
Package ‘scran’
April 12, 2018

Version 1.6.9

Date 2018-03-06

Title Methods for Single-Cell RNA-Seq Data Analysis

Maintainer Aaron Lun <alun@wehi.edu.au>

Depends R (>= 3.4), BiocParallel, SingleCellExperiment

Imports SummarizedExperiment, S4Vectors, BiocGenerics, Rcpp (>=
0.12.14), stats, methods, utils, graphics, grDevices, Matrix,
scater, edgeR, limma, dynamicTreeCut, FNN, igraph, shiny, zoo,
statmod, ggplot2, DT, viridis

Suggests testthat, BiocStyle, knitr, beachmat, HDF5Array, limSolve,
org.Mm.eg.db, DESeq2, monocle, Rtsne, pracma, Biobase, irlba,
aroma.light

biocViews Normalization, Sequencing, RNASeq, Software, GeneExpression,
Transcriptomics, SingleCell, Visualization, BatchEffect

Description Implements a variety of low-level analyses of single-cell
RNA-seq data. Methods are provided for normalization of
cell-specific biases, assignment of cell cycle phase, and
detection of highly variable and significantly correlated genes.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

LinkingTo beachmat, Rcpp, Rhdf5lib

Author Aaron Lun [aut, cre], Karsten Bach [aut], Jong Kyoung Kim [ctb],
Antonio Scialdone [ctb], Laleh Haghverdi [ctb]

R topics documented:
buildSNNGraph . 2
combineVar . 4
convertTo . 5
correlatePairs . 7
cyclone . 11
decomposeVar . 13
Deconvolution Methods . 15

1

2 buildSNNGraph

Denoise with PCA . 19
Distance-to-median . 21
Explore Data . 22
findMarkers . 24
improvedCV2 . 26
mnnCorrect . 29
overlapExprs . 32
Quick clustering . 34
sandbag . 36
Selector plot . 38
Spike-in normalization . 39
technicalCV2 . 41
testVar . 43
trendVar . 45

Index 49

buildSNNGraph Build a SNN graph

Description

Build a shared-nearest-neighbors graph for cells based on their expression profiles.

Usage

S4 method for signature 'ANY'
buildSNNGraph(x, k=10, d=50, transposed=FALSE, pc.approx=FALSE,

rand.seed=1000, subset.row=NULL, BPPARAM=SerialParam())

S4 method for signature 'SingleCellExperiment'
buildSNNGraph(x, ..., subset.row=NULL, assay.type="logcounts",

get.spikes=FALSE, use.dimred=NULL)

Arguments

x A SingleCellExperiment object, or a matrix containing expression values for
each gene (row) in each cell (column). If it is matrix, it can also be transposed.

k An integer scalar specifying the number of nearest neighbors to consider during
graph construction.

d An integer scalar specifying the number of dimensions to use for the k-NN
search.

transposed A logical scalar indicating whether x is transposed (i.e., rows are cells).

pc.approx A logical scalar indicating whether approximate PCA should be performed.

subset.row A logical, integer or character scalar indicating the rows of x to use.

rand.seed A numeric scalar specifying the seed for approximate PCA when pc.approx=TRUE.
This can be set to NA to use the existing session seed.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

... Additional arguments to pass to buildSNNGraph,ANY-method.

buildSNNGraph 3

assay.type A string specifying which assay values to use.

get.spikes A logical scalar specifying whether spike-in transcripts should be used.

use.dimred A string specifying whether existing values in reducedDims(x) should be used.

Details

This function builds a SNN graph using cells as nodes. Each cell is connected to its k nearest neigh-
bors, based on Euclidean distances in their expression profiles. The weight of the edge between
two cells is determined by the ranking of their shared nearest neighbors. More shared neighbors, or
shared neighbors that are close to both cells, will yield larger weights.

The aim is to use the SNN graph to perform community-based clustering, using various methods
in the igraph package. This is faster/more memory efficient than hierarchical clustering for large
numbers of cells. In particular, it avoids the need to construct a distance matrix for all pairs of cells.
The choice of k can be roughly interpreted as the minimum cluster size.

In practice, PCA is performed on x to obtain the first d principal components. This is necessary
in order to perform the k-NN search (done using the get.knn function) in reasonable time. By
default, the first 50 components are chosen, which should retain most of the substructure in the
data set. If d is NA or less than the number of cells, no dimensionality reduction is performed. If
pc.approx=TRUE, prcomp_irlba will be used to quickly obtain the first d PCs.

Expression values in x should typically be on the log-scale, e.g., log-transformed counts. Ranks
can also be used for greater robustness, e.g., from quickCluster with get.ranks=TRUE. (Dimen-
sionality reduction is still okay when ranks are provided - running PCA on ranks is equivalent to
running MDS on the distance matrix derived from Spearman’s rho.) If the input matrix is already
transposed, transposed=TRUE avoids an unnecessary internal transposition.

By default, spike-in transcripts are removed from the expression matrix in buildSNNGraph,SCESet-method.
However, any non-NULL setting of subset.row will override get.spikes. If use.dimred is not
NULL, existing PCs are used from the specified entry of reducedDims(x), and any setting of d,
subset.row and get.spikes are ignored.

Note that the setting of k here is slightly different from that used in SNN-Cliq. The original imple-
mentation considers each cell to be its first nearest neighbor that contributes to k. In buildSNNGraph,
the k nearest neighbours refers to the number of other cells.

Value

An igraph-type graph, where nodes are cells and weighted edges represent connections between
nearest neighbors.

Author(s)

Aaron Lun

References

Xu C and Su Z (2015). Identification of cell types from single-cell transcriptomes using a novel
clustering method. Bioinformatics 31:1974-80

See Also

get.knn, make_graph

4 combineVar

Examples

exprs <- matrix(rnorm(100000), ncol=100)
g <- buildSNNGraph(exprs)

library(igraph) # lots of algorithms can be used
clusters <- cluster_fast_greedy(g)$membership

combineVar Combine variance decompositions

Description

Combine the results of multiple variance decompositions, usually generated for the same genes
across separate batches of cells.

Usage

combineVar(..., method=c("fisher", "simes", "berger"))

Arguments

... Two or more data frames, each produced by decomposeVar.

method A string specifying how p-values are to be combined.

Details

This function is designed to merge results from multiple calls to decomposeVar, usually computed
for different batches of cells. Separate variance decompositions are necessary in cases where differ-
ent concentrations of spike-in have been added to the cells in each batch. This affects the technical
mean-variance relationship and precludes the use of a common trend fit.

The default setting is to use method="fisher", where Fisher’s method is used to combine p-values
across batches. This aims to detect genes that are highly variable in any batch and assumes that
the test outcome is independent between batches. If independence does not hold, Simes’ method
should be used by setting method="simes", as it is more robust to correlations between tests. To
identify genes that are detected as highly variable in all batches, Berger’s IUT can be used by setting
method="simes".

Value

A data frame with the same numeric fields as that produced by decomposeVar. Each field contains
the average across all batches except for p.value, which contains the combined p-value based on
method; and FDR, which contains the adjusted p-value using the BH method.

Author(s)

Aaron Lun

convertTo 5

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

See Also

decomposeVar

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.
y <- computeSumFactors(y) # Size factors for the the endogenous genes.
y <- computeSpikeFactors(y, general.use=FALSE) # Size factors for spike-ins.

y1 <- y[,1:100]
y1 <- normalize(y1) # normalize separately after subsetting.
fit1 <- trendVar(y1)
results1 <- decomposeVar(y1, fit1)

y2 <- y[,1:100 + 100]
y2 <- normalize(y2) # normalize separately after subsetting.
fit2 <- trendVar(y2)
results2 <- decomposeVar(y2, fit2)

head(combineVar(results1, results2))
head(combineVar(results1, results2, method="simes"))
head(combineVar(results1, results2, method="berger"))

convertTo Convert to other classes

Description

Convert a SingleCellExperiment object into other classes for entry into other analysis pipelines.

Usage

S4 method for signature 'SingleCellExperiment'
convertTo(x, type=c("edgeR", "DESeq2", "monocle"),

row.fields=NULL, col.fields=NULL, ..., assay.type,
use.all.sf=TRUE, normalize=TRUE, subset.row=NULL, get.spikes=FALSE)

Arguments

x A SingleCellExperiment object.

type A string specifying the analysis for which the object should be prepared.

row.fields Any set of indices specifying which columns of rowData(x) should be retained
in the returned object.

6 convertTo

col.fields Any set of indices specifying which columns of colData(x) should be retained.

... Other arguments to be passed to pipeline-specific constructors.

assay.type A string specifying which assay of x should be put in the returned object.

use.all.sf A logical scalar indicating whether multiple size factors should be used to gen-
erate the returned object.

normalize A logical scalar specifying whether the assay values should be normalized for
type="monocle".

subset.row A logical, integer or character scalar indicating the rows of x to return.

get.spikes A logical scalar specifying whether rows corresponding to spike-in transcripts
should be returned.

Details

This function converts an SingleCellExperiment object into various other classes in preparation for
entry into other analysis pipelines, as specified by type. Gene- and cell-specific data fields can be
retained in the output object by setting row.fields and col.fields, respectively. Other arguments
can be passed to the relevant constructors through the ellipsis.

By default, for edgeR and DESeq2, assay.type is set to "counts" such that count data is stored
in the output object. This is consistent with the required inputs to these analyses. Information
about normalization is instead transmitted via size or normalization factors in the output object.
For monocle, assay.type is ignored and counts are divided by the size factors to yield (roughly)
log-normally distributed expression values. Values in assay.type can be used directly by setting
normalize=FALSE.

In all cases, rows corresponding to spike-in transcripts are removed from the output object by de-
fault. As such, rows in the returned object may not correspond directly to rows in x. Users should
consider this when retrieving analysis results from these pipelines, e.g., match on row names in x
before comparing to other results. This behaviour can be turned off by setting get.spikes=TRUE,
such that all rows are retrieved in the output object. Users can also set subset.row to extract
specific rows, in which case get.spikes is ignored.

