Package ‘ORFik’

October 16, 2018
Type Package
Title Open Reading Frames in Genomics
Version 1.0.0

Description Tools for manipulation of RiboSeq, RNASeq and CageSeq data. ORFik
is extremely fast through use of C, data.table and GenomicRanges. Package
allows to reassign starts of the transcripts with the use of CageSeq data,
automatic shifting of RiboSeq reads, finding of Open Reading Frames for the
whole genomes and many more.

biocViews Software, Sequencing, RiboSeq, RNASeq, FunctionalGenomics,
Coverage, Alignment, Datalmport

License MIT + file LICENSE
LazyData TRUE

BugReports https://github.com/JokingHero/ORFik/issues

URL https://github.com/JokingHero/ORFik

Depends R (>=3.5.0), [Ranges (>= 2.13.28), GenomicRanges (>=
1.31.23), GenomicAlignments (>= 1.15.13)

Imports S4Vectors (>= 0.17.39), GenomelnfoDb (>= 1.15.5),
GenomicFeatures (>= 1.31.10), rtracklayer (>= 1.39.9), Rcpp (>=
0.12.16), data.table (>= 1.10.4-3), Biostrings (>= 2.47.12),
stats, tools, Rsamtools (>= 1.31.3)

RoxygenNote 6.0.1

Suggests testthat, rmarkdown, knitr, BiocStyle, BSgenome,
BSgenome.Hsapiens.UCSC.hg19, ggplot2 (>=2.2.1)

LinkingTo Rcpp

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ORFik
git_branch RELEASE_3_7

git_last_commit 74296f8

git_last commit_date 2018-04-30
Date/Publication 2018-10-15

Author Kornel Labun [aut, cre, cph],
Haakon Tjeldnes [aut, dtc],
Katarzyna Chyzynska [ctb, dtc],
Evind Valen [ths, fnd]

Maintainer Kornel Labun <kornellabun@gmail.com>

1

https://github.com/JokingHero/ORFik/issues
https://github.com/JokingHero/ORFik

2 R topics documented:

R topics documented:

ORFik-package e 4
addFirstCdsOnLeaderEnds 5
addNewTSSOnLeaders 5
assigNANNOLAtIONS o v e e e e e e e e e 6
assignFirstExonso 6
assignFirstExonsStartSiteo 7
assignLastExonsStopSite 7
asTX . o e 8
bedToGR e 8
changePointAnalysis L 9
checkRFP e 9
checkRNA o e 10
codonSumsPerGroup 10
computeFeatures L L 11
computeFeaturesCage L 12
coverageByWindow L 14
coveragePerTiling L 15
definelsoform 16
defineTrailer L 16
detectRibosomeShifts L 17
disengagementScore Lo e e e 18
distToCds o e e 19
downstreamN e e 20
downstreamOfPerGroup 21
ENITOPY + + v v e o e 21
extendLeaders L e 22
extendsTSSexons L 23
filterCage e 23
findCageUTRFivelen e 24
findFa e 24
findMapORFs 25
findMaxPeaks 26
findNewTSS e 26
findORFs e 27
findORFsFasta 28
firstEndPerGroup 29
firstExonPerGroup e e 29
firstStartPerGroup L. 30
fixSeqnames 31
floss . . . e 31
fokm . . . e e e 32
fpkm_calc L e 33
fractionLength 34
fread.bed 35
getStartStopWindows L e e 35
groupGRangesBy 36
GSOTt . . o e e e 37
hasHits e 38
insideOutsideORF 38

R topics documented: 3

is.gror_grl . ..o e 40
isInFrame L 40
isOverlapping L 41
isPeriodic 42
kozakSequenceScore e 42
lastExonEndPerGroup 43
lastExonPerGroup e e e 44
lastExonStartPerGroup L 44
makeExonRanks L 45
makeORFNames e 46
mapToGRanges 46
matchNaming e 47
matchSeqlevels L 47
metaWindow e 48
numExonsPerGroup 48
orfID . . . e e 49
orfScore Lo 50
parseCigar L L e e e e e e e e 51
rankOrder L L e e e 51
reassignTSSbyCage L 52
reduceKeepAttr e e 53
regroupRlelist 54
removeMetaCols 55
riboSeqReadWidths L 55
ribosomeReleaseScorel 56
ribosomeStallingScore oL 57
seqnamesPerGroup 58
shiftFootprints L 58
SOrtPerGroup L e e e e e 59
StartCodons e e e e e 60
startDefinition 61
SEArtSIteS e e e 61
stopCodons 62
stopDefinition 63
SLOPSILES . . . o o e e e e e e e e 63
strandBool 64
strandPerGroup L 65
SUDSEtCOVETAZE o vt i e e e e e e e e e e e e 65
subset_to_frame L e, 66
tilel . . . e 66
translationalEff oL L 67
txLeno 68
tXNAMES o e 69
txNamesWithLeaders e 69
txSeqsFromFa Lo 70
UNIQUEGTOUPS .« « « v v v o e e e e e e e e e e e e e e e e e e e 70
uniqueOrder 71
unlistGrl L 72
upstreamOfPerGroup 72
validExtension e 73
validGRL e 73

widthPerGroup 74

4 ORFik-package

Index 75

ORFik-package ORFik for analysis of open reading frames.

Description

Main goals:

1. Finding Open Reading Frames (very fast) in the genome of interest or on the set of tran-
scripts/sequences.

2. Utilities for metaplots of RiboSeq coverage over gene START and STOP codons allowing to
spot the shift.

3. Shifting functions for the RiboSeq data.
4. Finding new Transcription Start Sites with the use of CageSeq data.

5. Various measurements of gene identity e.g. FLOSS, coverage, ORFscore, entropy that are
recreated based on many scientific publications.

6. Utility functions to extend GenomicRanges for faster grouping, splitting, tiling etc.

Author(s)

Maintainer: Kornel Labun <kornellabun@gmail.com> [copyright holder]

Authors:
» Haakon Tjeldnes <hauken_heyken@hotmail . com> [data contributor]
Other contributors:

» Katarzyna Chyzynska <katchyz@gmail.com> [contributor, data contributor]

e Evind Valen <eivind.valen@gmail.com> [thesis advisor, funder]

See Also

Useful links:

* https://github.com/JokingHero/ORFik

* Report bugs at https://github.com/JokingHero/ORFik/issues

https://github.com/JokingHero/ORFik
https://github.com/JokingHero/ORFik/issues

addFirstCdsOnlLeaderEnds 5

addFirstCdsOnLeaderEnds
Extends leaders downstream

Description
When reassigning Transcript start sites, often you want to add downstream too. This is a simple
way to do that

Usage

addFirstCdsOnLeaderEnds(fiveUTRs, cds)

Arguments
fiveUTRs The 5’ leader sequences as GRangesList
cds If you want to extend 5° leaders downstream, to catch uorfs going into cds,
include it.
Value

a GRangesList of cds exons added to ends

addNewTSSOnLeaders add cage max peaks as new transcript start sites for each 5’ leader (*)
strands are not supported, since direction must be known.

Description
add cage max peaks as new transcript start sites for each 5’ leader (*) strands are not supported,
since direction must be known.

Usage

addNewTSSOnLeaders(fiveUTRs, maxPeakPosition)

Arguments
fiveUTRs The 5’ leader sequences as GRangesList
maxPeakPosition
The max peak for each 5’ leader found by cage
Value

a GRanges object of first exons

6 assignFirstExons

assignAnnotations Overlaps GRanges object with provided annotations.

Description

It will return same list of GRanges, but with metdata columns: trainscript_id - id of transcripts
that overlap with each ORF gene_id - id of gene that this transcript belongs to isoform - for coding
protein alignment in relation to cds on coresponding transcript, for non-coding transcripts alignment
in relation to the transcript.

Usage

assignAnnotations(ORFs, con)

Arguments
ORFs - GRanges or GRangesList object of your ORFs.
con - Path to gtf file with annotations.

Value

A GRanges object of your ORFs with metadata columns ’gene’, "transcript’, isoform’ and "biotype’.

assignFirstExons After all transcript start sites have been updated from cage, put
GRangesList back together

Description

After all transcript start sites have been updated from cage, put GRangesList back together

Usage

assignFirstExons(firstExons, fiveUTRs)

Arguments
firstExons The first exon of every transcript from 5’ leaders
fiveUTRs The 5’ leader sequences as GRangesList

Value

a GRangesList

assignFirstExonsStartSite 7

assignFirstExonsStartSite
Reassign the start positions of the first exons per group in grl

Description

make sure your grl is sorted, since start of "-" strand objects should be the max end in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Usage

assignFirstExonsStartSite(grl, newStarts)

Arguments

grl a GRangesList object

newStarts an integer vector of same length as grl, with new start values
Value

the same GRangesList with new start sites

assignlLastExonsStopSite
Reassign the stop positions of the last exons per group

Description

make sure your grl is sorted, since stop of "-" strand objects should be the min start in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Usage

assignlLastExonsStopSite(grl, newStops)

Arguments

grl a GRangesList object

newStops an integer vector of same length as grl, with new start values
Value

the same GRangesList with new stop sites

8 bedToGR

asTX Map genomic to transcript coordinates by reference

Description

Map genomic to transcript coordinates by reference

Usage

asTX(grl, reference)

Arguments
grl a GRangesList of ranges within the reference, grl must have column called
names that gives grouping for result
reference a GrangesList of ranges that include and are bigger or equal to grl ig. cds is grl
and gene can be reference
Value

a GRangesList in transcript coordinates

bedToGR Converts different type of files to Granges

Description

column 5 will be set to score Only Accepts bed files for now, standard format from Fantom5

Usage

bedToGR(x, bed6 = TRUE)

Arguments
X An data.frame from imported bed-file, to convert to GRanges
bed6 If bed6, no meta column is added

Value

a GRanges object from bed

changePointAnalysis

changePointAnalysis Get the offset for specific RiboSeq read width

Description

Get the offset for specific RiboSeq read width

Usage
changePointAnalysis(x, feature = "start")

Arguments
X a vector with points to analyse, assumes the zero is in the middle + 1
feature (character) either "start" or "stop"

Value

a single numeric offset

checkRFP Helper Function to check valid RFP input

Description

Helper Function to check valid RFP input

Usage

checkRFP(class)

Arguments

class, the given class of RFP object

Value

NULL, stop if invalid object

10

codonSumsPerGroup

checkRNA Helper Function to check valid RNA input

Description

Helper Function to check valid RNA input

Usage

checkRNA(class)

Arguments

class, the given class of RNA object

Value

NULL, stop if unvalid object

codonSumsPerGroup Get hits per codon

Description

Helper for entropy function, normally not used directly

Usage

codonSumsPerGroup(h, indeces, L, N, reg_len, runLengths, countlList)

Arguments

h indices per tuple

indeces whole list of indices

L Lengths

N hit sums

reg_len size of runs

runLengths integers per run

countList a Rle of count repetitions (000,1,00,1 etc)
Value

a list of codon sums

computeFeatures 11

computeFeatures Get all possible features in ORFik

Description

If you want to get all the features easily, you can use this function. Each feature have a link to an
article describing its creation and idea behind it. Look at the functions in the feature family to see
all of them.

