
1jmacdon@u.washington.edu

Creating annotated output with affycoretools
and ReportingTools

James W. MacDonald1

January 16, 2018

Contents

1 Overview . 2

2 Introduction . 2

3 Using affycoretools . 2

4 Session information . 7

http://bioconductor.org/packages/affycoretools

Creating annotated output with affycoretools and ReportingTools

1 Overview

The affycoretools package is intended to help people easily create useful
output from various analyses. While affycoretools was originally intended for those
using Affymetrix microarrays, this is no longer the case. While some functions remain
Affy-centric, most are now much more general, and can be used for any microarray
or RNA-Seq experiment.

2 Introduction

This package has evolved from my work as a service core biostatistician. I
routinely analyze very similar experiments, and wanted to create a way to minimize
all the cutting and pasting of code that I found myself doing. In addition, I wanted
to come up with a good way to make an analysis reproducible, in the sense that I (or
somebody else) could easily re-create the results.

In the past this package relied on the annaffy package, and was intended
to be used in concert with a ’Sweave’ document that contained both the code that
was used to analyze the data, as well as explanatory text that would end up in a pdf
(or HTML page) that could be given to a client. In the intervening period, people
have developed other, better packages such as knitr and ReportingTools that make
it much easier to create the sort of output I like to present to my clients.

3 Using affycoretools

For this section we will be using the sample.ExpressionSet data set that
comes with the Biobase package. Remember that you can always run this code at
home by doing this:

library(knitr)

purl(system.file("doc/RefactoredAffycoretools.Rnw", package="affycoretools"))

And then you will have a file called RefactoredAffycoretools.R in your working
directory that you can either source or open with RStudio or Emacs/ESS, and run
by chunk or line by line.

We first load and rename the data:

suppressMessages(library(affycoretools))

data(sample.ExpressionSet)

eset <- sample.ExpressionSet

eset

2

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/annaffy
https://CRAN.R-project.org/package=knitr
http://bioconductor.org/packages/ReportingTools
http://bioconductor.org/packages/Biobase

Creating annotated output with affycoretools and ReportingTools

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

This ExpressionSet object is a truncated data set, based on an Affymetrix HG-
U95av2 array. There are 26 samples and 500 probesets. We will use the phenoData
to fit a linear model using limma. Comment: We will not cover any aspects of fitting
a linear model here; the limma User’s Guide covers this topic in depth. In addition,
this analysis isn’t meant to be correct in any sense; we are just doing this to get some
data to annotate and output.

suppressMessages(library(limma))

pd <- pData(phenoData(eset))

design <- model.matrix(~0+type+sex, pd)

colnames(design) <- gsub("type|sex", "", colnames(design))

contrast <- matrix(c(1,-1,0))

colnames(contrast) <- "Case vs control"

fit <- lmFit(eset, design)

fit2 <- contrasts.fit(fit, contrast)

fit2 <- eBayes(fit)

topTable(fit2, 1)[,1:4]

logFC AveExpr t P.Value

31667_r_at 763.1646 735.1835 24.84768 1.429233e-18

AFFX-HSAC07_X00351_M_st 193.4776 197.6336 23.57778 4.770893e-18

31375_at 368.1255 395.6733 22.26916 1.761763e-17

31466_at 198.3558 195.4360 20.62148 1.011904e-16

31597_r_at 1590.9543 1634.2481 20.58837 1.049424e-16

31440_at 597.5251 659.0559 20.51108 1.142742e-16

31396_r_at 2344.2449 2504.3938 20.29175 1.457511e-16

AFFX-hum_alu_at 8005.2783 8681.4000 19.45532 3.768484e-16

31391_at 380.7353 401.1064 19.35000 4.258204e-16

AFFX-HSAC07_X00351_3_at 4771.0705 4869.6635 19.34299 4.293033e-16

At this point we can generate a data.frame, but this data.frame has no
annotation, such as gene names or symbols, etc, that say what each probeset is
measuring. The MArrayLM object that we are calling ’fit2’, is capable of containing
these data, and will append those data to the topTable output.

3

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/limma

Creating annotated output with affycoretools and ReportingTools

suppressMessages(library(hgu95av2.db))

gns <- select(hgu95av2.db, featureNames(eset), c("ENTREZID","SYMBOL","GENENAME"))

’select()’ returned 1:many mapping between keys and columns

There are one-to many mappings here, so we just

removed duplicates in a very naive way.

gns <- gns[!duplicated(gns[,1]),]

fit2$genes <- gns

topTable(fit2, 1)[,1:3]

PROBEID ENTREZID SYMBOL

31667_r_at 31667_r_at 10002 NR2E3

AFFX-HSAC07_X00351_M_st AFFX-HSAC07_X00351_M_st <NA> <NA>

31375_at 31375_at <NA> <NA>

31466_at 31466_at 3128 HLA-DRB6

31597_r_at 31597_r_at 1978 EIF4EBP1

31440_at 31440_at 6932 TCF7

31396_r_at 31396_r_at 4440 MSI1

AFFX-hum_alu_at AFFX-hum_alu_at <NA> <NA>

31391_at 31391_at 9001 HAP1

AFFX-HSAC07_X00351_3_at AFFX-HSAC07_X00351_3_at <NA> <NA>

After adding the annotation data to the MArrayLM object, the topTable output
now contains the appropriate annotation data for each probeset. At this point we
can output an HTML table that contains these data.