By default, different size factors for different rows (e.g., for spike-in sets) will be respected. For
edgeR, an offset matrix will be constructed containing mean-centred log-size factors for each row.
For DESeq2, a similar matrix will be constructed containing size factors scaled to have a geometric
mean of unity. For monocle, counts for each row will be divided by the size factors for that row.
This behaviour can be turned off with use.all.sf=FALSE, such that only sizeFactors(x) is used
for normalization for all type. (For edgeR and DESeq2, the offset matrix is not generated if all
rows correspond to sizeFactors(x), as this information is already stored in the object.)

Value

For type="edgeR", a DGEList object is returned containing the count matrix. Size factors are
converted to normalization factors. Gene-specific rowData is stored in the genes element, and
cell-specific colData is stored in the samples element.

For type="DESeq2", a DESeqDataSet object is returned containing the count matrix and size fac-
tors. Additional gene- and cell-specific data is stored in the mcols and colData respectively.

For type="monocle", a CellDataSet object is returned containing the unlogged expression values.
Additional gene- and cell-specific data is stored in the rowData and colData respectively.

Author(s)

Aaron Lun

correlatePairs 7

See Also

DGEList, DESeqDataSetFromMatrix, newCellDataSet

Examples

example(computeSpikeFactors) # Using the mocked up data 'y' from this example.
sizeFactors(y) <- 2^rnorm(ncells) # Adding some additional embellishments.
rowData(y)$SYMBOL <- paste0("X", seq_len(nrow(y)))
y$other <- sample(LETTERS, ncells, replace=TRUE)

Converting to various objects.
convertTo(y, type="edgeR")
convertTo(y, type="DESeq2")
#convertTo(y, type="monocle")

correlatePairs Test for significant correlations

Description

Identify pairs of genes that are significantly correlated based on a modified Spearman’s rho.

Usage

correlateNull(ncells, iters=1e6, design=NULL, residuals=FALSE)

S4 method for signature 'ANY'
correlatePairs(x, null.dist=NULL, tol=1e-8, iters=1e6,

design=NULL, residuals=FALSE, lower.bound=NULL,
use.names=TRUE, subset.row=NULL, pairings=NULL, per.gene=FALSE,
block.size=100L, BPPARAM=SerialParam())

S4 method for signature 'SingleCellExperiment'
correlatePairs(x, ..., use.names=TRUE, subset.row=NULL, per.gene=FALSE,

lower.bound=NULL, assay.type="logcounts", get.spikes=FALSE)

Arguments

ncells An integer scalar indicating the number of cells in the data set.

iters An integer scalar specifying the number of values in the null distribution.

design A numeric design matrix containing uninteresting factors to be ignored.

residuals A logical scalar indicating whether correlations should be calculated from resid-
uals when design!=NULL.

x A numeric matrix-like object of log-normalized expression values, where rows
are genes and columns are cells. Alternatively, a SingleCellExperiment object
containing such a matrix.

null.dist A numeric vector of rho values under the null hypothesis.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

tol A numeric scalar indicating the maximum difference under which two expres-
sion values are tied.

8 correlatePairs

use.names A logical scalar specifying whether the row names of exprs should be used in
the output. Alternatively, a character vector containing the names to use.

subset.row A logical, integer or character vector indicating the rows of x to use to compute
correlations.

pairings A NULL value indicating that all pairwise correlations should be computed; or a
list of 2 vectors of genes between which correlations are to be computed; or a
integer/character matrix with 2 columns of specific gene pairs - see below for
details.

per.gene A logical scalar specifying whether statistics should be summarized per gene.

lower.bound A numeric scalar specifying the theoretical lower bound of values in x, only
used when residuals=TRUE.

block.size An integer scalar specifying the number of cells for which ranked expression
values are stored in memory. Smaller values can be used in machines with less
memory, at the cost of processing speed.

... Additional arguments to pass to correlatePairs,ANY-method.

assay.type A string specifying which assay values to use.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

The aim of the correlatePairs function is to identify significant correlations between all pairs
of genes in x. This allows prioritization of genes that are driving systematic substructure in the
data set. By definition, such genes should be correlated as they are behaving in the same manner
across cells. In contrast, genes driven by random noise should not exhibit any correlations with
other genes.

An approximation of Spearman’s rho is used to quantify correlations robustly based on ranks. To
identify correlated gene pairs, the significance of non-zero correlations is assessed using a permu-
tation test. The null hypothesis is that the (ranking of) normalized expression across cells should be
independent between genes. This allows us to construct a null distribution by randomizing (ranked)
expression within each gene.

The correlateNull function constructs an empirical null distribution for rho computed with ncells
cells. When design=NULL, this is done by shuffling the ranks, calculating the rho and repeating un-
til iters values are obtained. The p-value for each gene pair is defined as the tail probability of this
distribution at the observed correlation (with some adjustment to avoid zero p-values). Correction
for multiple testing is done using the BH method.

For correlatePairs, a pre-computed empirical distribution can be supplied as null.dist if avail-
able. Otherwise, it will be automatically constructed via correlateNull with ncells set to the
number of columns in exprs. For correlatePairs,SingleCellExperiment-method, correla-
tions should be computed for normalized expression values in the specified assay.type.

The lower bound of the p-values is determined by the value of iters. If the limited field is
TRUE in the returned dataframe, it may be possible to obtain lower p-values by increasing iters.
This should be examined for non-significant pairs, in case some correlations are overlooked due to
computational limitations. The function will automatically raise a warning if any genes are limited
in their significance at a FDR of 5%.

If per.gene=TRUE, results are summarized on a per-gene basis. For each gene, all of its pairs are
identified, and the corresponding p-values are combined using Simes’ method. This tests whether
the gene is involved in significant correlations to any other gene. Setting per.gene=TRUE is useful
for identifying correlated genes without regard to what they are correlated with (e.g., during feature
selection).

correlatePairs 9

Value

For correlateNull, a numeric vector of length iters is returned containing the sorted correlations
under the null hypothesis of no correlations. Arguments to design and residuals are stored in the
attributes.

For correlatePairs with per.gene=FALSE, a dataframe is returned with one row per gene pair
and the following fields:

gene1, gene2: Character or integer fields specifying the genes in the pair. If use.names=FALSE,
integers are returned representing row indices of x, otherwise gene names are returned.

rho: A numeric field containing the approximate Spearman’s rho.

p.value, FDR: Numeric fields containing the permutation p-value and its BH-corrected equiva-
lent.

limited: A logical scalar indicating whether the p-value is at its lower bound, defined by iters.

Rows are sorted by increasing p.value and, if tied, decreasing absolute size of rho. The exception
is if subset.row is a matrix, in which case each row in the dataframe correspond to a row of
subset.row.

For correlatePairs with per.gene=TRUE, a dataframe is returned with one row per gene. For
each row, the rho field contains the correlation with the largest magnitude across all gene pairs
involving the corresponding gene. The p.value field contains the Simes p-value, and the FDR field
contains the corresponding adjusted p-value.

Accounting for uninteresting variation

If the experiment has known (and uninteresting) factors of variation, these can be included in
design. These factors will be regressed out to ensure that they do not drive strong correlations
between genes. Examples might be to block on batch effects or cell cycle phase, which may have
substantial but uninteresting effects on expression.

The approach used to remove these factors depends on the design matrix. If there is only one factor
in design, the levels of the factor are defined as separate groups. For each pair of genes, correlations
are computed within each group, and a weighted mean (based on the group size) of the correlations
is taken across all groups. The same strategy is used to generate the null distribution where ranks
are computed and shuffled within each group.

For designs containing multiple factors or covariates, a linear model is fitted to the (log-normalized)
expression values with design. The correlation between a pair of genes is then computed from
the residuals of the fitted model. Similarly, to obtain a null distribution of rho values, normally-
distributed random errors are simulated in a fitted model based on design; the corresponding resid-
uals are generated from these errors; and the correlation between sets of residuals is computed at
each iteration.

The second model-based approach can also be used for one-way layouts by setting residuals=TRUE.
By default, this is not turned on as the second approach involves more work/assumptions:

• It assumes normality, during both linear modelling and generation of the null distribution. This
assumption is largely unavoidable for complex designs, where some quantitative constraints
are required to remove nuisance effects. x should generally be log-transformed here, whereas
this is not required for (but does not hurt) the first group-based approach.

• Residuals computed from expression values equal to lower.bound are set to a constant value
below all other residuals. This preserves ties between zeroes and avoids spurious correla-
tions between genes due to arbitrary tie-breaking. The value of lower.bound should be
equal to log-prior count used during the log-transformation. It is automatically taken from
metadata(x)$log.exprs.offset if x is a SingleCellExperiment object.

10 correlatePairs

Gene selection

By default, correlations will be computed between all genes with pairings=NULL. If pairings is
a list of two vectors, correlations will be computed between one gene in the first vector and another
gene in the second vector. This improves efficiency if the only correlations of interest are those
between two pre-defined sets of genes. Alternatively, if pairings is an integer/character matrix of
two columns, each row is assumed to specify a gene pair. Correlations will then be computed for
only those gene pairs, and the returned dataframe will not be sorted by p-value.

If subset.row is not NULL, only the genes in the selected subset are used to compute correlations.
This will iteract properly with pairings, such that genes in pairings and not in subset.row
will be ignored. With correlatePairs,SingleCellExperiment-method, rows corresponding to
spike-in transcripts are also removed by default with get.spikes=FALSE. This avoids picking up
strong technical correlations between pairs of spike-in transcripts.