Usage

computeFeatures(grl, RFP, RNA = NULL, Gtf = NULL, faFile = NULL,
riboStart = 26, riboStop = 34, orfFeatures = TRUE,
includeNonVarying = TRUE)

Arguments
grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc.
RFP RiboSeq reads as GAlignment, GRanges or GRangesList object
RNA RnaSeq reads as GAlignment, GRanges or GRangesList object
Gtf a TxDb object of a gtf file,
faFile a FaFile or BSgenome from the fasta file, see ?FaFile
riboStart usually 26, the start of the floss interval, see ?floss
riboStop usually 34, the end of the floss interval
orfFeatures alogical, is the grl a list of orfs?
includeNonVarying
a logical, if TRUE, include all features not dependent on RiboSeq data and
RNASeq data, that is: Kozak, fractionLengths, distORFCDS, isInFrame, isOver-
lapping and rankInTx
Details

If you used CageSeq to reannotate your leaders your txDB object, must contain the reassigned
leaders. In the future release reasignment will create txdb objects for you, but currently this is not
supported, therefore be carefull.

Value
a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeaturesCage, disengagementScore, distToCds, entropy, floss, fpkm_calc,
fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

12

Examples

computeFeaturesCage

Usually the ORFs are found in orfik, which makes names for you etc.
Here we make an example from scratch
Not run:
gtf <- system.file("extdata”, "annotations.gtf”,
package = "ORFik") ## location of the gtf file
suppressWarnings(txdb <-

GenomicFeatures: :makeTxDbFromGFF (gtf, format = "gtf"))
use cds' as ORFs for this example
ORFs <- GenomicFeatures::cdsBy(txdb, by = "tx", use.names = TRUE)
ORFs <- makeORFNames(ORFs) # need ORF names
make Ribo-seq data,
RFP <- unlistGrl(firstExonPerGroup(ORFs))
suppressWarnings(computeFeatures(ORFs, RFP, Gtf = txdb))
For more thorough examples, see vignettes.

End(Not run)

computeFeaturesCage Get all possible features in ORFik

Description

Normally dont use this function, but instead use: [computeFeatures()]

Usage

computeFeaturesCage(grl, RFP, RNA = NULL, Gtf = NULL, tx = NULL,
fiveUTRs = NULL, cds = NULL, threeUTRs = NULL, faFile = NULL,

riboStart = 26, riboStop = 34, extension = NULL, orfFeatures = TRUE,

cageFiveUTRs = NULL, includeNonVarying = TRUE, grl.is.sorted = FALSE)
Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs or ORFs are a special case, see argument tx_len

RFP ribo seq reads as GAlignment, GRanges or GRangesList object

RNA rna seq reads as GAlignment, GRanges or GRangesList object

Gtf a TxDb object of a gtf file,

tx a GrangesList of transcripts, normally called from: exonsBy(Gtf, by = "tx",
use.names = T) only add this if you are not including Gtf file You do not need to
reassign these to the cage peaks, it will do it for you.

fiveUTRs fiveUTRs as GRangesList, must be original unchanged fiveUTRs

cds a GRangesList of coding sequences

threeUTRs a GrangesList of transcript 3’ utrs, normally called from: threeUTRsByTran-
script(Gtf, use.names = T)

faFile a FaFile or BSgenome from the fasta file, see ?FaFile

riboStart usually 26, the start of the floss interval, see ?floss

computeFeaturesCage 13

riboStop usually 34, the end of the floss interval

extension a numeric/integer needs to be set! set to 0 if you did not use cage, if you used
cage to change tss’ when finding the orfs, standard cage extension is 1000

orfFeatures a logical, is the grl a list of orfs? Must be assigned.

cageFiveUTRs a GRangesList, if you used cage-data to extend 5’ utrs, include this, also exten-
sion must match with the extension used for these.

includeNonVarying
a logical T, if TRUE, include all features not dependent on Ribo-seq data and
RNA-seq data, that is: Kozak, fractionLengths, distORFCDS, isInFrame, isOver-
lapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

Details

A specialized version if you used Cage data, and don’t have a new txdb with reassigned leaders,
transcripts and gene starts. If you do have a txdb with cage reassignments, use computeFeatures
instead. Each feature have a link to an article describing feature, try ?floss

Value

a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeatures, disengagementScore, distToCds, entropy, floss, fpkm_calc,
fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

a small example without cage-seq data:
we will find ORFs in the 5' utrs
and then calculate features on them
Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata”, "hgl9_knownGene_sample.sqlite”,
package = "GenomicFeatures")
txdb <- loadDb(txdbFile)

Extract sequences of fiveUTRs.

fiveUTRs <- fiveUTRsByTranscript(txdb, use.names = TRUE)[1:10]
faFile <- BSgenome.Hsapiens.UCSC.hg19::Hsapiens

need to suppress warning because of bug in GenomicFeatures, will
be fixed soon.

tx_seqs <- suppressWarnings(extractTranscriptSeqs(faFile, fiveUTRs))

Find all ORFs on those transcripts and get their genomic coordinates
fiveUTR_ORFs <- findMapORFs(fiveUTRs, tx_seqs)

unlistedORFs <- unlistGrl(fiveUTR_ORFs)

group GRanges by ORFs instead of Transcripts

fiveUTR_ORFs <- groupGRangesBy(unlistedORFs, unlistedORFs$names)

14 coverageByWindow

make some toy ribo seq and rna seq data

starts <- unlistGrl(ORFik:::firstExonPerGroup(fiveUTR_ORFs))
RFP <- promoters(starts, upstream = @, downstream = 1)
score(RFP) <- rep(29, length(RFP)) # the original read widths

set RNA seq to duplicate transcripts
RNA <- unlistGrl(exonsBy(txdb, by = "tx", use.names = TRUE))

cageNotUsed <- @ # used to inform that no cage was used

computeFeaturesCage(grl = fiveUTR_ORFs, orfFeatures = TRUE, RFP = RFP,
RNA = RNA, Gtf = txdb, faFile = faFile, extension = cageNotUsed)

}

See vignettes for more examples

End(Not run)

coverageByWindow Compute coverage for every GRangesList subset.

Description

This is similar to [GenomicFeatures::coverageByTranscript()], but it adds: automatic sorting of
the windows, fix for some rare cases when subsetting fails on minus/plus strands and security that
subseting of windows will always return values (zeros) istead of out of bounds error.

Usage

coverageByWindow(x, windows, ignore.strand = FALSE, is.sorted = FALSE,
keep.names = TRUE)

Arguments
X the cigar of the reads
windows (GRangesList) of transcripts or CDS or other ranges that will be subseting cov-

erage of ‘x*

ignore.strand (logical) Whether to consider all reads to be "*".

is.sorted (logical), is windows already sorted.
keep.names logical (T), keep names and meta cols
Details

Minus strand is already flipped so that the most 5° position on the window is the first position in the
returned Rle.

Value

(RleList) of positional counts of ‘x‘ ranges overlapping each consecutive position of the elements
of ‘windows*

coveragePerTiling 15

Examples

cds <- GenomicRanges: :GRangesList(
GenomicRanges: : GRanges(segnames = "chr1”,
ranges = IRanges::IRanges(100, 200),
strand = "+"))
reads <- GenomicRanges: :GRanges(

segnames = "chrl1”,
ranges = IRanges::IRanges(c(100, 150), c(110, 160)),
strand = "+"

ORFik:::coverageByWindow(reads, cds)

coveragePerTiling Get coverage per group

Description

It tiles each GRangesList group, and finds hits per position

Usage

coveragePerTiling(grl, reads, is.sorted = FALSE, keep.names = TRUE)

Arguments
grl a GRangesList of 5° utrs or transcripts.
reads a GAlignment or GRanges object of RiboSeq, RnaSeq etc
is.sorted logical (F), is grl sorted.
keep.names logical (T), keep names or not.
Value

a Rle, one list per group with # of hits per position.

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+"
grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
coveragePerTiling(grl, RFP)

16 defineTrailer

defineIsoform Overlaps GRanges object with provided annotations.

Description

Overlaps GRanges object with provided annotations.

Usage

defineIsoform(rel_orf, tran, isoform_names = c("perfect_match”,
"elong_START_match”, "trunc_START_match”, "elong_STOP_match”,
"trunc_STOP_match”, "overlap_inside"”, "overlap_both"”, "overlap_upstream”,
"overlap_downstream”, "upstream”, "downstram”, "none"))

Arguments

rel_orf - GRanges object of your ORF.

tran - GRanges object of annotation (transcript or cds) that overlapped in some way
rel_orf.

isoform_names - A vector of strings that will be used instead of these defaults: ’perfect_match’
- start and stop matches the tran object strand wise ’elong_START_match’ -
rel_orf is extension from the STOP side of the tran ’trunc_START_match’ -
rel_orf is truncation from the STOP side of the tran ’elong_STOP_match’ -
rel_orf is extension from the START side of the tran ’trunc_STOP_match’ -
rel_orf is truncation from the START side of the tran ’overlap_inside’ - rel_orf
is inside tran object overlap_both’ - rel_orf contains tran object inside ’over-
lap_upstream’ - rel_orf is overlaping upstream part of the tran *overlap_downstream’
- rel_orf is overlaping downstream part of the tran ’upstream’ - rel_orf is up-
stream towards the tran ’downstream’ - rel_orf is downstream towards the tran
‘none’ - when none of the above options is true

Value

A string object of defined isoform towards transcript.

defineTrailer Defines trailers for ORF.

Description

Creates GRanges object as a trailer for ORFranges representing ORF, maintaining restrictions of
transcriptRanges. Assumes that ORFranges is on the transcriptRanges, strands and seqlevels are in
agreement. When lengthOFtrailer is smaller than space left on the transcript than all available space
is returned as trailer.

Usage

defineTrailer (ORFranges, transcriptRanges, lengthOftrailer = 200)

detectRibosomeShifts 17

Arguments

ORFranges GRanges object of your Open Reading Frame.

transcriptRanges
GRanges object of transtript.

lengthOftrailer
Numeric. Default is 10.

Details

It assumes that ORFranges and transcriptRanges are not sorted when on minus strand. Should be
like: (200, 600) (50, 100)

Value

A GRanges object of trailer.

