000research.com/articles/4-1521/v2), so the default is TRUE and it is
applied if TPM values are available in the object.

lib_size optional vector of numeric values of same length as the number of columns in
the SingleCellExperiment object providing the total library size (e.g. "count
of mapped reads") for each cell/sample.

https://f1000research.com/articles/4-1521/v2
https://f1000research.com/articles/4-1521/v2

72 uniquifyFeatureNames

Details

Only transcripts-per-million (TPM) and fragments per kilobase of exon per million reads mapped

(FPKM) expression values should be aggregated across features. Since counts are not scaled by

the length of the feature, expression in counts units are not comparable within a sample without

adjusting for feature length. Thus, we cannot sum counts over a set of features to get the expression

of that set (for example, we cannot sum counts over transcripts to get accurate expression estimates

for a gene). See the following link for a discussion of RNA-seq expression units by Harold Pimentel:
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units
For more details about the effects of summarising transcript expression values at the gene level see

Sonesen et al, 2016 (https://f1000research.com/articles/4-1521/v2).

Value

an SingleCellExperiment object

Examples

data("sc_example_counts”)

data(”sc_example_cell_info")

example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

rd <- data.frame(gene_id = rownames(example_sce),

feature_id = paste("feature”, rep(1:500, each = 4), sep = "_"))

rownames(rd) <- rownames(example_sce)

rowData(example_sce) <- rd

effective_length <- rep(c(1000, 2000), times = 1000)

tpm(example_sce) <- calculateTPM(example_sce, effective_length, calc_from = "counts")

example_sceset_summarised <-

summariseExprsAcrossFeatures(example_sce, exprs_values = "tpm")
example_sceset_summarised <-
summariseExprsAcrossFeatures(example_sce, exprs_values = "counts")

uniquifyFeatureNames Make feature names unique

Description

Combine a user-interpretable feature name (e.g., gene symbol) with a standard identifier that is
guaranteed to be unique (e.g., Ensembl) for use as row names.

Usage

uniquifyFeatureNames(ID, names)

Arguments

ID A character vector of unique identifiers.

names A character vector of feature names.

https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://f1000research.com/articles/4-1521/v2

updateSCESet 73

Details

This function will attempt to use names if it is unique. If not, it will append the _ID to any non-
unique value of names. Missing names will be replaced entirely by ID.

The output is guaranteed to be unique, assuming that ID is also unique. This can be directly used as
the row names of a SingleCellExperiment object.
Value

A character vector of unique-ified feature names.

Author(s)

Aaron Lun

Examples

uniquifyFeatureNames(
ID=paste@("ENSG0000000", 1:5),
names=c(”A”, NA, "B", "C", "A")
)

updateSCESet Convert an SCESet object to a SingleCellExperiment object

Description
Convert an SCESet object produced with an older version of the package to a SingleCellExperiment
object compatible with the current version.

Usage
updateSCESet (object)

toSingleCellExperiment (object)

Arguments

object an SCESet object to be updated

Value

a SingleCellExperiment object

Examples

Not run:
updateSCESet (example_sceset)

End(Not run)
Not run:
toSingleCellExperiment (example_sceset)

End(Not run)

Index

areSizeFactorsCentred, 3, 15

arrange, 4

arrange,SingleCellExperiment-method
(arrange), 4

bootstraps, 5

bootstraps,SingleCellExperiment-method
(bootstraps), 5

bootstraps<- (bootstraps), 5

bootstraps<-,SingleCellExperiment,array-metho

(bootstraps), 5

calcAverage, 6

calcIsExprs, 7
calcNormFactors, 29, 30
calculateCPM, 8, 9
calculateFPKM, 9
calculateQCMetrics, 10, 67, 68
calculateTPM, 14
centreSizeFactors, 4, 6, 8, 15,27
cmdscale, 59