suppressMessages(library(ReportingTools))

htab <- HTMLReport("afile", "My cool results")

publish(topTable(fit2, 1), htab)

finish(htab)

[1] "./afile.html"

And now we have a HTML table called ’afile.html’ in our working directory,
that contains the data for our top 10 genes. This table is not particularly interesting,
and the ReportingTools package already has functionality to just do something like

htab <- HTMLReport("afile2", "My cool results, ReportingTools style")

publish(fit2, htab, eset, factor = pd$type, coef = 1, n = 10)

finish(htab)

[1] "./afile2.html"

4

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/ReportingTools

Creating annotated output with affycoretools and ReportingTools

and it will automatically generate an annotated table, with some extra plots
that show the different groups, and we didn’t even have to use topTable directly.
However, the default plots in the HTML table are a combination of dotplot and box-
plot, which I find weird (see afile2.html if you are running this code yourself). Since
ReportingTools is easily extensible, we can make changes that are more pleasing.

d.f <- topTable(fit2, 2)

out <- makeImages(df = d.f, eset = eset, grp.factor = pd$type, design = design,

contrast = contrast, colind = 1, repdir = ".")

htab <- HTMLReport("afile3", "My cool results, affycoretools style")

publish(out$df, htab, .mofifyDF = list(entrezLinks, affyLinks))

finish(htab)

[1] "./afile3.html"

Note that there are two differences in the way we did things. First, we create
a data.frame, and then decorate it with the plots using the makeImages function.
This will by default create dotplots (or you can specify boxplots). For the plots to
fit in an HTML table, there are no axis labels. However, each plot is also a link, and
if you click on it, a larger plot with axis labels will be presented. See ’afile3.html’, if
you are running this code yourself.

All the little files that get created can get pretty messy, so the default is to
put everything into a ’reports’ subdirectory, so your working directory stays clean.
For this example we over-ride the defaults so we do not have to go searching in
subdirectories for our tables.

An alternative parameterization that probably makes more sense is to fit
coefficients for each sex/treatment combination.

grps <- factor(apply(pd[,1:2], 1, paste, collapse = "_"))

design <- model.matrix(~0+grps)

colnames(design) <- gsub("grps", "", colnames(design))

contrast <- matrix(c(1,-1,0,0,

0,0,1,-1,

1,-1,-1,1),

ncol = 3)

colnames(contrast) <- c("Female_Case vs Female_Control",

"Male_Case vs Male_Control",

"Interaction")

fit <- lmFit(eset, design)

fit2 <- contrasts.fit(fit, contrast)

fit2 <- eBayes(fit2)

fit2$genes <- gns

With this parameterization we can look at intra-sex differences, as well as the
interaction (looking for sex-specific changes). This now means that we have a total
of three HTML tables to output, which makes things a bit more complex to present.

5

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/ReportingTools

Creating annotated output with affycoretools and ReportingTools

Luckily, this is pretty simple to accomplish. For this step we will now use the default
’reports’ subdirectory to keep everything straight. In addition, we will trim down the
output a bit.

get a list containing the output for each comparison

out <- lapply(1:3, function(x) topTable(fit2, x))

process the output to add images

htab <- lapply(1:3, function(x){

tmp <- HTMLReport(gsub("_", " ", colnames(contrast)[x]), colnames(contrast)[x], "./reports")

tmp2 <- makeImages(out[[x]], eset, grps, design, contrast, x)

publish(tmp2$df, tmp, .modifyDF = list(affyLinks, entrezLinks))

finish(tmp)

return(tmp)

})

Now make an index.html file to contain links to the various comps

idx <- HTMLReport("index", "Links to our stuff")

publish(hwriter::hwrite("Univariate comparisons", br = TRUE, header = 2), idx)

publish(Link(htab), idx)

finish(idx)

[1] "./index.html"

Now there will be an index.html file in the current directory that has individual
links to each of the three comparisons we made. This is nice, as you only have to
point a client or PI to a single link that they can use to explore all the results.

We are often asked to create a Venn diagram showing overlap between groups.
This is pretty simple to do, but it would be nicer to have an HTML version with
clickable links, so your PI or end user can see what genes are in each cell of the Venn
diagram. As an example, we can generate a Venn diagram comparing overlapping
genes between the male and female comparisons.

collist <- list(1:2)

venn <- makeVenn(fit2, contrast, design, collist = collist, adj.meth = "none")

vennlnk <- vennPage(venn, "venn_diagram", "Venn diagram")

The makeVenn function also returns a vennCounts object that we can use in
our knitr document to generate a Venn diagram there as well (1).

vennDiagram(venn[[1]]$venncounts, cex = 0.9)

And we can add a link to our index page quite easily.

idx <- HTMLReport("index","Links to our stuff")

publish(hwriter::hwrite("Univariate comparisons", br = TRUE, header = 2), idx)

publish(Link(htab), idx)

publish(hwriter::hwrite("Venn diagrams", br = TRUE, header = 2), idx)

6

http://bioconductor.org/packages/affycoretools
https://CRAN.R-project.org/package=knitr

Creating annotated output with affycoretools and ReportingTools

Female_Case vs Female_ControlMale_Case vs Male_Control

452

3610 2

Figure 1: Venn diagram

publish(Link("Venn1", vennlnk), idx)

finish(idx)

[1] "./index.html"

There is similar functionality for presenting the results of a GO hypergeometric
analysis (makeGoTable), and GSEA analysis, based on the romer function in limma
(runRomer and outputRomer).