We recommend setting subset.row to contain only the subset of genes of interest. This reduces
computational time by only testing correlations of interest. For example, we could select only HVGs
to focus on genes contributing to cell-to-cell heterogeneity (and thus more likely to be involved
in driving substructure). There is no need to account for HVG pre-selection in multiple testing,
because rank correlations are unaffected by the variance.

Lowly-expressed genes can also cause problems when design is non-NULL and residuals=TRUE.
Tied counts, and zeroes in particular, may not result in tied residuals after fitting of the linear
model. Model fitting may break ties in a consistent manner across genes, yielding large correlations
between genes with many zero counts. Focusing on HVGs should mitigate the detection of these
uninteresting correlations, as genes dominated by zeroes will usually have low variance.

Approximating Spearman’s rho with tied values

As previously mentioned, an approximate version of Spearman’s rho is used. Specifically, untied
ranks are randomly assigned to any tied values. This means that a common empirical distribution
can be used for all gene pairs, rather than having to do new permutations for every pair to account for
the different pattern of ties. Generally, this modification has little effect on the results for expressed
genes (and in any case, differences in library size break ties for normalized expression values).
Some correlations may end up being spuriously large, but this should be handled by the error control
machinery after multiplicity correction.

Author(s)

Aaron Lun

References

Phipson B and Smyth GK (2010). Permutation P-values should never be zero: calculating exact
P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9:Article 39.

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

See Also

bpparam, cor

Examples

set.seed(0)
ncells <- 100

cyclone 11

null.dist <- correlateNull(ncells, iters=100000)
exprs <- matrix(rpois(ncells*100, lambda=10), ncol=ncells)
out <- correlatePairs(exprs, null.dist=null.dist)
hist(out$p.value)

cyclone Cell cycle phase classification

Description

Classify single cells into their cell cycle phases based on gene expression data.

Usage

S4 method for signature 'ANY'
cyclone(x, pairs, gene.names=rownames(x), iter=1000, min.iter=100, min.pairs=50,

BPPARAM=SerialParam(), verbose=FALSE, subset.row=NULL)

S4 method for signature 'SingleCellExperiment'
cyclone(x, pairs, subset.row=NULL, ..., assay.type="counts", get.spikes=FALSE)

Arguments

x A numeric matrix-like object of gene expression values where rows are genes
and columns are cells. Alternatively, a SingleCellExperiment object containing
such a matrix.

pairs A list of data.frames produced by sandbag, containing pairs of marker genes.

gene.names A character vector of gene names.

iter An integer scalar specifying the number of iterations for random sampling to
obtain a cycle score.

min.iter An integer scalar specifying the minimum number of iterations for score esti-
mation.

min.pairs An integer scalar specifying the minimum number of pairs for cycle estimation.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

verbose A logical scalar specifying whether diagnostics should be printed to screen.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to cyclone,ANY-method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function implements the classification step of the pair-based prediction method described by
Scialdone et al. (2015). To illustrate, consider classification of cells into G1 phase. Pairs of marker
genes are identified with sandbag, where the expression of the first gene in the training data is
greater than the second in G1 phase but less than the second in all other phases. For each cell,
cyclone calculates the proportion of all marker pairs where the expression of the first gene is
greater than the second in the new data x (pairs with the same expression are ignored). A high

12 cyclone

proportion suggests that the cell is likely to belong in G1 phase, as the expression ranking in the
new data is consistent with that in the training data.

Proportions are not directly comparable between phases due to the use of different sets of gene pairs
for each phase. Instead, proportions are converted into scores (see below) that account for the size
and precision of the proportion estimate. The same process is repeated for all phases, using the
corresponding set of marker pairs in pairs. Cells with G1 or G2M scores above 0.5 are assigned to
the G1 or G2M phases, respectively. (If both are above 0.5, the higher score is used for assignment.)
Cells can be assigned to S phase based on the S score, but a more reliable approach is to define S
phase cells as those with G1 and G2M scores below 0.5.

For cyclone,SingleCellExperiment-method, the matrix of counts is used but can be replaced
with expression values by setting assay.type. By default, get.spikes=FALSE which means that
any rows corresponding to spike-in transcripts will not be considered for score calculation. This is
for the same reasons as described in ?sandbag.

Users can also manually set subset.row to specify which rows of x are to be used. This is better
than subsetting x directly, as it reduces memory usage and also subsets gene.names at the same
time. If this is specified, it will overwrite any setting of get.spikes.

While this method is described for cell cycle phase classification, any biological groupings can be
used here – see ?sandbag for details. However, for non-cell cycle phase groupings, the output
phases will be an empty character vector. Users should manually apply their own score thresholds
for assigning cells into specific groups.

Value

A list is returned containing:

phases: A character vector containing the predicted phase for each cell.

scores: A data frame containing the numeric phase scores for each phase and cell (i.e., each row
is a cell).

normalized.scores: A data frame containing the row-normalized scores (i.e., where the row sum
for each cell is equal to 1).

Description of the score calculation

To make the proportions comparable between phases, a distribution of proportions is constructed
by shuffling the expression values within each cell and recalculating the proportion. The phase
score is defined as the lower tail probability at the observed proportion. High scores indicate that
the proportion is greater than what is expected by chance if the expression of marker genes were
independent (i.e., with no cycle-induced correlations between marker pairs within each cell).

By default, shuffling is performed iter times to obtain the distribution from which the score is
estimated. However, some iterations may not be used if there are fewer than min.pairs pairs
with different expression, such that the proportion cannot be calculated precisely. A score is only
returned if the distribution is large enough for stable calculation of the tail probability, i.e., consists
of results from at least min.iter iterations.

Note that the score calculation in cyclone is slightly different from that described originally by
Scialdone et al. The original code shuffles all expression values within each cell, while in this im-
plementation, only the expression values of genes in the marker pairs are shuffled. This modification
aims to use the most relevant expression values to build the null score distribution.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

decomposeVar 13

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

See Also

sandbag

Examples

example(sandbag) # Using the mocked-up data in this example.

Classifying (note: test.data!=training.data in real cases)
test <- training
assignments <- cyclone(test, out)
head(assignments$scores)
head(assignments$phases)

Visualizing
col <- character(ncells)
col[is.G1] <- "red"
col[is.G2M] <- "blue"
col[is.S] <- "darkgreen"
plot(assignments$score$G1, assignments$score$G2M, col=col, pch=16)

decomposeVar Decompose the gene-level variance

Description

Decompose the gene-specific variance into biological and technical components for single-cell
RNA-seq data.

Usage

S4 method for signature 'ANY,list'
decomposeVar(x, fit, design=NA, subset.row=NULL, ...)

S4 method for signature 'SingleCellExperiment,list'
decomposeVar(x, fit, subset.row=NULL, ...,

assay.type="logcounts", get.spikes=NA)

Arguments

x A numeric matrix-like object of normalized log-expression values, where each
column corresponds to a cell and each row corresponds to an endogenous gene.
Alternatively, a SingleCellExperiment object containing such a matrix.

fit A list containing the output of trendVar, run on log-expression values for spike-
in genes.

design A numeric matrix describing the uninteresting factors contributing to expression
in each cell.

14 decomposeVar

subset.row A logical, integer or character scalar indicating the rows of x to use.

... For decomposeVar,matrix,list-method, additional arguments to pass to testVar.
For decomposeVar,SingleCellExperiment,list-method, additional arguments
to pass to the matrix method.

assay.type A string specifying which assay values to use, e.g., "counts" or "logcounts".

get.spikes A logical scalar specifying whether decomposition should be performed for
spike-ins.

Details

This function computes the variance of the normalized log-counts for each endogenous gene. The
technical component of the variance for each gene is determined by interpolating the fitted trend
in fit at the mean log-count for that gene. This represents variance due to sequencing noise,
variability in capture efficiency, etc. The biological component is determined by subtracting the
technical component from the total variance.

Highly variable genes (HVGs) can be identified as those with large biological components. Unlike
other methods for decomposition, this approach estimates the variance of the log-counts rather than
of the counts themselves. The log-transformation blunts the impact of large positive outliers and
ensures that HVGs are driven by strong log-fold changes between cells, not differences in counts.
Interpretation is not compromised – HVGs will still be so, regardless of whether counts or log-
counts are considered.

The design matrix can be set if there are factors that should be blocked, e.g., batch effects, known
(and uninteresting) clusters. If NULL, it will be set to an all-ones matrix, i.e., all cells are replicates.
If NA, it will be extracted from fit$design, assuming that the same cells were used to fit the trend.

If get.spikes=NA in decomposeVar,SingleCellExperiment-method, the p-value and FDR will
not be returned for spike-in transcripts. This is the default as it returns the other variance statis-
tics for diagnostic purposes, but ensures that the spike-ins are not treated as candidate HVGs. If
get.spikes=FALSE, spike-in transcripts are filtered out from x and no statistics are returned. If
get.spikes=TRUE, all statistics are computed for all rows, regardless of spike-in status.

Users can also directly specify which rows to use with subset.row. This is equivalent to running
decomposeVar on x[subset.row,], but is more efficient as it avoids the construction of large
temporary matrices.

If assay.type="logcounts" and the size factors are not centred at unity, a warning will be raised
- see ?trendVar for details.

Value

A data frame is returned where each row corresponds to and is named after a row of x (if subset.row=NULL;
otherwise, each row corresponds to an element of subset.row). This contains the numeric fields:

mean: Mean normalized log-count per gene.

total: Variance of the normalized log-counts per gene.

bio: Biological component of the variance.

tech: Technical component of the variance.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that bio=0.

If get.spikes=NA, the p.value and FDR fields will be set to NA for rows corresponding to spike-in
transcripts.

Deconvolution Methods 15

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

trendVar, testVar

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.
y <- computeSumFactors(y) # Size factors for the the endogenous genes.
y <- computeSpikeFactors(y, general.use=FALSE) # Size factors for spike-ins.
y <- normalize(y) # Normalizing the counts by the size factors.