Examples

ORFranges <- GRanges(segnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+")
transcriptRanges <- GRanges(segnames = Rle(rep("1", 5)),
ranges = IRanges(start = c(1, 10, 20, 30, 40),
end = c(5, 15, 25, 35, 45)),
strand = "+"
defineTrailer (ORFranges, transcriptRanges)

detectRibosomeShifts Detect ribosome shifts

Description

Utilizes periodicity measurement (fourier transform) and change point analysis to detect ribosomal
footprint shifts for each of the ribosomal read lengths. Returns subset of read lengths and their
shifts for which top covered transcripts follow periodicity measure. Each shift value assumes 5’
anchoring of the reads, so that output offsets values will shift 5* anchored footprints to be on the
p-site of the ribosome.

Usage

detectRibosomeShifts(footprints, txdb, start = TRUE, stop = FALSE,
top_tx = 10L, minFiveUTR = 30L, minCDS = 150L, minThreeUTR = 30L,
firstN = 150L)

18

Arguments

footprints
txdb
start

stop
top_tx
minFiveUTR
minCDS

minThreeUTR
firstN

Details

disengagementScore

(GAlignments) object of RiboSeq reads - footprints
a txdb object from a gtf file

(logical) Whether to include predictions based on the start codons. Default
TRUE.

(logical) Whether to include predictions based on the stop codons. Default
FASLE.

(integer) Specify which transcripts to use for estimation of the shifts. By default
we take top 10 top covered transcripts as they represent less noisy dataset. This
is only applicable when there are more than 1000 transcripts.

(integer) minimum bp for 5’ UTR during filtering for the transcripts
(integer) minimum bp for CDS during filtering for the transcripts
(integer) minimum bp for 3’ UTR during filtering for the transcripts

(integer) Represents how many bases of the transcripts downstream of start
codons to use for initial estimation of the periodicity.

Check out vignette for the examples of plotting RiboSeq metaplots over start and stop codons, so
that you can verify visually whether this function detects correct shifts.

Value

a data.frame with lengths of footprints and their predicted coresponding offsets

Examples

Not run:

gtf_file <- system.file("extdata”, "annotations.gtf"”, package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_file, format = "gtf")
riboSeq_file <- system.file("extdata”, "ribo-seq.bam”, package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(
riboSeq_file, param = ScanBamParam(flag = scanBamFlag(
isDuplicate = FALSE, isSecondaryAlignment = FALSE)))

detectRibosomeShifts(footprints, txdb, stop = TRUE)

End(Not run)

disengagementScore Disengagement score (DS)

Description

Disengagement score is defined as

(RPFs over ORF)/(RPFs downstream to tx end)

A pseudo-count of one is added to both the ORF and downstream sums.

distToCds 19

Usage

disengagementScore(grl, RFP, GtfOrTx)

Arguments
grl a GRangesList object with usually either leaders, cds’, 3* utrs or ORFs.
RFP RiboSeq reads as GAlignment, GRanges or GRangesList object
GtforTx Ifitis TxDb object transcripts will be extracted using exonsBy (Gtf, by = "tx", use.names = TRUE
Else it must be GRangesList
Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098344

See Also

Other features: computeFeaturesCage, computeFeatures, distToCds, entropy, floss, fpkm_calc,
fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")
grl <- GRangesList(tx1_1 = ORF)
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
RFP <- GRanges("1", IRanges(c(1,10,20,30,40), width = 3), "+")
disengagementScore(grl, RFP, tx)

distToCds Get distances between ORF ends and starts of their transcripts cds’.

Description

Will calculate distance between each ORF end and begining of the corresponding cds. Matching is
done by transcript names. This is applicable practically to the upstream (fiveUTRs) ORFs. The cds
start site, will be presumed to be on + 1 of end of fiveUTRs.

Usage

distToCds(ORFs, fiveUTRs, cds = NULL, extension = NULL)

20 downstreamN

Arguments
ORFs orfs as GRangesList, names of orfs must be transcript names
fiveUTRs fiveUTRs as GRangesList, must be original unchanged fiveUTRs
cds cds’ as GRangesList, only add if you used CageSeq to extend leaders
extension Numeric that needs set to 0 if you did not use CageSeq if you used CageSeq to
change tss’ when finding the orfs, standard cage extension is 1000.
Value

an integer vector, +1 means one base upstream of cds, -1 means 2nd base in cds, 0 means orf stops
at cds start.

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, entropy, floss,
fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1, 10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1, 20), "+"))
distToCds(grl, fiveUTRs, extension = 0)

downstreamN Restrict GRangesList

Description

Will restrict GRangesList to ‘N bp downstream from the first base.

Usage

downstreamN(grl, firstN = 150L)

Arguments

grl (GRangesList)

firstN (integer) Allow only this many bp downstream
Value

a GRangesList of reads restricted to firstN and tiled by 1

downstreamOfPerGroup 21

downstreamOfPerGroup Get rest of objects downstream

Description

Per group get the part downstream of position defined in downstreamOf downstreamOf(tx, OR-
Fik:::stopSites(cds, asGR = F)) will return the 3’ utrs per transcript as GRangesList, usually used
for interesting parts of the transcripts, like upstream open reading frames(uorf). downstreamOf +/-
1 is start/end site of transformed tx’s, depending on strand

Usage

downstreamOfPerGroup(tx, downstreamOf)

Arguments

tx a GRangesList, usually of Transcripts to be changed

downstreamOf a vector of integers, for each group in tx, where is the new start point of first
valid exon.

Value

a GRangesList of downstream part

entropy Calucalte entropy value of overlapping input reads.

Description

Calculates entropy of the ‘reads‘ coverage over each ‘grl‘ group. The entropy value per group is a
real number in the interval (0:1), where 0 indicates no variance in reads over group. For example
¢(0,0,0,0) has 0 entropy, since no reads overlap.

Usage

entropy(grl, reads)

Arguments
grl a GRangesList that the reads will be overlapped with
reads a GAlignment object or GRanges or GRangesList, usualy data from RiboSeq or
RnaSeq
Value

A numeric vector containing one entropy value per element in ‘grl*

22 extendLeaders

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
subsetCoverage, translationalEff

Examples

ORF <- GRanges("1", ranges = IRanges(start = c(1, 12, 22),
end = c(10, 20, 32)),

strand = "+",
names = rep("tx1_1", 3))

names (ORF) <- rep("tx1", 3)

grl <- GRangesList(tx1_1 = ORF)

RFP <- GRanges("1", IRanges(c(25, 35), c(25, 35)), "+"

grl must have same names as cds + _1 etc, so that they can be matched.

entropy(grl, RFP)

or on cds

cdsORF <- GRanges("1", IRanges(35, 44), "+", names = "tx1")

names(cdsORF) <- "tx1"

cds <- GRangesList(tx1 = cdsORF)

entropy(cds, RFP)

extendLeaders Extend the leaders transcription start sites.

Description

Will extend the leaders or transcripts upstream by extension. Requires the grl to be sorted before-
hand, use sortPerGroup to get sorted grl.

Usage

extendLeaders(grl, extension = 1000, cds = NULL)

Arguments
grl a GRangesList of 5° utrs or transcripts.
extension an integer, how much to extend the leaders. Or a GRangesList where start / stops
by strand are the positions to use as new starts.
cds If you want to extend 5’ leaders downstream, to catch upstream ORFs going into
cds, include it. It will add first cds exon to grl matched by names. Do not add
for transcripts, as they are already included.
Value

an extended GRangeslist

extendsTSSexons

Examples

library(GenomicFeatures)

samplefile <- system.file("extdata”, "hgl19_knownGene_sample.sqlite”,
package = "GenomicFeatures”)

txdb <- loadDb(samplefile)

fiveUTRs <- fiveUTRsByTranscript(txdb) # <- extract only 5' leaders

tx <- exonsBy(txdb, by = "tx", use.names = TRUE)

cds <- cdsBy(txdb,"tx",use.names = TRUE)

now try(extend upstream 1000, downstream 1st cds exons):

extendLeaders(fiveUTRs, extension = 1000, cds)

when extending transcripts, don't include cds' of course,
since they are already there
extendLeaders(tx, extension = 1000)

extendsTSSexons Extend first exon of each transcript with length specified

Description

Extend first exon of each transcript with length specified

Usage

extendsTSSexons(fiveUTRs, extension = 1000)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

extension The number of basses upstream to add on transcripts
Value

granges object of first exons

filterCage Filter peak of cage-data by value

Description

Filter peak of cage-data by value

Usage
filterCage(rawCage, filterValue = 1)

Arguments

rawCage The raw cage-data

filterValue The number of counts(score) to filter on for a tss to pass as hit

24 findFa

Value

the filtered Granges object

findCageUTRFivelen Get length of leaders ordered after oldTxNames

Description

Normally only a helper function for ORFik

Usage

findCageUTRFivelen(fiveUTRs, oldTxNames)

Arguments

fiveUTRs a GRangesList object of leaders

o0ldTxNames a character vector of names to group fiveUTRs by.
Value

a GRangesList of reordered leaders.

findFa Convenience wrapper for Rsamtools FaFile

Description

Convenience wrapper for Rsamtools FaFile

Usage
findFa(faFile)

Arguments

faFile a character path or FaFile

Value

a FaFile or BSgenome

findMapORFs 25

findMapORFs Find ORF's and immediately map them to their genomic positions.

Description

Finds ORFs on the sequences of interest, but returns relative positions to the positions of ‘grl’
argument. For example, ‘grl® can be exons of known transcripts (with genomic coordinates), and
‘seq" sequences of those transcripts, in that case, [findMapORFs()] will return genomic coordinates
of ORFs found on transcript sequences.

Usage

findMapORFs(grl, seqs, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = FALSE, minimumLength = @)

Arguments

grl (GRangesList) of sequences to search for ORFs, probably in genomic coordi-
nates

seqgs (DNAStringSet or character) DNA sequences to search for Open Reading Frames.

startCodon (character) Possible START codons to search for. Check [startDefinition()] for
helper function.

stopCodon (character) Possible STOP codons to search for. Check [stopDefinition()] for
helper function.

longestORF (logical) Default FALSE. When TRUE will only report ORFs that are longest,

all smaller overlapping ORFs will be ignored. When FALSE will report all
possible ORFs in all three reading frames.

minimumLength (integer) Defaultis 0. Minimum length of ORF, without counting 3bp for START
and STOP codons. For example minimumLength = 8 will result in size of ORFs
to be at least START + 8*3 (bp) + STOP. Use this param to restrict search.

Details

This function assumes that ‘seq° is in widths relative to ‘grl‘, and that their orders match.

Value

A GRangesList of ORFs.