4 Session information

The version of R and packages loaded when creating this vignette were:

toLatex(sessionInfo())

• R version 3.4.3 (2017-11-30), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so

• LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,
stats4, utils

7

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/limma

Creating annotated output with affycoretools and ReportingTools

• Other packages: AnnotationDbi 1.40.0, Biobase 2.38.0, BiocGenerics 0.24.0,
IRanges 2.12.0, ReportingTools 2.17.3, S4Vectors 0.16.0, affycoretools 1.50.6,
hgu95av2.db 3.2.3, knitr 1.18, limma 3.34.5, org.Hs.eg.db 3.5.0

• Loaded via a namespace (and not attached): AnnotationFilter 1.2.0,
AnnotationForge 1.20.0, AnnotationHub 2.10.1, BSgenome 1.46.0,
BiocInstaller 1.28.0, BiocParallel 1.12.0, BiocStyle 2.6.1, Biostrings 2.46.0,
Category 2.44.0, DBI 0.7, DESeq2 1.18.1, DelayedArray 0.4.1, Formula 1.2-2,
GGally 1.3.2, GO.db 3.5.0, GOstats 2.44.0, GSEABase 1.40.1,
GenomeInfoDb 1.14.0, GenomeInfoDbData 1.0.0, GenomicAlignments 1.14.1,
GenomicFeatures 1.30.0, GenomicRanges 1.30.1, Hmisc 4.1-1,
KernSmooth 2.23-15, Matrix 1.2-12, OrganismDbi 1.20.0, PFAM.db 3.5.0,
ProtGenerics 1.10.0, R.methodsS3 1.7.1, R.oo 1.21.0, R.utils 2.6.0, R6 2.2.2,
RBGL 1.54.0, RColorBrewer 1.1-2, RCurl 1.95-4.10, RMySQL 0.10.13,
RSQLite 2.0, Rcpp 0.12.14, Rgraphviz 2.22.0, Rsamtools 1.30.0,
SummarizedExperiment 1.8.1, VariantAnnotation 1.24.5, XML 3.98-1.9,
XVector 0.18.0, acepack 1.4.1, affy 1.56.0, affyio 1.48.0, annotate 1.56.1,
assertthat 0.2.0, backports 1.1.2, base64enc 0.1-3, biomaRt 2.34.1,
biovizBase 1.26.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0,
caTools 1.17.1, checkmate 1.8.5, cluster 2.0.6, codetools 0.2-15,
colorspace 1.3-2, compiler 3.4.3, curl 3.1, data.table 1.10.4-3,
dichromat 2.0-0, digest 0.6.14, edgeR 3.20.6, ensembldb 2.2.0,
evaluate 0.10.1, ff 2.2-13, foreach 1.4.4, foreign 0.8-69, gcrma 2.50.0,
gdata 2.18.0, genefilter 1.60.0, geneplotter 1.56.0, ggbio 1.26.0, ggplot2 2.2.1,
gplots 3.0.1, graph 1.56.0, grid 3.4.3, gridExtra 2.3, gtable 0.2.0, gtools 3.5.0,
highr 0.6, htmlTable 1.11.1, htmltools 0.3.6, htmlwidgets 0.9, httpuv 1.3.5,
httr 1.3.1, hwriter 1.3.2, interactiveDisplayBase 1.16.0, iterators 1.0.9,
lattice 0.20-35, latticeExtra 0.6-28, lazyeval 0.2.1, locfit 1.5-9.1, magrittr 1.5,
matrixStats 0.52.2, memoise 1.1.0, mime 0.5, munsell 0.4.3, nnet 7.3-12,
oligoClasses 1.40.0, pillar 1.1.0, pkgconfig 2.0.1, plyr 1.8.4,
preprocessCore 1.40.0, prettyunits 1.0.2, progress 1.1.2, reshape 0.8.7,
reshape2 1.4.3, rlang 0.1.6, rmarkdown 1.8, rpart 4.1-12, rprojroot 1.3-2,
rstudioapi 0.7, rtracklayer 1.38.2, scales 0.5.0, shiny 1.0.5, splines 3.4.3,
stringi 1.1.6, stringr 1.2.0, survival 2.41-3, tibble 1.4.1, tools 3.4.3,
xtable 1.8-2, yaml 2.1.16, zlibbioc 1.24.0

8

http://bioconductor.org/packages/affycoretools

	1 Overview
	2 Introduction
	3 Using affycoretools
	4 Session information