Decomposing technical and biological noise.
fit <- trendVar(y)
results <- decomposeVar(y, fit)
head(results)

plot(results$mean, results$total)
o <- order(results$mean)
lines(results$mean[o], results$tech[o], col="red", lwd=2)

plot(results$mean, results$bio)

A trend fitted to endogenous genes can also be used, pending assumptions.
fit.g <- trendVar(y, use.spikes=FALSE)
results.g <- decomposeVar(y, fit.g)
head(results.g)

Deconvolution Methods Normalization by deconvolution

Description

Methods to normalize single-cell RNA-seq data by deconvolving size factors from cell pools.

Usage

S4 method for signature 'ANY'
computeSumFactors(x, sizes=seq(20, 100, 5), clusters=NULL, ref.clust=NULL,

positive=FALSE, errors=FALSE, min.mean=1, subset.row=NULL)

S4 method for signature 'SingleCellExperiment'
computeSumFactors(x, subset.row=NULL, ..., assay.type="counts",

get.spikes=FALSE, sf.out=FALSE)

16 Deconvolution Methods

Arguments

x A numeric matrix-like object of counts, where rows are genes and columns are
cells. Alternatively, a SingleCellExperiment object containing such a matrix.

sizes A numeric vector of pool sizes, i.e., number of cells per pool.

clusters An optional factor specifying which cells belong to which cluster, for deconvo-
lution within clusters.

ref.clust A level of clusters to be used as the reference cluster for inter-cluster normal-
ization.

positive A logical scalar indicating whether linear inverse models should be used to en-
force positive estimates.

errors A logical scalar indicating whether the standard error should be returned. This
option is deprecated, see below.

min.mean A numeric scalar specifying the minimum (library size-adjusted) average count
of genes to be used for normalization.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to computeSumFactors,ANY-method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether spike-in transcripts should be used.

sf.out A logical scalar indicating whether only size factors should be returned.

Value

For computeSumFactors,ANY-method, a numeric vector of size factors for all cells in x is returned.

For computeSumFactors,SingleCellExperiment-method, an object of class x is returned con-
taining the vector of size factors in sizeFactors(x), if sf.out=FALSE. Otherwise, the vector of
size factors is returned directly.

Overview of the deconvolution method

The computeSumFactors function provides an implementation of the deconvolution strategy for
normalization. Briefly, a pool of cells is selected and the counts for those cells are summed together.
The count sums for this pool is normalized against an average reference pseudo-cell, constructed
by averaging the counts across all cells. This defines a size factor for the pool as the median ratio
between the count sums and the average across all genes.

Now, the bias for the pool is equal to the sum of the biases for the constituent cells. The same
applies for the size factors (which are effectively estimates of the bias for each cell). This means
that the size factor for the pool can be written as a linear equation of the size factors for the cells.
Repeating this process for multiple pools will yield a linear system that can be solved to obtain the
size factors for the individual cells.

In this manner, pool-based factors are deconvolved to yield the relevant cell-based factors. The
advantage is that the pool-based estimates are more accurate, as summation reduces the number of
stochastic zeroes and the associated bias of the size factor estimate. This accuracy will feed back
into the deconvolution process, thus improving the accuracy of the cell-based size factors.

Deconvolution Methods 17

Normalization within and between clusters

In general, it is more appropriate to pool more similar cells to avoid violating the assumption of a
non-DE majority of genes across the data set. This can be done by specifying the clusters argu-
ment where cells in each cluster have similar expression profiles. Deconvolution is subsequently
applied on the cells within each cluster. Each cluster should contain a sufficient number of cells
for pooling – an error is thrown if the number of cells is less than the maximum value of sizes.
A convenince function quickCluster is provided for rapid clustering based on Spearman’s rank
correlation.

Size factors computed within each cluster must be rescaled for comparison between clusters. This
is done by normalizing between clusters to identify the rescaling factor. One cluster is chosen as a
“reference” (by default, that with the median of the mean per-cell library sizes is used) to which all
others are normalized. Ideally, a cluster that is not extremely different from all other clusters should
be used as the reference. This can be specified using ref.clust if there is prior knowledge about
which cluster is most suitable, e.g., from PCA or t-SNE plots.

Additional details about pooling and deconvolution

Within each cluster (if not specified, all cells are put into a single cluster), cells are sorted by
increasing library size and a sliding window is applied to this ordering. Each location of the window
defines a pool of cells with similar library sizes. This avoids inflated estimation errors for very
small cells when they are pooled with very large cells. Sliding the window will construct an over-
determined linear system that can be solved by least-squares methods to obtain cell-specific size
factors.

Window sliding is repeated with different window sizes to construct the linear system, as specified
by sizes. By default, the number of cells in each window ranges from 20 to 100. Using a range
of window sizes improves the precision of the estimates, at the cost of increased computational
complexity. The defaults were chosen to provide a reasonable compromise between these two
considerations. The smallest window should be large enough so that the pool-based size factors are,
on average, non-zero. We recommend window sizes no lower than 20 for UMI data, though smaller
windows may be possible for read count data.

The linear system is solved using the sparse QR decomposition from the Matrix package. However,
this has known problems when the linear system becomes too large (see https://stat.ethz.ch/
pipermail/r-help/2011-August/285855.html). In such cases, set clusters to break up the
linear system into smaller, more manageable components that can be solved separately.

Dealing with negative size factors

In theory, it is possible to obtain negative estimates for the size factors. These values are obviously
nonsensical and computeSumFactors will raise a warning if they are encountered. Negative es-
timates are mostly commonly generated from low quality cells with few expressed features, such
that most counts are zero even after pooling. They may also occur if insufficient filtering of low-
abundance genes was performed.

To avoid negative size factors, the best solution is to increase the stringency of the filtering.

• If only a few negative size factors are present, they are likely to correspond to a few low-
quality cells with few expressed features. Such cells are difficult to normalize reliably under
any approach, and can be removed by increasing the stringency of the quality control.

• If many negative size factors are present, it is probably due to insufficient filtering of low-
abundance genes. This results in many zero counts and pooled size factors of zero, and can be
fixed by filtering out more genes.

https://stat.ethz.ch/pipermail/r-help/2011-August/285855.html
https://stat.ethz.ch/pipermail/r-help/2011-August/285855.html

18 Deconvolution Methods

Another approach is to increase in the number of sizes to improve the precision of the estimates.
This reduces the chance of obtaining negative size factors due to estimation error, for cells where
the true size factors are very small.

As a last resort, some protection can be provided by setting positive=TRUE, which will use linear
inverse models to solve the system. This ensures that non-negative values for the size factors will
always be obtained. Note that some cells may still have size factors of zero and should be removed
prior to downstream analysis. Such occurrences are unavoidable – rather, the aim is to prevent
negative values from affecting the estimates for all other cells.

Gene selection

By default, get.spikes=FALSE in quickCluster,SingleCellExperiment-method which means
that spike-in transcripts are not included in the set of genes used for deconvolution. This is be-
cause they can behave differently from the endogenous genes. Users wanting to perform spike-in
normalization should see computeSpikeFactors instead.

Users can also set subset.row to specify which rows of x are to be used to calculate correlations.
This is equivalent to but more efficient than subsetting x directly, as it avoids constructing a (po-
tentially large) temporary matrix. If subset.row is specified and get.spikes=FALSE, only the
non-spike-in entries of subset.row will be used in deconvolution.

Note that pooling does not eliminate the need to filter out low-abundance genes. As mentioned
above, if too many genes have consistently low counts across all cells, even the pool-based size
factors will be zero. This results in zero or negative size factor estimates for many cells. Filtering
ensures that this is not the case, e.g., by removing genes with average counts below 1.

In general, genes with average counts below 1 (for read count data) or 0.1 (for UMI data) should not
be used for normalization. Such genes will automatically be filtered out by applying a minimum
threshold min.mean on the library size-adjusted average counts from calcAverage. If subset.row
is specified, only the genes selected by subset.row and with average counts above min.mean will
be used.

Obtaining standard errors

Previous versions of computeSumFactors would return the standard error for each size factor when
errors=TRUE. This is no longer the case, as standard error estimation from the linear model is not
reliable. Errors are likely underestimated due to correlations between pool-based size factors when
they are computed from a shared set of underlying counts. Users wishing to obtain a measure of
uncertainty are advised to perform simulations instead, using the original size factor estimates to
scale the mean counts for each cell. Standard errors can then be calculated as the standard deviation
of the size factor estimates across simulation iterations.

Author(s)

Aaron Lun and Karsten Bach

References

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

quickCluster

Denoise with PCA 19

Examples

Mocking up some data.
set.seed(100)
popsize <- 200
ngenes <- 10000
all.facs <- 2^rnorm(popsize, sd=0.5)
counts <- matrix(rnbinom(ngenes*popsize, mu=all.facs*10, size=1), ncol=popsize, byrow=TRUE)

Computing the size factors.
out.facs <- computeSumFactors(counts)
head(out.facs)
plot(colSums(counts), out.facs, log="xy")

Denoise with PCA Denoise expression with PCA

Description

Denoise log-expression data by removing principal components corresponding to technical noise.

Usage

S4 method for signature 'ANY'
denoisePCA(x, technical, design=NULL, subset.row=NULL,

value=c("pca", "n", "lowrank"), min.rank=5, max.rank=100,
preserve.dim=FALSE, approximate=FALSE, rand.seed=1000)

S4 method for signature 'SingleCellExperiment'
denoisePCA(x, ..., subset.row=NULL,

value=c("pca", "n", "lowrank"), assay.type="logcounts",
get.spikes=FALSE, sce.out=TRUE)

Arguments

x A numeric matrix of log-expression values for denoisePCA,ANY-method, or a
SingleCellExperiment object containing such values for denoisePCA,SingleCellExperiment-method.

technical A function that computes the technical component of the variance for a gene
with a given mean (log-)expression, see ?trendVar.

design A numeric matrix containing the experimental design. If NULL, all cells are
assumed to belong to a single group.

subset.row A logical, integer or character vector indicating the rows of x to use. All genes
are used by default.

value A string specifying the type of value to return; the PCs, the number of retained
components, or a low-rank approximation.

min.rank, max.rank

Integer scalars specifying the minimum and maximum number of PCs to retain.

preserve.dim A logical scalar indicating whether the dimensions should be preserved when
subset.row is not NULL.

approximate A logical scalar indicating whether approximate SVD should be performed via
irlba.