See Also

[findORFs()], [findORFsFasta()], [startDefinition()], [stopDefinition()]

Other findORFs: findORFsFasta, findORFs, startDefinition, stopDefinition

26 findNewTSS

Examples

This sequence has ORFs at 1-9 and 4-9
seqs <- c("ATGATGTAA") # the dna sequence
findORFs(seqs)
lets assume that this sequence comes from two exons as follows
gr <- GRanges(seqgnames = rep("1", 2), # chromosome 1
ranges = IRanges(start = c(21, 10), end = c(23, 15)),
strand = rep("-", 2), names = rep("tx1", 2))
grl <- GRangesList(tx1 = gr)
findMapORFs(grl, seqs) # ORFs are properly mapped to its genomic coordinates

grl <- c(grl, grl)
names(grl) <- c("tx1", "tx2")
findMapORFs(grl, c(seqs, seqs))

findMaxPeaks Find max peak for each transcript, returns as data.table, without
names, but with index

Description

Find max peak for each transcript, returns as data.table, without names, but with index

Usage

findMaxPeaks(cageOverlaps, filteredCage)

Arguments

cageOverlaps The cageOverlaps between cage and extended 5° leaders

filteredCage The filtered raw cage-data used to reassign 5’ leaders

Value

a data.table of max peaks

findNewTSS Finds max peaks per trancsript from reads in the cagefile

Description

Finds max peaks per trancsript from reads in the cagefile

Usage

findNewTSS(fiveUTRs, cageData, extension)

findORFs 27

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

cageData The location of the cage-file

extension The number of basses upstream to add on transcripts
Value

a Hits object

findORFs Find Open Reading Frames.

Description

Find all Open Reading Frames (ORFs) on the input sequences in 5’- 3’ direction, but within all
three possible reading frames. For each sequence of the input vector IRanges with START and
STOP positions (inclusive) will be returned as IRangesList. Returned coordinates are relative to
the input sequences.

Usage

findORFs(seqs, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = FALSE, minimumLength = 0)

Arguments
seqs (DNAStringSet or character) DNA sequences to search for Open Reading Frames.
startCodon (character) Possible START codons to search for. Check [startDefinition()] for
helper function.
stopCodon (character) Possible STOP codons to search for. Check [stopDefinition()] for
helper function.
longestORF (logical) Default FALSE. When TRUE will only report ORFs that are longest,

all smaller overlapping ORFs will be ignored. When FALSE will report all
possible ORFs in all three reading frames.

minimumLength (integer) Defaultis 0. Minimum length of ORF, without counting 3bp for START
and STOP codons. For example minimumLength = 8 will result in size of ORFs
to be at least START + 8*3 (bp) + STOP. Use this param to restrict search.

Value

(IRangesList) of ORFs locations incuding START and STOP codons grouped by input seqeunces.

See Also

[findMapORFs()], [findORFsFasta()], [startDefinition()], [stopDefinition()]
Other findORFs: findMapORFs, findORFsFasta, startDefinition, stopDefinition

28 findORFsFasta

Examples

findORFs("ATGTAA")
findORFs("ATGTTAA") # not in frame anymore

findORFs("ATGATGTAA") # two ORFs
findORFs("ATGATGTAA", longestORF = TRUE) # only longest of two above

findORFs(c("ATGTAA", "ATGATGTAA"))

findORFsFasta Finds Open Reading Frames in fasta files.

Description

Searches through each fasta header and reports all ORFs found for sense (+) and antisense strand (-)
in all frames. Name of the header will be used as seqnames of reported ORFs. Each fasta header is
treated separately, and name of the sequence will be used as seqname in returned GRanges object.

Usage

findORFsFasta(filePath, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = TRUE, minimumLength = @,
is.circular = FALSE)

Arguments
filePath (character) Path to the fasta file.
startCodon (character) Possible START codons to search for. Check [startDefinition()] for
helper function.
stopCodon (character) Possible STOP codons to search for. Check [stopDefinition()] for
helper function.
longestORF (logical) Default FALSE. When TRUE will only report ORFs that are longest,

all smaller overlapping ORFs will be ignored. When FALSE will report all
possible ORFs in all three reading frames.

minimumLength (integer) Defaultis 0. Minimum length of ORF, without counting 3bp for START
and STOP codons. For example minimumLength = 8 will result in size of ORFs
to be at least START + 8*3 (bp) + STOP. Use this param to restrict search.

is.circular (logical) Whether the genome in filePath is circular. Prokaryotic genomes are
usually circular.

Value

(GRanges) object of ORFs mapped from fasta file. Positions are relative to the fasta file.

See Also

[findORFs()], [findMapORFs()], [startDefinition()], [stopDefinition()]
Other findORFs: findMapORFs, findORFs, startDefinition, stopDefinition

firstEndPerGroup

Examples

location of the example fasta file
example_genome <- system.file("extdata”, "genome.fasta", package = "ORFik")
findORFsFasta(example_genome)

29

firstEndPerGroup Get first end per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage
firstEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangeslList

keep.names a boolean, keep names or not
Value

a Rle(keep.names = T), or integer vector(F)

Examples
gr_plus <- GRanges(seqgnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstEndPerGroup(grl)

firstExonPerGroup Get first exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstExonPerGroup(grl)

Arguments

grl a GRangesList

30 firstStartPerGroup

Value

a GRangesList of the first exon per group

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chri"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstExonPerGroup(grl)

firstStartPerGroup Get first start per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstStartPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not
Value

a Rle(keep.names = TRUE), or integer vector(FALSE)

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chri"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstStartPerGroup(grl)

fixSeqnames 31

fixSegnames Seqnames cleanup

Description

For many datasets, the fa file and the gtf file have different naming This functions tries to fix the
naming to the GRanges standard chrX instead of X chrl instead of 1 etc..

Usage

fixSegnames(grl)
Arguments

grl a GRangesList
Value

a GRangesList with fixed seqnames

floss Fragment Length Organization Similarity Score

Description
This feature is usually calcualted only for RiboSeq reads. For reads of width between ‘start‘ and
‘end’, sum the fraction of RiboSeq reads (per widths) that overlap ORFs and normalize by CDS.
Usage
floss(grl, RFP, cds, start = 26, end = 34)

Arguments
grl a GRangesList object with ORFs
RFP ribosomal footprints, given as Galignment or GRanges object, must be already
shifted and resized to the p-site
cds a GRangesList of coding sequences, cds has to have names as grl so that they
can be matched
start usually 26, the start of the floss interval
end usually 34, the end of the floss interval
Details

Pseudo explanation of the function:
SUM[start to stop]((grllstart:end][namel/grl) / (cds[start:end][namel]/cds))

Please read more in the article.

32 fpkm

Value

a vector of FLOSS of length same as grl

References

doi: 10.1016/j.celrep.2014.07.045

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
subsetCoverage, translationalEff

Examples

ORF <- GRanges(segnames = "1",

ranges = IRanges(start = c(1, 12, 22),

end = c(10, 20, 32)),

strand = "+"
grl <- GRangesList(tx1_1 = ORF)
RFP is 1 width position based GRanges
RFP <- GRanges("1", IRanges(c(1, 25, 35, 38), width = 1), "+"
score(RFP) <- c(28, 28, 28, 29) # original width in score col
cds <- GRangesList(tx1 = GRanges("1", IRanges(35, 44), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
floss(grl, RFP, cds)
or change ribosome start/stop, more strict
floss(grl, RFP, cds, 28, 28)

fpkm Create normalizations of overlapping read counts.

Description

FPKM is short for "Fragments Per Kilobase of transcript per Million fragments". When calculating
RiboSeq data FPKM over ORFs use ORFs as ‘grl‘. When calculating RNASeq data FPKM use full
transcripts as ‘grl‘.

Usage
fpkm(grl, reads, pseudoCount = Q)

Arguments
grl a GRangesList object can be either transcripts, 5° utrs, cds’, 3’ utrs or ORFs as
a special case (UORFs, potential new cds’ etc).
reads a GAlignment, GRanges or GRangesList object, usually of RiboSeq, RnaSeq,

CageSeq, etc.

pseudoCount an integer, by default is O, set it to 1 if you want to avoid NA and inf values.

fpkm_calc 33

Value

a numeric vector with the fpkm values

References

doi: 10.1038/nbt.1621

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
subsetCoverage, translationalEff

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)

RFP <- GRanges("1", IRanges(25, 25),"+")

fpkm(grl, RFP)

fpkm_calc Create normalizations of counts

Description

A helper for [fpkm()] Normally use function [fpkm()], if you want unusual normalization , you can
use this. Short for: Fragments per kilobase of transcript per million fragments Normally used in
Translations efficiency calculations

Usage

fpkm_calc(counts, lengthSize, librarySize)

Arguments

counts a list, # of read hits per group

lengthSize a list of lengths per group

librarySize a numeric of size 1, the # of reads in library
Value

a numeric vector

References

doi: 10.1038/nbt.1621

34 fractionLength

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

fractionLength Fraction Length

Description

Fraction Length is defined as
(lengths of grl)/(length of tx_len)

so that each group in the grl is divided by the corresponding transcript.

Usage

fractionLength(grl, tx_len)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs. ORFs
are a special case, see argument tx_len

tx_len the transcript lengths of the transcripts, a named (tx names) vector of integers.
If you have the transcripts as GRangesList, call ‘ORFik:::widthPerGroup(tx,
TRUE)“.

If you used CageSeq to reannotate leaders, then the tss for the the leaders have
changed, therefore the tx lengths have changed. To account for that call: ‘tx_len
<- widthPerGroup(extendLeaders(tx, cageFiveUTRs))‘ and calculate graction
length using ‘fractionLength(grl, tx_len)*.

Value

a numeric vector of ratios

References

doi: 10.1242/dev.098343

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, insideOutsideORF, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

fread.bed 35

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")
grl <- GRangesList(tx1_1 = ORF)
grl must have same names as cds + _1 etc, so that they can be matched.
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
fractionLength(grl, ORFik:::widthPerGroup(tx, keep.names = TRUE))

fread.bed Load bed file as GRanges.

Description

Wraps around rtracklayer::import.bed and tries to speed up loading with the use of data.table. Sup-
ports gzip, gz, bgz and bed formats.

Usage
fread.bed(filePath)

Arguments

filePath The location of the bed file

Value

a GRanges object

Examples

path to example CageSeq data from hgl9 heart sample
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",

package = "ORFik")
fread.bed(cageData)

getStartStopWindows Get Start and Stop codon within specified windows over CDS.

Description

For each cds in ‘txdb‘ object, filtered by ‘txNames*, get a window around start and stop codons
within ‘window_size* downstream and upstream of the codon.