destiny, 58
DiffusionMap, 57
downsampleCounts, 16
downsampleMatrix, /16

exprs (norm_exprs), 31

exprs,SingleCellExperiment-method,
(norm_exprs), 31

exprs<-,SingleCellExperiment, ANY-method
(norm_exprs), 31

facet_wrap, 36, 51

filter, 16

filter,SingleCellExperiment-method
(filter), 16

findImportantPCs, 17, 45

fpkm (norm_exprs), 31

fpkm<- (norm_exprs), 31

geom_boxplot, 48
geom_smooth, 38
getBM, 19
getBMFeatureAnnos, 18

74

ggplot, 18, 24
ggplot2, 48

isOutlier, 19
isSpike, 10

kallisto-wrapper, 21

librarySizeFactors, 6-8, 23
bmFit,SO

model .matrix, 30

multiplot, 24

mutate, 25

mutate,SingleCellExperiment-method
(mutate), 25

nexprs, 10, 26

norm_exprs, 30, 31

norm_exprs<- (norm_exprs), 31

normalise (normalize), 27

normalise,SingleCellExperiment-method
(normalize), 27

normaliseExprs (normalizeExprs), 29

normalize, 27

normalize,SingleCellExperiment-method
(normalize), 27

normalizeExprs, 29

normalizeSCE, 6, 8, 30

normalizeSCE (normalize), 27

normliseExprs (normalizeExprs), 29

pairs, 34
pheatmap, 41
plotCellData (plotColData), 32
plotColData, 32, 67, 68
plotDiffusionMap, 58
plotDiffusionMap (Reduced dimension
plots), 54
plotExplanatoryVariables, 34, 45
plotExpression, 35, 67, 68
plotExprsFreqVsMean, 37
plotExprsVsTxLength, 38
plotFeatureData (plotRowData), 49
plotHeatmap, 40

INDEX

plotHighestExprs, 42, 45

plotMDS, 59

plotMDS (Reduced dimension plots), 54

plotPCA, 46, 61

plotPCA (Reduced dimension plots), 54

plotPCA,SingleCellExperiment-method
(Reduced dimension plots), 54

plotPCASCE (Reduced dimension plots), 54

plotPhenoData (plotColData), 32

plotPlatePosition, 43, 67, 68

plotQC, 45

plotReducedDim, 46, 55, 67, 68

plotRLE, 47

plotRLE,SingleCellExperiment-method
(plotRLE), 47

plotRowData, 38, 49, 67, 68

plotScater, 50

plotTSNE, 63

plotTSNE (Reduced dimension plots), 54

prcomp, 60, 61

prcomp_irlba, 60

read10xCounts, 52

read10XResults (read10xResults), 52

read10xResults, 52

readKallistoResults, 53

readkallistoResults (kallisto-wrapper),
21

readkallistoResultsOneSample
(kallisto-wrapper), 21

readSalmonResults, 53, 65

readSalmonResults (salmon-wrapper), 63

readSalmonResultsOneSample
(salmon-wrapper), 63

readTxResults, 53

Reduced dimension plots, 54

reducedDims, 55

rename, 56

rename, SingleCellExperiment-method
(rename), 56

Rtsne, 62, 63

runDiffusionMap, 55, 57

runKallisto (kallisto-wrapper), 21

runMDS, 55, 58

runPCA, 55, 60

runSalmon (salmon-wrapper), 63

runTSNE, 55, 62

salmon-wrapper, 63
sc_example_cell_info, 70
sc_example_counts, 70
scater-package, 3
scater-plot-args, 66

75

scater-vis-var, 67

scater_gui, 68

SCESet, 69, 73

SCESet-class (SCESet), 69

SingleCellExperiment, 5, 7, 18, 21, 26, 31,
71,73

stand_exprs (norm_exprs), 31

stand_exprs<- (norm_exprs), 31

summariseExprsAcrossFeatures, 71

toSingleCellExperiment (updateSCESet),
73
tximport, 53

uniquifyFeatureNames, 72
updateSCESet, 73
useMart, /9

	scater-package
	areSizeFactorsCentred
	arrange
	bootstraps
	calcAverage
	calcIsExprs
	calculateCPM
	calculateFPKM
	calculateQCMetrics
	calculateTPM
	centreSizeFactors
	downsampleCounts
	filter
	findImportantPCs
	getBMFeatureAnnos
	isOutlier
	kallisto-wrapper
	librarySizeFactors
	multiplot
	mutate
	nexprs
	normalize
	normalizeExprs
	norm_exprs
	plotColData
	plotExplanatoryVariables
	plotExpression
	plotExprsFreqVsMean
	plotExprsVsTxLength
	plotHeatmap
	plotHighestExprs
	plotPlatePosition
	plotQC
	plotReducedDim
	plotRLE
	plotRowData
	plotScater
	read10xResults
	readTxResults
	Reduced dimension plots
	rename
	runDiffusionMap
	runMDS
	runPCA
	runTSNE
	salmon-wrapper
	scater-plot-args
	scater-vis-var
	scater_gui
	SCESet
	sc_example_cell_info
	sc_example_counts
	summariseExprsAcrossFeatures
	uniquifyFeatureNames
	updateSCESet
	Index