20 Denoise with PCA

rand.seed A numeric scalar specifying the seed for approximate PCA when approximate=TRUE.
This can be set to NA to use the existing session seed.

... Further arguments to pass to denoisePCA,ANY-method.

assay.type A string specifying which assay values to use.

get.spikes A logical scalar specifying whether spike-in transcripts should be used. This
will be intersected with subset.row if the latter is specified.

sce.out A logical scalar specifying whether a modified SingleCellExperiment object
should be returned.

Details

This function performs a principal components analysis to reduce random technical noise in the
data. Random noise is uncorrelated across genes and should be captured by later PCs, as the vari-
ance in the data explained by any single gene is low. In contrast, biological substructure should be
correlated and captured by earlier PCs, as this explains more variance for sets of genes. The idea is
to discard later PCs to remove technical noise and improve the resolution of substructure.

The choice of the number of PCs to discard is based on the estimates of technical variance in
technical. This uses the trend function obtained from trendVar to compute the technical com-
ponent for each gene, based on its mean abundance. The overall technical variance is estimated by
summing the values across genes. Genes with negative biological components are ignored during
downstream analyses to ensure that the total variance is greater than the technical variance.

The function works by assuming that the first X PCs contain all of the biological signal, while
the remainder contains technical noise. For a given value of X, an estimate of the total technical
variance is calculated from the sum of variance explained by all of the later PCs. A value of X is
found such that the predicted technical variance equals the estimated technical variance. Note that
X will be coerced to lie between min.rank and max.rank.

Only the first X PCs are reported if value="pca". If value="n", the value of X is directly reported,
which avoids computing the PCs if only the rank is desired. If value="lowrank", a low-rank
approximation of the original matrix is computed using only the first X components. This is useful
for denoising prior to downstream applications that expect gene-wise expression profiles.

If value="lowrank", genes with negative components are still reported but are assigned expression
values of zero for all cells. If subset.row is not NULL, genes that are not in the selected set are
removed by default. However, if preserve.dim=TRUE, the unselected genes will still be reported
and are assigned all-zero expression profiles.

If design is specified, the residuals of a linear model fitted to each gene are computed. Because
variances computed from residuals are usually underestimated, the residuals are scaled up so that
their variance is equal to the residual variance of the model fit. This ensures that the sum of variances
is not understated, which would lead to more PCs being discarded than appropriate.

Value

For denoisePCA,ANY-method, a numeric matrix is returned containing the selected PCs (columns)
for all cells (rows) if value="pca". If value="n", it will return an integer scalar specifying the
number of retained components. If value="lowrank", it will return a low-rank approximation of x
with the same dimensions.

For denoisePCA,SingleCellExperiment-method, the return value is the same as denoisePCA,ANY-method
if sce.out=TRUE or value="n". Otherwise, a SingleCellExperiment object is returned that is a
modified version of x. If value="pca", the modified object will contain the PCs as the "PCA" entry
in the reducedDims slot. If value="lowrank", it will return a low-rank approximation in assays
slot, named "lowrank".

Distance-to-median 21

In all cases, the fraction of variance explained by each PC will be stored as the "percentVar"
attribute in the return value. This is directly compatible with functions such as plotPCA. Note that
only the percentages for the first max.rank PCs will be recorded when approximate=TRUE.

Author(s)

Aaron Lun

See Also

trendVar, decomposeVar

Examples

Mocking up some data.
ngenes <- 1000
is.spike <- 1:100
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
nsamples <- 50
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
rownames(counts) <- paste0("Gene", seq_len(ngenes))

Fitting a trend.
lcounts <- log2(counts + 1)
fit <- trendVar(lcounts, subset.row=is.spike)

Denoising (not including the spike-ins in the PCA;
spike-ins are automatically removed with the SingleCellExperiment method).
pcs <- denoisePCA(lcounts, technical=fit$trend, subset.row=-is.spike)
dim(pcs)

With a design matrix.
design <- model.matrix(~factor(rep(0:1, length.out=nsamples)))
fit3 <- trendVar(lcounts, design=design, subset.row=is.spike)
pcs3 <- denoisePCA(lcounts, technical=fit3$trend, design=design, subset.row=-is.spike)
dim(pcs3)

Distance-to-median Compute the distance-to-median statistic

Description

Compute the distance-to-median statistic for the CV2 residuals of all genes

Usage

DM(mean, cv2, win.size=50)

Arguments

mean A numeric vector of average counts for each gene.

cv2 A numeric vector of squared coefficients of variation for each gene.

win.size An integer scalar specifying the window size for median-based smoothing.

22 Explore Data

Details

This function will compute the distance-to-median (DM) statistic described by Kolodziejczyk et
al. (2015). Briefly, a median-based trend is fitted to the log-transformed cv2 against the log-
transformed mean. The DM is defined as the residual from the trend for each gene. This statistic is
a measure of the relative variability of each gene, after accounting for the empirical mean-variance
relationship. Highly variable genes can then be identified as those with high DM values.

Value

A numeric vector of DM statistics for all genes.

Author(s)

Jong Kyoung Kim, with modifications by Aaron Lun

References

Kolodziejczyk AA, Kim JK, Tsang JCH et al. (2015). Single cell RNA-sequencing of pluripotent
states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471–85.

Examples

Mocking up some data
ngenes <- 1000
ncells <- 100
gene.means <- 2^runif(ngenes, 0, 10)
dispersions <- 1/gene.means + 0.2
counts <- matrix(rnbinom(ngenes*ncells, mu=gene.means, size=1/dispersions), nrow=ngenes)

Computing the DM.
means <- rowMeans(counts)
cv2 <- apply(counts, 1, var)/means^2
dm.stat <- DM(means, cv2)
head(dm.stat)

Explore Data Shiny app for explorative data analysis

Description

Generate an interactive Shiny app to explore gene expression patterns in single-cell data

Usage

exploreData(x, cell.data, gene.data, red.dim, run=TRUE)

Explore Data 23

Arguments

x A numeric matrix of expression values to be visualized.

cell.data A data frame of cell information, where each row corresponds to a column of x.

gene.data A data frame of gene information, where each row corresponds to a row of x.

red.dim A numeric matrix with two colums, specifying the reduced-dimension coordi-
nates for each cell.

run A logical scalar specifying whether the app should be run immediately.

Details

This function will return a Shiny app object that can be run with runApp. The app allows the user to
interactively explore gene expression patterns in single-cell RNA-seq data. Explorative analysis is
focused on comparing gene exression between different groups of cells, as defined by the covariates
of cell.data.

Three plots are shown in the app:

• a scatterplot of cell locations based on the red.dim coordinates, colored by a selected covariate

• a scatterplot of cell locations based on the red.dim coordinates, colored by expression of a
selected gene

• boxplot(s) of expression values for a selected gene, grouped by a selected covariate.

Several options are available within the app:

“Color by”: Covariate to be used for coloring the first scatter plot.

“Group by”: Covariate with which expression values are grouped in the boxplots.

In addition, the gene.data data frame is rendered as an interactive table using the JavaScript library
DataTable. This allows the user to subset/search the feature data and select a gene by clicking on
the corresponding row.

Value

If run=FALSE, a Shiny app object is returned, which can be run with runApp. If run=TRUE, a Shiny
app object is created and run.

Author(s)

Karsten Bach

See Also

runApp,

Examples

Set up example data
example(SingleCellExperiment)
cell.data <- DataFrame(stuff=sample(LETTERS, ncol(sce), replace=TRUE))
gene.data <- DataFrame(lengths=runif(nrow(sce)))

Mocking up some reduced dimensions.
library(Rtsne)
tsn <- Rtsne(t(exprs(sce)), perplexity=10)

24 findMarkers

red.dim <- tsn$Y[,1:2]

Creating the app object.
app <- exploreData(exprs(sce), cell.data, gene.data, red.dim, run=FALSE)
if (interactive()) { shiny::runApp(app) }

Not run: # Running directly from the function.
saved <- exploreData(x, cell.data, gene.data, red.dim)

End(Not run)

findMarkers Find marker genes

Description

Find candidate marker genes for clusters of cells, by testing for differential expression between
clusters.

Usage

S4 method for signature 'ANY'
findMarkers(x, clusters, design=NULL, pval.type=c("any", "all"),

direction=c("any", "up", "down"), min.mean=0.1, subset.row=NULL)

S4 method for signature 'SingleCellExperiment'
findMarkers(x, ..., subset.row=NULL, assay.type="logcounts", get.spikes=FALSE)

Arguments

x A numeric matrix-like object of normalized log-expression values, where each
column corresponds to a cell and each row corresponds to an endogenous gene.
Alternatively, a SingleCellExperiment object containing such a matrix.

clusters A vector of cluster identities for all cells.

design A numeric matrix containing blocking terms, i.e., uninteresting factors driving
expression across cells.

pval.type A string specifying the type of combined p-value to be computed, i.e., Simes’ or
IUT.

direction A string specifying the direction of log-fold changes to be considered for each
cluster.

min.mean A numeric scalar specifying the mean threshold for computing empirical Bayes
parameters.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to the matrix method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether decomposition should be performed for
spike-ins.

findMarkers 25

Details

This function uses limma to test for differentially expressed genes (DEGs) between pairs of clusters.
For each cluster, the log-fold changes and other statistics from all relevant pairwise comparisons
are combined into a single table. A list of such tables is returned for all clusters to define a set of
potential marker genes.