Usage

getStartStopWindows(txdb, txNames, start = TRUE, stop = TRUE,
window_size = 30L, cds = NULL)

36 groupGRangesBy

Arguments
txdb a txdb object of annotations
txNames a character vector of the transcript names to use
start (logical) whether to include start codons
stop (logical) whether to incude stop codons
window_size (integer) size of the window to extract upstream of the start/stop codon and
downstream
cds a GRangesList with cds, a speedup if you already have them loaded.
Value

a list with two slots "starts" and "stops", each contains a GRangesList of windows around start and
stop codons for the transcripts of interest

Examples

gtf_file <- system.file("extdata”, "annotations.gtf”, package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF (gtf_file, format = "gtf")
txNames <- txNamesWithLeaders(txdb)

getStartStopWindows(txdb, txNames)

groupGRangesBy Group GRanges

Description
It will group / split the GRanges object by the argument ‘other‘. For example if you would like to
to group GRanges object by gene, set other to gene names.

Usage

groupGRangesBy(gr, other = NULL)

Arguments

gr a GRanges object

other a vector of unique names to group by
Details

If ‘other® is not specified function will try to use the names of the GRanges object. It will then be
similar to ‘split(gr, names(gr))‘.

It is important that all groups in ‘other‘ are unique, otherwise duplicates will be grouped together.

Value

a GRangesList named after names(Granges) if other is NULL, else names are from unique(other)

gSort 37

Examples

ORFranges <- GRanges(seqnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+")
ORFranges2 <- GRanges("1",
ranges = IRanges(start = c(20, 30, 40),
end = c(25, 35, 45)),

strand = "+"
names (ORFranges) = rep("tx1_1", 3)
names (ORFranges2) = rep("tx1_2", 3)
grl <- GRangesList(tx1_1 = ORFranges, tx1_2 = ORFranges2)
gr <- unlist(grl, use.names = FALSE)
now recreate the grl
group by orf
grltest <- groupGRangesBy(gr) # using the names to group
identical(grl, grltest) ## they are identical

group by transcript

names(gr) <- txNames(gr)

grltest <- groupGRangesBy(gr)

identical(grl, grltest) ## they are not identical

gSort Sort a GRangesList, helper.

Description

A helper for [sortPerGroup()]. A faster, more versatile reimplementation of GenomicRanges::sort()
Normally not used directly. Groups first each group, then either decreasing or increasing (on starts
if byStarts == T, on ends if byStarts == F)

Usage

gSort(grl, decreasing = FALSE, byStarts = TRUE)

Arguments
grl a GRangeslList
decreasing should the first in each group have max(start(group)) ->T or min-> default(F) ?
byStarts a logical T, should it order by starts or ends F.

Value

an equally named GRangesList, where each group is sorted within group.

38 insideOutsideORF

hasHits Hits from reads

Description

Finding GRanges groups that have overlap hits with reads

Usage
hasHits(grl, reads, keep.names = FALSE)

Arguments
grl a GRanges or GRangesList
reads a GAlignment or GRanges object with reads
keep.names logical (F), keep names or not

Value

a list of logicals, T == hit, F == no hit

insideOutsideORF Inside/Outside score (10)

Description

Inside/Outside score is defined as
(reads over ORF)/(reads outside ORF and within transcript)
A pseudo-count of one was added to both the ORF and outside sums.

Usage
insideOutsideORF(grl, RFP, GtfOrTx)

Arguments
grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs
RFP ribo seq reads as GAlignment, GRanges or GRangesList object
GtfOrTx if Gtf: a TxDb object of a gtf file that transcripts will be extracted with ‘ex-
onsBy(Gtf, by = "tx", use.names = TRUE)®, if a GrangesList will use as is
Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098345

is.grl 39

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, isInFrame, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

Check inside outside score of a ORF within a transcript
ORF <- GRanges("1",
ranges = IRanges(start = c(20, 30, 40),
end = c(25, 35, 45)),

strand = "+")
grl <- GRangesList(tx1_1 = ORF)

tx1 <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20, 30, 40, 50),
end = c(5, 15, 25, 35, 45, 200)),
strand = "+")
tx <- GRangesList(tx1 = tx1)
RFP <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 4, 30, 60, 80, 90),
end = c(30, 33, 63, 90, 110, 120)),
strand = "+")

insideOutsideORF(grl, RFP, tx)

is.grl Helper function to check for GRangesList

Description

Helper function to check for GRangesList

Usage

is.grl(class)

Arguments
class the class you want to check if is GRL, either a character from class or the object
itself.
Value

a boolean

40 isInFrame

is.gr_or_grl Helper function to check for GRangesList or GRanges class

Description

Helper function to check for GRangesList or GRanges class

Usage

is.gr_or_grl(class)

Arguments
class the class you want to check if is GRL or GR, either a character from class or the
object itself.
Value
a boolean
isInFrame Find frame for each orf relative to cds
Description

Input of this function, is the output of the function [distToCds()]

Usage

isInFrame(dists)
Arguments

dists a vector of distances between ORF and cds
Details

possible outputs: O: orf is in frame with cds 1: 1 shifted from cds 2: 2 shifted from cds

Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isOverlapping, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

isOverlapping 41

Examples

simple example
isInFrame(c(3,6,8,11,15))

GRangesList example

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs, extension = Q)

isInFrame <- isInFrame(dist)

isOverlapping Find frame for each orf relative to cds

Description

Input of this function, is the output of the function [distToCds()]

Usage

isOverlapping(dists)
Arguments

dists a vector of distances between ORF and cds
Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, kozakSequenceScore,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

#' # simple example
isOverlapping(c(-3,-6,8,11,15))

GRangesList example

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs, extension = @)

isOverlapping <- isOverlapping(dist)

42 kozakSequenceScore

isPeriodic Find if there is periodicity in the vector

Description

Find if there is periodicity in the vector

Usage

isPeriodic(x)

Arguments

X (numeric) Vector of values to detect periodicity of 3 like in RiboSeq data.

Value

a logical, if it is periodic.

kozakSequenceScore Make a score for each ORFs start region by proximity to Kozak

Description

The closer the sequence is to the Kozak sequence the higher the score, based on the experimental
pwms from article referenced. Minimum score is 0 (worst correlation), max is 1 (the best base per
column was chosen).

Usage
kozakSequenceScore(grl, faFile, species = "human”, include.N = FALSE)
Arguments
grl a GRangesList grouped by ORF
faFile a FaFile from the fasta file, see 7FaFile. Can also be path to fastaFile with fai
file in same dir.
species ("human"), which species to use, currently supports human, zebrafish and mouse
(m. musculus). You can also specify a pfm for your own species. Syntax of pfm
is an rectangular integer matrix, where all columns must sum to the same value,
normally 100. See example for more information. Rows are in order: c("A",
IICH’ "Gll’ ”Tll)
include.N logical (F), if TRUE, allow N bases to be counted as hits, score will be average
of the other bases. If True, N bases will be added to pfm, automaticly, so dont
include them if you make your own pfm.
Value

a numeric vector with values between 0 and 1

an integer vector, one score per orf

lastExonEndPerGroup 43

References

doi: https://doi.org/10.1371/journal.pone.0108475

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

Usually the ORFs are found in orfik, which makes names for you etc.

Here we make an example from scratch

segName <- "Chromosome”

ORF1 <- GRanges(segnames = segName,
ranges = IRanges(c(1007, 1096), width = 60),
strand = c("+", "+"))

ORF2 <- GRanges(segnames = segName,
ranges = IRanges(c(400, 100), width = 30),
strand = c("-", "-"))

ORFs <- GRangesList(tx1 = ORF1, tx2 = ORF2)

ORFs <- makeORFNames(ORFs) # need ORF names

get faFile for sequences

faFile <- FaFile(system.file("extdata”, "genome.fasta”,

package = "ORFik"))
kozakSequenceScore(ORFs, faFile)
For more details see vignettes.

lastExonEndPerGroup Get last end per granges group

Description

Get last end per granges group

Usage

lastExonEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangeslList

keep.names a boolean, keep names or not
Value

a Rle(keep.names = T), or integer vector(F)

44 lastExonStartPerGroup

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqgnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonEndPerGroup(grl)

lastExonPerGroup Get last exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

lastExonPerGroup(grl)

Arguments

grl a GRangesList

Value

a GRangesList of the last exon per group

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chri"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonPerGroup(grl)

lastExonStartPerGroup Get last start per granges group

Description

Get last start per granges group

Usage

lastExonStartPerGroup(grl, keep.names = TRUE)

makeExonRanks

Arguments

grl a GRangesList

keep.names a boolean, keep names or not
Value

a Rle(keep.names = T), or integer vector(F)

Examples
gr_plus <- GRanges(seqnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonStartPerGroup(grl)

45

makeExonRanks Make a meta column with exon ranks

Description

Must be ordered, so that same transcripts are ordered together.

Usage

makeExonRanks(grl, byTranscript = FALSE)

Arguments

grl a GRangesList

byTranscript if ORfs are by transcript, check duplicates

Value

an integer vector of indices for exon ranks

46 mapToGRanges

makeORFNames Make ORF names per orf

Description

grl must be grouped by transcript If a list of orfs are grouped by transcripts, but does not have ORF
names, then create them and return the new GRangesList

Usage

makeORFNames(grl)
Arguments

grl a GRangesList
Value

(GRangesList) with ORF names, grouped by transcripts, sorted.

Examples
gr_plus <- GRanges(seqgnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = C(”+”, ”+"))
gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand - C(n_n , n_n))
grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
makeORFNames(grl)
mapToGRanges Map orfs to genomic coordinates
Description

Creates GRangesList from the results of ORFs_as_List and the GRangesList used to find the ORFs

Usage

mapToGRanges(grl, result)

Arguments
grl A GRangesList of the original sequences that gave the orfs
result List. A list of the results of finding uorfs list syntax is: result[1] contain grouping
indeces, named index result[2] countains two columns of start and stops, named
orf
Value

A GRangeslList of ORFs.

matchNaming 47

matchNaming Match naming of GRangesList

Description

Given a GRangesList and a reference, make the naming convention and the number of metacolumns
equal to reference

Usage

matchNaming(gr, reference)

Arguments

gr a GRangesList or GRanges object

reference a GRangesList of a reference

Value

a GRangesList

matchSeqlevels Match seqnames

Description

Check that seqlevels of fiveUTRs and cage uses the same standard, i.g chrl vs 1.

Usage

matchSeqlevels(filteredCage, fiveUTRs)

Arguments

filteredCage Cage-data to check seqnames in

fiveUTRs The 5’ leader sequences as GRangesList

Value

filteredCage with matched seqnames convention

48

numExonsPerGroup
metaWindow Calculate metaplot coverage of reads around input GRangesList ob-
Jject.
Description
Sums up coverage over set of GRanges objects that.
Usage
metaWindow(x, windows)
Arguments
X GRanges object of your reads. You should resize them beforehand to width of 1
to focus on 5’ ends of footprints.
windows GRanges object of your CDSs start or stop postions. Its width has to be even
number as we will assume in the middle is position zero which is included in
the downstream window.
Value

A data.frame with average counts (avg_counts) of reads mapped to positions (position) specified in
windows along with frame (frame).