Each table is sorted by the Top value, which specifies the size of the candidate marker set. Taking
all rows with Top values no greater than some integer X will yield a set containing the top X genes
(ranked by significance) from each pairwise comparison. For example, if X is 5, the set will consist
of the union of the top 5 genes from each pairwise comparison. The marker set for each cluster
allows it to be distinguished from the other clusters based on the expression of at least one gene.

The FDR value is calculated by consolidating p-values across contrasts for each gene, and then
applying the BH method across genes. By default, the null hypothesis is that the gene is not DE
in any of the contrasts, and Simes’ method is used to combine p-values for each gene. In both
cases, the reported value is intended only as a rough measure of significance. Properly correcting
for multiple testing is not generally possible when clusters is determined from the same x used
for DE testing.

By default, spike-in transcripts are ignored in findMarkers,SingleCellExperiment-method with
get.spikes=FALSE. This is overridden by any non-NULL value of subset.row.

Value

A named list of data frames, where each data frame corresponds to a cluster and contains a ranked
set of potential marker genes. In each data frame, the log-fold change of the cluster against every
other cluster Y is also reported, under the column named logFC.Y.

Tuning the p-value calculations

Genes that are uniquely expressed in a cluster are not explicitly favoured by default. Such a strategy
is often too stringent, especially in cases involving overclustering or cell types defined by combi-
natorial gene expression. However, if pval.type="all", the null hypothesis is that the gene is not
DE in all contrasts, and the IUT p-value is computed for each gene. This can be used to re-rank the
genes based on the resulting FDR values.

If direction="any", genes will only be ranked based on their p-values, regardless of the direction
of the log-fold change. Otherwise, one-sided tests in the specified direction will be used to compute
p-values for each gene in each pairwise comparison. This can be used to focus on genes that are
upregulated in each cluster of interest, which is often easier to interpret.

The application of limma uses the “trend” approach on the normalized log-expression values, as
described by Law et al. (2015). This is fast and avoids putting too much weight on outliers or cells
with large library sizes. Empirical Bayes shrinkage is performed separately for genes with means
greater or less than min.mean. This ensures that discreteness of variances at low counts does not
affect other genes, while avoiding the need to discard low-abundance genes entirely.

Uninteresting factors of variation (e.g., preparation time, sequencing batch) will be blocked if they
are stored in design. Note that the presence of factors that are confounded with clusters will
raise a warning about unestimable coefficients.

Author(s)

Aaron Lun

26 improvedCV2

References

Law CW, Chen Y, Shi W and Smyth, GK (2014). voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biol. 15:R29

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

See Also

normalize

Examples

Using the mocked-up data 'y2' from this example.
example(computeSpikeFactors)
y2 <- normalize(y2)
kout <- kmeans(t(exprs(y2)), centers=2) # Any clustering method is okay.
out <- findMarkers(y2, clusters=kout$cluster)

improvedCV2 Stably model the technical coefficient of variation

Description

Model the technical coefficient of variation as a function of the mean, and determine the significance
of highly variable genes. This is intended to be a more stable version of technicalCV2.

Usage

S4 method for signature 'ANY'
improvedCV2(x, is.spike, sf.cell=NULL, sf.spike=NULL,

log.prior=NULL, df=4, robust=FALSE, use.spikes=FALSE)

S4 method for signature 'SingleCellExperiment'
improvedCV2(x, spike.type=NULL, ..., assay.type="logcounts",

logged=NULL, normalized=NULL)

Arguments

x A numeric matrix of counts or log-expression values, where each column corre-
sponds to a cell and each row corresponds to a spike-in transcript. Alternatively,
a SingleCellExperiment object that contains such values.

is.spike A vector indicating which rows of x correspond to spike-in transcripts.

sf.cell A numeric vector containing size factors for endogenous genes.

sf.spike A numeric vector containing size factors for spike-in transcripts.

log.prior A numeric scalar specifying the pseudo-count added prior to log-transformation.
If this is set, x is assumed to contain log-expression values, otherwise it is as-
sumed to contain counts.

improvedCV2 27

df An integer scalar indicating the number of degrees of freedom for the spline fit
with smooth.spline.

robust A logical scalar indicating whether robust fitting should be performed with
robustSmoothSpline.

use.spikes A logical scalar indicating whether p-values should be returned for spike-in tran-
scripts.

spike.type A character vector containing the names of the spike-in sets to use.

... Additional arguments to pass to improvedCV2,ANY-method.

assay.type A string specifying which assay values to use.

logged A logical scalar indicating if assay.type contains log-expression values. This
is automatically determined if assay.type="counts", "logcounts" or "normcounts".

normalized A logical scalar indicating if assay.type is normalized, also automatically de-
termined where possible.

Details

This function will estimate the squared coefficient of variation (CV2) and mean for each spike-
in transcript. Both values are log-transformed and a mean-dependent trend is fitted to the log-
CV2 values, using a linear model with a natural spline of degree df. The trend is used to obtain
the technical contribution to the CV2 for each gene. The biological contribution is computed by
subtracting the technical contribution from the total CV2.

Deviations from the trend are identified by modelling the CV2 estimates for the spike-in transcripts
as log-normally distributed around the fitted trend. This accounts for sampling variance as well
as any variability in the true dispersions (e.g., due to transcript-specific amplification biases). The
p-value for each gene is calculated from a one-sided Z-test on the log-CV2, using the fitted value as
the mean and the robust scale estimate as the standard deviation. A Benjamini-Hochberg adjustment
is applied to correct for multiple testing.

If log.prior is specified, x is assumed to contain log-expression values. These are converted back
to the count scale prior to calculation of the CV2. Otherwise, x is assumed to contain raw counts,
which need to be normalized with sf.cell and sf.spike prior to calculating the CV2. Note that
both sets of size factors are set to 1 by default if their values are not supplied to the function.

For any given data set, the maximum CV2 that can be achieved is equal to the number of cells. (This
occurs when only one cell has a non-zero expression value - proof via Holder’s inequality.) Genes
with CV2 values equal to the maximum are ignored during trend fitting. This ensures that the trend
is not distorted by the presence of an upper bound on CV2 values, especially at low means.

For improvedCV2,ANY-method, the rows corresponding to spike-in transcripts are specified with
is.spike. These rows will be used for trend fitting, while all other rows are treated as endogenous
genes. By default, p-values are set to NA for the spike-in transcripts, such that they do not contribute
to the multiple testing correction. This behaviour can be modified with use.spikes=TRUE, which
will return p-values for all features.

For improvedCV2,SingleCellExperiment-method, transcripts from spike-in sets named in spike.type
will be used for trend fitting. If spike.type=NULL, all spike-in sets listed in x will be used. Size
factors for endogenous genes are automatically extracted via sizeFactors. Spike-in-specific size
factors for spike.type are extracted from x, if available; otherwise they are set to the size factors
for the endogenous genes. Note that the spike-in-specific factors must be the same for each set in
spike.type.

Users can also set is.spike to NA in improvedCV2,ANY-method; or spike.type to NA in decomposeCV2,SingleCellExperiment-method.
In such cases, all rows will be used for trend fitting, and (adjusted) p-values will be reported for all
rows. This should be used in cases where there are no spike-ins. Here, the assumption is that

28 improvedCV2

most endogenous genes do not exhibit high biological variability and thus can be used to model
decompose variation.

Value

A data frame is returned containing one row per row of x (including both endogenous genes and
spike-in transcripts). Each row contains the following information:

mean: A numeric field, containing mean (scaled) counts for all genes and transcripts.

var: A numeric field, containing the variances for all genes and transcripts.

cv2: A numeric field, containing CV2 values for all genes and transcripts.

trend: A numeric field, containing the fitted value of the trend in the CV2 values. Note that
the fitted value is reported for all genes and transcripts, but the trend is only fitted using the
transcripts.

p.value: A numeric field, containing p-values for all endogenous genes (NA for rows correspond-
ing to spike-in transcripts).

FDR: A numeric field, containing adjusted p-values for all genes.

Author(s)

Aaron Lun

See Also

ns, technicalCV2

Examples

Mocking up some data.
ngenes <- 10000
nsamples <- 50
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
is.spike <- logical(ngenes)
is.spike[seq_len(500)] <- TRUE

Running it directly on the counts.
out <- improvedCV2(counts, is.spike)
head(out)
plot(out$mean, out$cv2, log="xy")
points(out$mean, out$trend, col="red", pch=16, cex=0.5)

Same again with an SingleCellExperiment.
rownames(counts) <- paste0("X", seq_len(ngenes))
colnames(counts) <- paste0("Y", seq_len(nsamples))
X <- SingleCellExperiment(list(counts=counts))
isSpike(X, "Spikes") <- is.spike

Dummying up some size factors (for convenience only, use computeSumFactors() instead).
sizeFactors(X) <- 1
X <- computeSpikeFactors(X, general.use=FALSE)
X <- normalize(X)

mnnCorrect 29

Running it.
out <- improvedCV2(X, spike.type="Spikes")
head(out)

mnnCorrect Mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using the mutual nearest neighbors method.

Usage

mnnCorrect(..., k=20, sigma=1, cos.norm.in=TRUE, cos.norm.out=TRUE,
svd.dim=0L, var.adj=TRUE, compute.angle=FALSE, subset.row=NULL,
order=NULL, pc.approx=FALSE, irlba.args=list(),
BPPARAM=SerialParam())

Arguments

... Two or more expression matrices where genes correspond to rows and cells cor-
respond to columns. Each matrix should contain cells from the same batch;
multiple matrices represent separate batches of cells. Each matrix should con-
tain the same number of rows, corresponding to the same genes (in the same
order).

k An integer scalar specifying the number of nearest neighbors to consider when
identifying mutual nearest neighbors.

sigma A numeric scalar specifying the bandwidth of the Gaussian smoothing kernel
used to compute the correction vector for each cell.

cos.norm.in A logical scalar indicating whether cosine normalization should be performed
on the input data prior to calculating distances between cells.

cos.norm.out A logical scalar indicating whether cosine normalization should be performed
prior to computing corrected expression values.

svd.dim An integer scalar specifying the number of dimensions to use for summarizing
biological substructure within each batch.

var.adj A logical scalar indicating whether variance adjustment should be performed on
the correction vectors.

compute.angle A logical scalar specifying whether to calculate the angle between each cell’s
correction vector and the biological subspace of the reference batch.

subset.row A vector specifying the genes with which distances between cells are calculated,
e.g., for identifying mutual nearest neighbours. All genes are used by default.

order An integer vector specifying the order in which batches are to be corrected.

pc.approx A logical scalar indicating whether irlba should be used to identify the biolog-
ical subspace.

irlba.args A list of arguments to pass to irlba when pc.approx=TRUE.

BPPARAM A BiocParallelParam object specifying whether the nearest-neighbor searches
should be parallelized.

30 mnnCorrect

Details

This function is designed for batch correction of single-cell RNA-seq data where the batches are
partially confounded with biological conditions of interest. It does so by identifying pairs of mutual
nearest neighbors (MNN) in the high-dimensional expression space. Each MNN pair represents
cells in different batches that are of the same cell type/state, assuming that batch effects are mostly
orthogonal to the biological manifold. Correction vectors are calculated from the pairs of MNNs
and corrected expression values are returned for use in clustering and dimensionality reduction.

The concept of a MNN pair can be explained by considering cells in each of two batches. For each
cell in one batch, the set of k nearest cells in the other batch is identified, based on the Euclidean
distance in expression space. Two cells in different batches are considered to be MNNs if each cell
is in the other’s set. The size of k can be interpreted as the minimum size of a subpopulation in each
batch. The algorithm is generally robust to the choice of k, though values that are too small will not
yield enough MNN pairs, while values that are too large will ignore substructure within each batch.

For each MNN pair, a pairwise correction vector is computed based on the difference in the expres-
sion profiles. The correction vector for each cell is computed by applying a Gaussian smoothing
kernel with bandwidth sigma is the pairwise vectors. This stabilizes the vectors across many MNN
pairs and extends the correction to those cells that do not have MNNs. The choice of sigma deter-
mines the extent of smoothing - a value of 1 is used by default to reflect the boundaries of the space
after cosine normalization.

Value

A named list containing two components:

corrected: A list of length equal to the number of batches, containing matrices of corrected ex-
pression values for each cell in each batch. The order of batches is the same as supplied in
..., and the order of cells in each matrix is also unchanged.

pairs: A named list of length equal to the number of batches, containing DataFrames specifying
the MNN pairs used for correction. Each row of the DataFrame defines a pair based on the
cell in the current batch and another cell in an earlier batch. The identity of the other cell and
batch are stored as run-length encodings to save space.

angles: A named list of length equal to the number of batches, containing numeric vectors of
angles. Each angle is computed between each cell’s correction vector with the first two basis
vectors of the first batch of cells (plus any previously corrected batches). This is only returned
if compute.angle=TRUE.

Choosing the gene set

Distances between cells are calculated with all genes if subset.row=NULL. However, users can set
subset.row to perform the distance calculation on a subset of genes, e.g., highly variable genes
or marker genes. This may provide more meaningful identification of MNN pairs by reducing the
noise from irrelevant genes.

Regardless of whether subset.row is specified, corrected values are returned for all genes. This
is possible as subset.row is only used to identify the MNN pairs and other cell-based distance
calculations. Correction vectors between MNN pairs can then be computed in the original space
involving all genes in the supplied matrices.

Expected type of input data

The input expression values should generally be log-transformed, e.g., log-counts, see normalize
for details. They should also be normalized within each data set to remove cell-specific biases in

mnnCorrect 31

capture efficiency and sequencing depth. By default, a further cosine normalization step is per-
formed on the supplied expression data to eliminate gross scaling differences between data sets.

• When cos.norm.in=TRUE, cosine normalization is performed on the matrix of expression
values used to compute distances between cells. This can be turned off when there are no
scaling differences between data sets.

• When cos.norm.out=TRUE, cosine normalization is performed on the matrix of values used
to calculate correction vectors (and on which those vectors are applied). This can be turned
off to obtain corrected values on the log-scale, similar to the input data.

Users should note that the order in which batches are corrected will affect the final results. The
first batch in order is used as the reference batch against which the second batch is corrected.
Corrected values of the second batch are added to the reference batch, against which the third batch
is corrected, and so on. This strategy maximizes the chance of detecting sufficient MNN pairs for
stable calculation of correction vectors in subsequent batches.

Further options

The function depends on a shared biological manifold, i.e., one or more cell types/states being
present in multiple batches. If this is not true, MNNs may be incorrectly identified, resulting in
over-correction and removal of interesting biology. Some protection can be provided by removing
components of the correction vectors that are parallel to the biological subspaces in each batch. The
biological subspace in each batch is identified with a SVD on the expression matrix, using either
svd or irlba. The number of dimensions of this subspace can be controlled with svd.dim. (By
default, this option is turned off by setting svd.dim=0.)

If var.adj=TRUE, the function will adjust the correction vector to equalize the variances of the
two data sets along the batch effect vector. In particular, it avoids “kissing” effects whereby MNN
pairs are identified between the surfaces of point clouds from different batches. Naive correction
would then bring only the surfaces into contact, rather than fully merging the clouds together. The
adjustment ensures that the cells from the two batches are properly intermingled after correction.
This is done by identifying each cell’s position on the correction vector, identifying corresponding
quantiles between batches, and scaling the correction vector to ensure that the quantiles are matched
after correction.

Author(s)

Laleh Haghverdi, with modifications by Aaron Lun

See Also

get.knnx irlba

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- mnnCorrect(B1, B2) # corrected values

32 overlapExprs

overlapExprs Overlap expression profiles

Description

Compute the gene-specific overlap in expression profiles between two groups of cells.

Usage

S4 method for signature 'ANY'
overlapExprs(x, groups, design=NULL, residuals=FALSE, tol=1e-8,

BPPARAM=SerialParam(), subset.row=NULL, lower.bound=NULL)

S4 method for signature 'SingleCellExperiment'
overlapExprs(x, ..., subset.row=NULL, lower.bound=NULL,

assay.type="logcounts", get.spikes=FALSE)

Arguments

x A numeric matrix of expression values, where each column corresponds to a cell
and each row corresponds to an endogenous gene. Alternatively, a SingleCell-
Experiment object containing such a matrix.

groups A vector of group assignments for all cells.

design A numeric matrix containing blocking terms, i.e., uninteresting factors driving
expression across cells.

residuals A logical scalar indicating whether overlaps should be computed between resid-
uals of a linear model.

tol A numeric scalar specifying the tolerance with which ties are considered.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

subset.row A logical, integer or character scalar indicating the rows of x to use.

lower.bound A numeric scalar specifying the theoretical lower bound of values in x, only
used when residuals=TRUE.

... Additional arguments to pass to the matrix method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether decomposition should be performed for
spike-ins.

Details

For two groups of cells A and B, consider the distribution of expression values for gene X across
those cells. The overlap proportion is defined as the probability that a randomly selected cell in A
has a greater expression value of X than a randomly selected cell in B. Overlap proportions near
0 or 1 indicate that the expression distributions are well-separated. In particular, large proportions
indicate that most cells of the first group (A) express the gene more highly than most cells of the
second group (B).

This function computes, for each gene, the overlap proportions between all pairs of groups in
groups. It is designed to complement findMarkers, which reports the log-fold changes between

overlapExprs 33

groups. This is useful for prioritizing candidate markers that are distinctive to one group or another,
without needing to plot the expression values.

Expression values that are tied between groups are considered to be 50% likely to be greater in
either group. Thus, if all values were tied, the overlap proportion would be 0.5. The tolerance with
which ties are considered can be set by changing tol.

By default, spike-in transcripts are ignored in overlapExprs,SingleCellExperiment-method
with get.spikes=FALSE. This is overridden by any non-NULL value of subset.row.

Value

A named list of numeric matrices. Each matrix corresponds to a group (A) in groups and contains
one row per gene in x (or the subset specified by subset.row). Each column corresponds to another
group (B) in groups. The matrix entries contain overlap proportions between groups A and B for
each gene.

Accounting for uninteresting variation

If the experiment has known (and uninteresting) factors of variation, these can be included in
design. The approach used to remove these factors depends on the design matrix. If there is
only one factor in design, the levels of the factor are defined as separate blocks. Overlaps between
groups are computed within each block, and a weighted mean (based on the number of cells in each
block) of the overlaps is taken across all blocks.

This approach avoids the need for linear modelling and the associated assumptions regarding nor-
mality and correct model specification. In particular, it avoids problems with breaking of ties when
counts or expression values are converted to residuals. However, it also makes less use of infor-
mation, e.g., we ignore any blocks containing cells from only one group. NA proportions may be
observed for a pair of groups if there is no block that contains cells from that pair.

For designs containing multiple factors or covariates, a linear model is fitted to the expression values
with design. Overlap proportions are then computed using the residuals of the fitted model. This
approach is not ideal, requiring log-transformed x and setting of lower.bound - see ?correlatePairs
for a related discussion. It can also be used for one-way layouts by setting residuals=TRUE.

Author(s)

Aaron Lun

See Also

findMarkers

Examples

Using the mocked-up data 'y2' from this example.
example(computeSpikeFactors)
y2 <- normalize(y2)
groups <- sample(3, ncol(y2), replace=TRUE)
out <- overlapExprs(y2, groups, subset.row=1:10)

34 Quick clustering

Quick clustering Quick clustering of cells

Description

Cluster similar cells based on rank correlations in their gene expression profiles.