Examples

windows <- GenomicRanges: :GRangesList(

GenomicRanges: : GRanges(segnames = "chr1”,
ranges = IRanges::IRanges(c(50, 100), c(80, 200)),
strand = "-"))
x <- GenomicRanges: :GRanges(
segnames = "chri1”,
ranges = IRanges::IRanges(c(100, 180), c(200, 300)),
strand = "-")

metaWindow(x, windows)

numExonsPerGroup Get list of the number of exons per group

Description

Can also be used generaly to get number of GRanges object per GRangesList group

Usage

numExonsPerGroup(grl, keep.names = TRUE)

orfID 49

Arguments

grl a GRangesList

keep.names a boolean, keep names or not
Value

an integer vector of counts

Examples
gr_plus <- GRanges(seqnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
numExonsPerGroup(grl)

orfID Get id’s for orf

Description

These id’s can be uniqued by isoform etc, this is not supported by GenomicRanges.

Usage

orfID(grl, with.tx = FALSE)

Arguments
grl a GRangesList
with.tx a boolean, include transcript names, if you want unique orfs, so that they dont
have multiple versions on different isoforms, set it to FALSE.
Value

a character vector of ids, 1 per orf

50 orfScore

orfScore Get ORF'score for a GRangesList of ORFs

Description

ORFscore tries to check whether the first frame of the 3 possible frames in an ORF has more reads
than second and third frame.

Usage

orfScore(grl, RFP, is.sorted = FALSE)

Arguments
grl a GRangesList object with ORFs
RFP ribozomal footprints, given as Galignment object, Granges or GRangesList
is.sorted logical (F), is grl sorted.

Details

Pseudocode: assume 1ff - is reads fraction in specific frame

ORFScore = log(rrfl + rrf2 + rrf3)

For all ORFs where rrf2 or 11f3 is bigger than rff1, negate the resulting value.
ORFScore[rrfi1Smaller] <- ORFScore[rrfiSmaller] * -1

As result there is one value per ORF: Positive values say that the first frame have the most reads,
negative values say that the first frame does not have the most reads.
Value

a matrix with 4 columns, the orfscore and score of each of the 3 tiles

References

doi: 10.1002/embj.201488411

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage,
translationalEff

parseCigar

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+"

names(ORF) <- c("tx1", "tx1", "tx1")

grl <- GRangesList(tx1_1 = ORF)

RFP <- GRanges("1", IRanges(25, 25), "+") # 1 width position based

score(RFP) <- 28 # original width

orfScore(grl, RFP) # negative because more hits on frames 1,2 than 0.

example with positive result, more hits on frame @ (in frame of ORF)
RFP <- GRanges("1", IRanges(c(1, 1, 1, 25), width = 1), "+"
score(RFP) <- c(28, 29, 31, 28) # original width

orfScore(grl, RFP)

51

parseCigar Shift ribo-seq reads using cigar string

Description

Shift ribo-seq reads using cigar string

Usage

parseCigar(cigar, shift, is_plus_strand)

Arguments
cigar the cigar of the reads
shift the shift as numeric

is_plus_strand logical

Value

the shifted read

rankOrder ORF rank in transcripts

Description

ig. second orf _2 ->2

Usage
rankOrder(grl)

Arguments

grl a GRangesList object with ORFs

52 reassignTSSbyCage

Value

a numeric vector of integers

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, ribosomeReleaseScore, ribosomeStallingScore, subsetCoverage,

translationalEff
Examples

gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
grl <- ORFik:::makeORFNames(grl)
rankOrder(grl)

reassignTSSbyCage Reassign all Transcript Start Sites (TSS)

Description

Given a GRangesList of 5° UTRs or transcripts, reassign the start postitions using max peaks from
CageSeq data. A max peak is defined as new TSS if it is within boundary of 5’ leader range,
specified by ‘extension‘ in bp. A max peak must also be higher than minimum CageSeq peak cutoff
specified in “filterValue‘. The new TSS will then be the positioned where the cage read (with highest
read count in the interval).

Usage
reassignTSSbyCage(fiveUTRs, cage, extension = 1000, filterValue = 1,
cds = NULL)
Arguments
fiveUTRs (GRangesList) The 5° leaders or transcript sequences
cage Either a filePath for CageSeq file, or already loaded CageSeq peak data as
GRanges.
extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.
filterValue The minimum number of reads on cage position, for it to be counted as possible

new tss. (represented in score column in CageSeq data) to If you already filtered,
setit to 0.

reduceKeepAttr 53

cds (GRangesList) CDS of relative fiveUTRs, applicable only if you want to extend
5’ leaders downstream of CDS’s, to allow upstream ORFs that can overlap into
CDS’s.
Value

a GRangesList of newly assigned TSS for fiveUTRs, using CageSeq data.

Examples

example 5' leader, notice exon_rank column
fiveUTRs <- GenomicRanges: :GRangesList(

GenomicRanges: : GRanges(segnames = "chr1”,
ranges = IRanges::IRanges(1000, 2000),
strand = "+",

exon_rank = 1))
names(fiveUTRs) <- "tx1"

make fake CageSeq data from promoter of 5' leaders, notice score column
cage <- GenomicRanges: :GRanges(

segnames = "chrl1”,
ranges = IRanges::IRanges(500, 510),
strand = "+",

score = 10)

finally reassign TSS for fiveUTRs
reassignTSSbyCage(fiveUTRs, cage)

reduceKeepAttr Reduce GRanges / GRangesList

Description

Extends function [GenomicRanges::reduce()] by trying to keep names and meta columns, if it is
a GRangesList. It also does not loose sorting for GRangesList, since original reduce sorts all by
ascending. If keep.names == FALSE, it’s just the normal GenomicRanges::reduce with sorting
negative strands descending for GRangesList.

Usage

reduceKeepAttr(grl, keep.names = FALSE, drop.empty.ranges = FALSE,
min.gapwidth = 1L, with.revmap = FALSE, with.inframe.attrib = FALSE,
ignore.strand = FALSE)

Arguments
grl a GRangesList or GRanges object
keep.names (FALSE) keep the names and meta columns of the GRangesList

drop.empty.ranges
(FALSE) if a group is empty (width 0), delete it.

min.gapwidth (1L) how long gap can it be to say they belong together

54 regroupRleList

with.revmap (FALSE) return info on which mapped to which

with.inframe.attrib
(FALSE) For internal use.

ignore.strand (FALSE), can different strands be reduced together.

Value

A reduced GRangesList

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 2, 3), end = c(1, 2, 3)),
strand = "+")

For GRanges

reduceKeepAttr (ORF, keep.names = TRUE)

For GRangeslList

grl <- GRangesList(tx1_1 = ORF)

reduceKeepAttr(grl, keep.names = TRUE)

regroupRlelList Regroup rle from GRangesList

Description
Almost direct copy of IRanges regroupBySupergroup. But only works on rle and GRangesList.
This function will be removed if [Ranges regroupBySupergroup is exported.

Usage

regroupRleList(rle, supergroups)

Arguments

rle A RleList to reduce groups on.

supergroups A GRangesList to group by

Value

A regrouped RleList

removeMetaCols 55

removeMetaCols Removes meta columns

Description

Removes meta columns

Usage

removeMetaCols(grl)
Arguments

grl a GRangesList or GRanges object
Value

same type and structure as input without meta columns

riboSeqReadWidths Get RiboSeq widths

Description

Input a ribo-seq object and get width of reads, if input is p-shifted and GRanges, the "$score col-
umn" must exist, and contain the original read widths.

Usage

riboSeqReadWidths(reads)

Arguments

reads a GRanges or GAlignment object.

Value

an integer vector of widths

56 ribosomeReleaseScore

ribosomeReleaseScore Ribosome Release Score (RRS)

Description

Ribosome Release Score is defined as
(RPFs over ORF)/(RPFs over 3' utrs)

and additionaly normalized by lengths. If RNA is added as argument, it will normalize by RNA
counts to justify location of 3’ utrs. It can be understood as a ribosome stalling feature. A pseudo-
count of one was added to both the ORF and downstream sums.

Usage
ribosomeReleaseScore(grl, RFP, GtfOrThreeUtrs, RNA = NULL)

Arguments
grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.
RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

GtfOrThreeUtrs if Gtf: a TxDb object of a gtf file transcripts is called from: ‘threeUTRsByTran-
script(Gtf, use.names = TRUE)", if object is GRangesList, it is presumed to be
the 3’ utrs

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

Value

a named vector of numeric values of scores, NA means that no 3’ utr was found for that transcript.

References

doi: 10.1016/j.cell.2013.06.009

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeStallingScore, subsetCoverage, translationalEff

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)

threeUTRs <- GRangesList(tx1 = GRanges("1", IRanges(40, 50), "+"))

RFP <- GRanges("1", IRanges(25, 25), "+")

RNA <- GRanges("1", IRanges(1, 50), "+"

ribosomeReleaseScore(grl, RFP, threeUTRs, RNA)

ribosomeStallingScore 57

ribosomeStallingScore Ribosome Stalling Score (RSS)

Description

Is defined as

(RPFs over ORF stop sites)/(RPFs over ORFs)

and normalized by lengths A pseudo-count of one was added to both the ORF and downstream
sums.

Usage

ribosomeStallingScore(grl, RFP)

Arguments
grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.
RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

Value

a named vector of numeric values of RSS scores

References

doi: 10.1016/j.cels.2017.08.004

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, subsetCoverage, translationalEff

Examples
ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+"

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
ribosomeStallingScore(grl, RFP)

58 shiftFootprints

segnamesPerGroup Get list of seqnames per granges group

Description

Get list of seqnames per granges group

Usage

segnamesPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangeslList

keep.names a boolean, keep names or not
Value

a character vector or Rle of seqnames(if seqnames == T)

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
segnamesPerGroup(grl)

shiftFootprints Shift footprints by selected offsets

Description

Function shifts footprints (GRanges) using specified offsets for every of the specified lengths. Reads
that do not conform to the specified lengths are filtered out and rejected. Reads are resized to single
base in 5 end fashion, treated as p site. This function takes account for junctions in cigars of the
reads. Length of the footprint is saved in size’ parameter of GRanges output. Footprints are also
sorted according to their genomic position, ready to be saved as a bed file.

Usage

shiftFootprints(footprints, selected_lengths, selected_shifts)

sortPerGroup 59

Arguments

footprints (GAlignments) object of RiboSeq reads
selected_lengths

Numeric vector of lengths of footprints you select for shifting.
selected_shifts

Numeric vector of shifts for coresponding selected_lengths. eg. c(10, -10) with
selected_lengths of ¢(31, 32) means length of 31 will be shifted left by 10. Foot-
prints of length 32 will be shifted right by 10.

Value

A GRanges object of shifted footprints, sorted and resized to 1bp of p-site, with metacolumn "size"
indicating footprint size before shifting and resizing.

Examples

Not run:
gtf_file <- system.file("extdata”, "annotations.gtf”, package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_file, format = "gtf")
riboSeq_file <- system.file("extdata”, "ribo-seq.bam”, package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(

riboSeq_file, param = ScanBamParam(flag = scanBamFlag(

isDuplicate = FALSE, isSecondaryAlignment = FALSE)))
detect the shifts automagically
shifts <- detectRibosomeShifts(footprints, txdb)
shift the RiboSeq footprints
shiftedReads <- shiftFootprints(footprints, shifts$fragment_length,
shifts$offsets_start)

End(Not run)

sortPerGroup Sort a GRangesList

Description

A faster, more versatile reimplementation of sort.GenomicRanges for GRangesList, which works
poorly for more than 10k groups. This function sorts each group, where "+" strands are increasing
by starts and "-" strands are decreasing by ends.

Usage

sortPerGroup(grl, ignore.strand = FALSE)

Arguments

grl a GRangeslList

ignore.strand a boolean, if FALSE: should minus strands be sorted from highest to lowest
ends. If TRUE: from lowest to highest ends.

60 startCodons

Value

an equally named GRangesList, where each group is sorted within group.

Examples
gr_plus <- GRanges(seqgnames = c("chr1”, "chri1"),
ranges = IRanges(c(14, 7), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2"”, "chr2"),
ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"))
grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
sortPerGroup(grl)
startCodons Get the Start codons(3 bases) from a GRangesList of orfs grouped by
orfs
Description

In ATGTTTTGC, get the positions ATG. It takes care of exons boundaries, with exons < 3 length.

Usage

startCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted
Value

a GRangesList of start codons, since they might be split on exons

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqgnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startCodons(grl, is.sorted = FALSE)

startDefinition 61

startDefinition Returns start definitions

Description
According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation.

Usage

startDefinition(transl_table)

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of START sies separatd with "I".

See Also

Other findORFs: findMapORFs, findORFsFasta, findORFs, stopDefinition

Examples

startDefinition
startDefinition(1)

startSites Get the start sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGG, get the position of the A.

Usage

startSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments
grl a GRangesList object
asGR a boolean, return as GRanges object
keep.names if asGR is False, do you still want to keep a named vector

is.sorted a speedup, if you know the ranges are sorted

62 stopCodons

Value

if asGR is False, a vector, if True a GRanges object

Examples
gr_plus <- GRanges(seqgnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startSites(grl, is.sorted = FALSE)

stopCodons Get the Stop codons (3 bases) from a GRangesList of orfs grouped by
orfs

Description

In ATGTTTTGC, get the positions TGC. It takes care of exons boundaries, with exons < 3 length.

Usage

stopCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted
Value

a GRangesList of stop codons, since they might be split on exons

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqgnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopCodons(grl, is.sorted = FALSE)

stopDefinition 63

stopDefinition Returns stop definitions

Description

According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation.

Usage

stopDefinition(transl_table)

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of STOP sies separatd with "I".

See Also

Other findORFs: findMapORFs, findORFsFasta, findORFs, startDefinition

Examples

stopDefinition
stopDefinition(1)

stopSites Get the stop sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGC, get the position of the C.

Usage

stopSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments
grl a GRangesList object
asGR a boolean, return as GRanges object
keep.names if asGR is False, do you still want to keep a named vector

is.sorted a speedup, if you know the ranges are sorted

64 strandBool

Value

if asGR is False, a vector, if True a GRanges object

Examples
gr_plus <- GRanges(seqnames = c("chr1”, "chri1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(segnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopSites(grl, is.sorted = FALSE)

strandBool Get logical list of strands

Description

Helper function to get a logical list of True/False, if GRangesList group have + strand =T, if - strand
=F Also checks for * strands, so a good check for bugs

Usage

strandBool(grl)

Arguments

grl a GRangesList or GRanges object

Value

a logical vector

Examples

gr <- GRanges(Rle(c("chr2", "chr2", "chr1"”, "chr3"), c(1, 3, 2, 4)),
IRanges(1:10, width = 10:1),
Rle(strand(c(ll_n’ H+II, N*II’ IV+II, II_lI))’ C(‘I, 2, 2, 3, 2)))
strandBool(gr)

strandPerGroup

strandPerGroup Get list of strands per granges group

Description

Get list of strands per granges group

Usage

strandPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not
Value

a vector named/unnamed of characters

Examples

gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqgnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))
grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
strandPerGroup(grl)

subsetCoverage Subset GRanges to get coverage.

Description

GRanges object should be beforehand tiled to size of 1. This subsetting takes account for strand.

Usage

subsetCoverage(cov, y)

Arguments

cov A coverage object from coverage()

y GRanges object for which coverage should be extracted
Value

numeric vector of coverage of input GRanges object

66 tilel

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,

translationalEff
subset_to_frame Subset GRanges to get desired frame. GRanges object should be be-
forehand tiled to size of 1. This subsetting takes account for strand.
Description

Subset GRanges to get desired frame. GRanges object should be beforehand tiled to size of 1. This
subsetting takes account for strand.

Usage

subset_to_frame(x, frame)

Arguments

X A tiled to size of 1 GRanges object

frame A numeric indicating which frame to extract
Value

GRanges object reduced to only first frame

tilel Tile a GRangesList by 1

Description

Will tile a GRangesList into single bp resolution, each group of the list will be splited by positions of
1. Returned values are sorted. This is not supported originally by GenomicRanges. As a precaution,
this function requires the unlisted objects to have names.

Usage

tile1(grl, sort.on.return = TRUE, matchNaming = TRUE)

Arguments

grl a GRangesList object with names
sort.on.return logical (T), should the groups be sorted before return.

matchNaming logical (T), should groups keep unlisted names and meta data.(This make the
list very big, for > 100K groups)

translational Eff 67

Value

a GRangesList grouped by original group, tiled to 1

Examples

gr1 <- GRanges("1", ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),

strand = "+")

gr2 <- GRanges("1", ranges = IRanges(start = c(20, 30, 40),

end = c(25, 35, 45)),

strand = "+")

names(grl1) = rep("tx1_1", 3)

names(gr2) = rep("tx1_2", 3)

grl <- GRangesList(tx1_1 = gr1, tx1_2 = gr2)

tilel(grl)

translationalEff Translational efficiency

Description

Uses RnaSeq and RiboSeq to get translational efficiency of every element in ‘grl‘. Translational
efficiency is defined as:

(density of RPF within ORF) / (RNA expression of ORFs transcript)

Usage
translationalEff(grl, RNA, RFP, tx, with.fpkm = FALSE, pseudoCount = 0)

Arguments
grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc).
RNA RnaSeq reads as GAlignment, GRanges or GRangesList object
RFP RiboSeq reads as GAlignment, GRanges or GRangesList object
tx a GRangesList of the transcripts. If you used cage data, then the tss for the the
leaders have changed, therefor the tx lengths have changed. To account for that
call: * translationalEff(grl, RNA, RFP, tx = extendLeaders(tx, cageFiveUTRs))
* where cageFiveUTRs are the reannotated by CageSeq data leaders.
with.fpkm logical F, if true return the fpkm values together with translational efficiency
pseudoCount an integer, 0, set it to 1 if you want to avoid NA and inf values. It also helps
against bias from low depth libraries.
Value

a numeric vector of fpkm ratios, if with.fpkm is TRUE, return a data.table with te and fpkm values

68

References

txLen

doi: 10.1126/science.1168978

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,

subsetCoverage
Examples
ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+"
grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+"
RNA <- GRanges("1", IRanges(1, 50), "+"
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
te <- translationalEff(grl, RNA, RFP, tx, with.fpkm = TRUE, pseudoCount = 1)
te$fpkmRFP
te$te
txLen Get transcript lengths
Description

A helper function for easy length retrieval

Usage

txLen(Gtf = NULL, changedFiveUTRs = NULL)

Arguments
Gtf a TxDb object of a gtf file
changedFiveUTRs
a GRangesList object of leaders. Only add this if you used cage data or other
things to change the leaders, therefor we need it to update transcript lengths.
Value

a vector of transcript lengths

txNames 69

txNames Get transcript names from orf names

Description

names must either be a column called names, or the names of the grl object

Usage
txNames(grl, unique = FALSE)

Arguments
grl a GRangesList grouped by ORF or GRanges object
unique a boolean, if true unique the names, used if several orfs map to same transcript
and you only want the unique groups
Value

a character vector of transcript names, without _* naming

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chri"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1_1 = gr_plus, tx2_1 = gr_minus)
there are 2 orfs, both the first on each transcript
txNames(grl)

txNamesWithLeaders Get the transcripts that have minimum lengths of leaders and cds.

Description

Filter transcripts to those whohave 5° UTR, CDS, 3’ UTR of some lengths, pick the longest per
gene.

Usage

txNamesWithLeaders(txdb, minFiveUTR = 30L, minCDS = 150L,
minThreeUTR = 30L)

Arguments
txdb a TxDb object from gtf
minFiveUTR (integer) minimum bp for 5> UTR during filtering for the transcripts
minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3° UTR during filtering for the transcripts

70 uniqueGroups

Value

a character vector of valid tramscript names

Examples

gtf_file <- system.file("extdata”, "annotations.gtf”, package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_file, format = "gtf")
txNames <- txNamesWithLeaders(txdb)

txSeqsFromFa Get transcript sequence from a GrangesList and a faFile or BSgenome

Description

A small safety wrapper around GenomicFeatures::extractTranscriptSeqs

Usage

txSeqsFromFa(grl, faFile, is.sorted = FALSE)

Arguments
grl a GRangesList object
faFile FaFile or BSgenome used to find the transcripts,
is.sorted a speedup, if you know the ranges are sorted
Value

a DNAStringSet of the transcript sequences

uniqueGroups Get the unique set of groups in a GRangesList

Description

Sometimes GRangesList groups might be identical, for example ORFs from different isoforms can
have identical ranges. Use this function to reduce these groups to unique elements in GRangesList
grl, without names and metacolumns.

Usage

uniqueGroups(grl)

Arguments

grl a GRangesList

uniqueOrder

Value

a GRangesList of unique orfs

Examples

gr1l <- GRanges("1", IRanges(1,10), "+"

gr2 <- GRanges("1", IRanges(20, 30), "+")

make a grl with duplicated ORFs (gri1 twice)

grl <- GRangesList(tx1_1 = gr1, tx2_1 = gr2, tx3_1 = grl)
uniqueGroups(grl)

71

uniqueOrder Get unique ordering for GRangesList groups

Description

This function can be used to calculate unique numerical identifiers for each of the GRangesList
elements. Elements of GRangesList are unique when the GRanges inside are not duplicated, so

ranges differences matter as well as sorting of the ranges.

Usage

uniqueOrder(grl)
Arguments

grl a GRangesList
Value

an integer vector of indices of unique groups

See Also

uniqueGroups

Examples

gr1 <- GRanges("1", IRanges(1,10), "+"

gr2 <- GRanges("1", IRanges(20, 30), "+"

make a grl with duplicated ORFs (gri1 twice)

grl <- GRangesList(tx1_1 = grl1, tx2_1 = gr2, tx3_1 = grl)
uniqueOrder(grl) # remember ordering

example on unique ORFs

uniqueORFs <- uniqueGroups(grl)

now the orfs are unique, let's map back to original set:
reMappedGrl <- uniqueORFs[uniqueOrder(grl)]

72 upstreamOfPerGroup

unlistGrl Safe unlist

Description
Same as [AnnotationDbi::unlist2()], keeps names correctly. One difference is that if grl have no
names, it will not make integer names, but keep them as null.

Usage
unlistGrl(grl)

Arguments

grl a GRangesList

Value

a GRanges object

Examples

ORF <- GRanges(segnames = "1",
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),

strand = "+")
grl <- GRangesList(tx1_1 = ORF)
unlistGrl(grl)
upstreamOfPerGroup Get rest of objects upstream
Description

Per group get the part upstream of position defined in upstreamOf upstream(tx, ORFik:::stopSites(cds,
asGR = F)) will return the 5’ utrs per transcript, usually used for interesting parts of the transcripts,
like upstream open reading frames(uorf). downstreamOf +/- 1 is start/end site of transformed tx’s,
depending on strand

Usage

upstreamOfPerGroup(tx, upstreamOf)

Arguments
tx a GRangesList, usually of Transcripts to be changed
upstreamOf a vector of integers, for each group in tx, where is the new stop point of last

valid exon.

validExtension 73

Value

a GRangesList of upstream part

validExtension Helper function to check valid combinations of extension and cage-
FiveUTRs

Description

Helper function to check valid combinations of extension and cageFiveUTRs

Usage

validExtension(extension, cageFiveUTRs)

Arguments

extension a numeric/integer to reassign 5’ utrs.

cageFiveUTRs a GRangesList, if you used cage-data to extend 5’ utrs,

Value

NULL, stop if invalid object

validGRL Helper Function to check valid GRangesList input

Description

Helper Function to check valid GRangesList input

Usage

validGRL(class, type = "grl”, checkNULL = FALSE)

Arguments
class as character vector the given class of supposed GRangesList object
type a character vector, is it gtf, cds, 5°, 3°, for messages.
checkNULL should NULL classes be checked and return indeces of these?
Value

either NULL or indices (checkNULL == TRUE)

74

widthPerGroup

widthPerGroup Get list of widths per granges group

Description

Get list of widths per granges group

Usage
widthPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not
Value

an integer vector (named/unnamed) of widths

Examples
gr_plus <- GRanges(segnames = c("chr1”, "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))
gr_minus <- GRanges(seqnames = c("chr2"”, "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
widthPerGroup(grl)

Index

addFirstCdsOnLeaderEnds, 5
addNewTSSOnLeaders, 5
assignAnnotations, 6
assignFirstExons, 6
assignFirstExonsStartSite, 7
assignlLastExonsStopSite, 7
asTX, 8

bedToGR, 8

changePointAnalysis, 9

checkRFP, 9

checkRNA, 10

codonSumsPerGroup, 10

computeFeatures, 11, 13, 19, 20, 22, 32-34,
39-41, 43, 50, 52, 56, 57, 66, 68

computeFeaturesCage, 11, 12, 19, 20, 22,
32-34,39-41, 43, 50, 52, 56, 57, 66,
68

coverageByWindow, 14

coveragePerTiling, 15

defineIsoform, 16
defineTrailer, 16
detectRibosomeShifts, 17
disengagementScore, 11, 13, 18, 20, 22,
32-34,39-41, 43, 50, 52, 56, 57, 66,
68
distToCds, 11, 13, 19,19, 22, 32-34, 3941,
43, 50, 52, 56, 57, 66, 68
downstreamN, 20
downstreamOfPerGroup, 21

entropy, 11, 13, 19, 20, 21, 32-34, 3941, 43,
50, 52, 56, 57, 66, 68

extendLeaders, 22

extendsTSSexons, 23

filterCage, 23
findCageUTRFivelen, 24
findFa, 24
findMapORFs, 25, 27, 28, 61, 63
findMaxPeaks, 26
findNewTSS, 26
findORFs, 25,27, 28, 61, 63

75

findORFsFasta, 25, 27, 28, 61, 63

firstEndPerGroup, 29

firstExonPerGroup, 29

firstStartPerGroup, 30

fixSegnames, 31

floss, 11, 13,19, 20, 22, 31, 33, 34, 3941,
43, 50, 52, 56, 57, 66, 68

fpkm, 11, 13,19, 20,22, 32,32, 34, 39-41, 43,
50, 52, 56, 57, 66, 68

fpkm_calc, 11, 13, 19, 20, 22, 32, 33, 33, 34,
39-41,43, 50, 52, 56, 57, 66, 68

fractionLength, 11, 13, 19, 20, 22, 32-34,
34,39-41,43, 50, 52, 56, 57, 66, 68

fread.bed, 35

getStartStopWindows, 35

GRanges, 71

GRangeslList, 7, 8,11, 12,15, 19-22, 25,
29-32, 34, 37, 38,42-47,49-51, 53,
56-67,69-72, 74

groupGRangesBYy, 36

gSort, 37

hasHits, 38

insideOutsideORF, /1, 13, 19, 20, 22, 32—-34,
38,40, 41,43, 50, 52, 56, 57, 66, 68

IRanges, 27

IRangesList, 27

is.gr_or_grl, 40

is.grl, 39

isInFrame, 11, 13,19, 20, 22, 32-34, 39, 40,
41,43, 50, 52, 56, 57, 66, 68

isOverlapping, 11, 13, 19, 20, 22, 32-34, 39,
40, 41, 43, 50, 52, 56, 57, 66, 68

isPeriodic, 42

kozakSequenceScore, 11, 13, 19, 20, 22,
32-34,39-41, 42, 50, 52, 56, 57, 66,
68

lastExonEndPerGroup, 43
lastExonPerGroup, 44
lastExonStartPerGroup, 44

76

makeExonRanks, 45
makeORFNames, 46
mapToGRanges, 46
matchNaming, 47
matchSeqlevels, 47
metaWindow, 48

numExonsPerGroup, 48

orfID, 49

ORFik (ORFik-package), 4

ORFik-package, 4

orfScore, 11, 13, 19, 20, 22, 32-34, 3941,
43,50, 52, 56, 57, 66, 68

parseCigar, 51

rankOrder, 11, 13,19, 20, 22, 32-34, 39-41,
43, 50, 51, 56, 57, 66, 68

reassignTSSbyCage, 52

reduceKeepAttr, 53

regroupRlelList, 54

removeMetaCols, 55

riboSeqReadWidths, 55

ribosomeReleaseScore, /1, 13, 19, 20, 22,
32-34,39-41, 43, 50, 52, 56, 57, 66,
68

ribosomeStallingScore, 11, 13, 19, 20, 22,
32-34,39-41, 43, 50, 52, 56, 57, 66,
68

segnamesPerGroup, 58

shiftFootprints, 58

sort.GenomicRanges, 59

sortPerGroup, 22, 59

startCodons, 60

startDefinition, 25, 27, 28, 61, 63

startSites, 61

stopCodons, 62

stopDefinition, 25, 27, 28, 61, 63

stopSites, 63

strandBool, 64

strandPerGroup, 65

subset_to_frame, 66

subsetCoverage, 11, 13, 19, 20, 22, 32-34,
3941, 43, 50, 52, 56, 57, 65, 68

tilel, 66

translationalEff, 11, 13, 19, 20, 22, 32-34,
39-41, 43, 50, 52, 56, 57, 66, 67

TxDb, 19

txLen, 68

txNames, 69

txNamesWithLeaders, 69

INDEX

txSeqgsFromFa, 70

uniqueGroups, 70
uniqueOrder, 71
unlistGrl, 72
upstreamOfPerGroup, 72

validExtension, 73
validGRL, 73

widthPerGroup, 74

	ORFik-package
	addFirstCdsOnLeaderEnds
	addNewTSSOnLeaders
	assignAnnotations
	assignFirstExons
	assignFirstExonsStartSite
	assignLastExonsStopSite
	asTX
	bedToGR
	changePointAnalysis
	checkRFP
	checkRNA
	codonSumsPerGroup
	computeFeatures
	computeFeaturesCage
	coverageByWindow
	coveragePerTiling
	defineIsoform
	defineTrailer
	detectRibosomeShifts
	disengagementScore
	distToCds
	downstreamN
	downstreamOfPerGroup
	entropy
	extendLeaders
	extendsTSSexons
	filterCage
	findCageUTRFivelen
	findFa
	findMapORFs
	findMaxPeaks
	findNewTSS
	findORFs
	findORFsFasta
	firstEndPerGroup
	firstExonPerGroup
	firstStartPerGroup
	fixSeqnames
	floss
	fpkm
	fpkm_calc
	fractionLength
	fread.bed
	getStartStopWindows
	groupGRangesBy
	gSort
	hasHits
	insideOutsideORF
	is.grl
	is.gr_or_grl
	isInFrame
	isOverlapping
	isPeriodic
	kozakSequenceScore
	lastExonEndPerGroup
	lastExonPerGroup
	lastExonStartPerGroup
	makeExonRanks
	makeORFNames
	mapToGRanges
	matchNaming
	matchSeqlevels
	metaWindow
	numExonsPerGroup
	orfID
	orfScore
	parseCigar
	rankOrder
	reassignTSSbyCage
	reduceKeepAttr
	regroupRleList
	removeMetaCols
	riboSeqReadWidths
	ribosomeReleaseScore
	ribosomeStallingScore
	seqnamesPerGroup
	shiftFootprints
	sortPerGroup
	startCodons
	startDefinition
	startSites
	stopCodons
	stopDefinition
	stopSites
	strandBool
	strandPerGroup
	subsetCoverage
	subset_to_frame
	tile1
	translationalEff
	txLen
	txNames
	txNamesWithLeaders
	txSeqsFromFa
	uniqueGroups
	uniqueOrder
	unlistGrl
	upstreamOfPerGroup
	validExtension
	validGRL
	widthPerGroup
	Index