Usage

S4 method for signature 'ANY'
quickCluster(x, min.size=200, max.size=NULL, subset.row=NULL,

get.ranks=FALSE, method=c("hclust", "igraph"), pc.approx=TRUE, ...)

S4 method for signature 'SingleCellExperiment'
quickCluster(x, subset.row=NULL, ..., assay.type="counts", get.spikes=FALSE)

Arguments

x A numeric count matrix where rows are genes and columns are cells. Alterna-
tively, a SingleCellExperiment object containing such a matrix.

min.size An integer scalar specifying the minimum size of each cluster.
max.size An integer scalar specifying the maximum size of each cluster.
subset.row A logical, integer or character scalar indicating the rows of x to use.
get.ranks A logical scalar specifying whether a matrix of adjusted ranks should be re-

turned.
method A string specifying the clustering method to use.
pc.approx Argument passed to buildSNNGraph when method="igraph", otherwise ig-

nored.
... For quickCluster,ANY-method, additional arguments to be passed to cutreeDynamic

for method="hclust", or buildSNNGraph for method="igraph". For quickCluster,SingleCellExperiment-method,
additional arguments to pass to quickCluster,ANY-method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.
get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function provides a correlation-based approach to quickly define clusters of a minimum size
min.size. Two clustering strategies are available:

• If method="hclust", a distance matrix is constructed using Spearman’s rho on the counts
between cells. (Some manipulation is performed to convert Spearman’s rho into a proper
distance metric.) Hierarchical clustering is performed and a dynamic tree cut is used to define
clusters of cells.

• If method="igraph", a shared nearest neighbor graph is constructed using the buildSNNGraph
function. This is used to define clusters based on highly connected communities in the graph,
using the cluster_fast_greedy function. Again, neighbors are identified using distances
based on Spearman’s rho. This should be used in situations where there are too many cells to
build a distance matrix.

A correlation-based approach is preferred here as it is invariant to scaling normalization. This avoids
circularity between normalization and clustering, e.g., in computeSumFactors.

Quick clustering 35

Value

If get.ranks=FALSE, a character vector of cluster identities for each cell in counts is returned.

If get.ranks=TRUE, a numeric matrix is returned where each column contains ranks for the expres-
sion values in each cell.

Enforcing cluster sizes

With method="hclust", cutreeDynamic is used to ensure that all clusters contain a minimum
number of cells. However, some cells may not be assigned to any cluster and are assigned identities
of "0" in the output vector. In most cases, this is because those cells belong in a separate cluster with
fewer than min.size cells. The function will not be able to call this as a cluster as the minimum
threshold on the number of cells has not been passed. Users are advised to check that the unassigned
cells do indeed form their own cluster. Otherwise, it may be necessary to use a different clustering
algorithm.

When using method="igraph", clusters are first identified using cluster_fast_greedy. If the
smallest cluster contains fewer cells than min.size, it is merged with the closest neighbouring
cluster. In particular, the function will attempt to merge the smallest cluster with each other cluster.
The merge that maximizes the modularity score is selected, and a new merged cluster is formed.
This process is repeated until all (merged) clusters are larger than min.size.

If max.size is specified, clusters that are larger than max.size will be broken up into partitions
of equal size. This is done arbitrarily, without any use of cell-cell similarities within each cluster.
The aim of this parameter is to reduce cluster sizes for easier computational processing (e.g., in
computeSumFactors), rather than to define meaningful subclusters.

Gene selection for SingleCellExperiment inputs

In quickCluster,SingleCellExperiment-method, spike-in transcripts are not used by default as
they provide little information on the biological similarities between cells. This may not be the
case if subpopulations differ by total RNA content, in which case setting get.spikes=TRUE may
provide more discriminative power. Users can also set subset.row to specify which rows of x
are to be used to calculate correlations. This is equivalent to but more efficient than subsetting x
directly, as it avoids constructing a (potentially large) temporary matrix. Note that if subset.row is
specified, it will overwrite any setting of get.spikes.

Obtaining the scaled and centred ranks

Users can also set get.ranks=TRUE, in which case a matrix of ranks will be returned. Each column
contains the ranks for the expression values within a single cell after standardization and mean-
centring. Computing Euclidean distances between the rank vectors for pairs of cells will yield the
same correlation-based distance as that used above. This allows users to apply their own clustering
algorithms on the ranks, which protects against outliers and is invariant to scaling (at the cost of
sensitivity).

Author(s)

Aaron Lun and Karsten Bach

References

van Dongen S and Enright AJ (2012). Metric distances derived from cosine similarity and Pearson
and Spearman correlations. arXiv 1208.3145

36 sandbag

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

cutreeDynamic, computeSumFactors, buildSNNGraph

Examples

set.seed(100)
popsize <- 200
ngenes <- 1000
all.facs <- 2^rnorm(popsize, sd=0.5)
counts <- matrix(rnbinom(ngenes*popsize, mu=all.facs, size=1), ncol=popsize, byrow=TRUE)

clusters <- quickCluster(counts, min.size=20)
clusters <- quickCluster(counts, method="igraph")

sandbag Cell cycle phase training

Description

Use gene expression data to train a classifier for cell cycle phase.

Usage

S4 method for signature 'ANY'
sandbag(x, phases, gene.names=rownames(x),

fraction=0.5, subset.row=NULL)

S4 method for signature 'SingleCellExperiment'
sandbag(x, phases, subset.row=NULL, ...,

assay.type="counts", get.spikes=FALSE)

Arguments

x A numeric matrix of gene expression values where rows are genes and columns
are cells. Alternatively, a SingleCellExperiment object containing such a matrix.

phases A list of subsetting vectors specifying which cells are in each phase of the cell
cycle. This should typically be of length 3, with elements named as "G1", "S"
and "G2M".

gene.names A character vector of gene names.

fraction A numeric scalar specifying the minimum fraction to define a marker gene pair.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to sandbag,ANY-method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

sandbag 37

Details

This function implements the training step of the pair-based prediction method described by Scial-
done et al. (2015). Pairs of genes (A, B) are identified from a training data set where in each
pair, the fraction of cells in phase G1 with expression of A > B (based on expression values in
training.data) and the fraction with B > A in each other phase exceeds fraction. These pairs
are defined as the marker pairs for G1. This is repeated for each phase to obtain a separate marker
pair set.

Pre-defined sets of marker pairs are provided for mouse and human (see Examples). The mouse set
was generated as described by Scialdone et al. (2015), while the human training set was generated
with data from Leng et al. (2015). Classification from test data can be performed using the cyclone
function. For each cell, this involves comparing expression values between genes in each marker
pair. The cell is then assigned to the phase that is consistent with the direction of the difference in
expression in the majority of pairs.

For sandbag,SingleCellExperiment-method, the matrix of counts is used but can be replaced
with expression values by setting assays. By default, get.spikes=FALSE which means that any
rows corresponding to spike-in transcripts will not be considered when picking markers. This is
because the amount of spike-in RNA added will vary between experiments and will not be a robust
predictor. Nonetheless, if all rows are required, users can set get.spikes=TRUE. Users can also
manually select which rows to use via subset.row, which will override any setting of get.spikes.

While sandbag and its partner function cyclone were originally designed for cell cyclone phase
classification, the same computational strategy can be used to classify cells into any mutually exclu-
sive groupings. Any number and nature of groups can be specified in phases, e.g., differentiation
lineages, activation states. Only the names of phases need to be modified to reflect the biology
being studied.

Value

A named list of data.frames, where each data frame corresponds to a cell cycle phase and contains
the names of the genes in each marker pair.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

Leng N, Chu LF, Barry C et al. (2015). Oscope identifies oscillatory genes in unsynchronized
single-cell RNA-seq experiments. Nat. Methods 12:947–50

See Also

cyclone

Examples

ncells <- 50
ngenes <- 20
training <- matrix(rnorm(ncells*ngenes), ncol=ncells)
rownames(training) <- paste0("X", seq_len(ngenes))

38 Selector plot

is.G1 <- 1:20
is.S <- 21:30
is.G2M <- 31:50
out <- sandbag(training, list(G1=is.G1, S=is.S, G2M=is.G2M))
str(out)

Getting pre-trained marker sets
mm.pairs <- readRDS(system.file("exdata", "mouse_cycle_markers.rds", package="scran"))
hs.pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran"))

Selector plot Construct a selector plot via Shiny

Description

Generate an interactive Shiny plot in which cells can be selected for further analysis.

Usage

selectorPlot(x, y, persist=FALSE, plot.width=5, plot.height=500, run=TRUE, pch=16, ...)

Arguments

x, y Numeric vectors of x-y coordinates, of length equal to the number of cells.

persist A logical scalar indicating whether selections should persist after stopping the
app.

plot.width A numeric scalar specifying the plot width, see width in ?column.

plot.height A numeric scalar specifying the plot height in pixels.

run A logical scalar specifying whether the Shiny app should be run.

pch, ... Other arguments to pass to plot.

Details

This function will return a Shiny app object that can be run with runApp. The aim is to perform
dimensionality reduction to obtain coordinates for each cell, e.g., from PCA or t-SNE. These co-
ordinates can be plotted with selectorPlot, and subpopulations of interest can be interactively
selected. The selections can then be saved for further manipulation in R.

The app allows users to select groups of cells; mark them as cells of interest; and then save the
marked cells into a list. Currently marked cells will be shown in red, previously saved cells are
shown in orange, and all other cells are shown in grey. The distribution of saved cells is also shown
in a separate plot indicating the list element to which they were saved. This can be repeated multiple
times to obtain several groups of interest.

Several buttons are available within the app:

“Select”: Marks the current selection of cells.

“Deselect”: Unmarks the current selection of cells.

“Clear selection”: Unmarks all currently marked cells.

“Add to list”: Saves currently marked cells into a list.

“Reset all”: Removes all marking, removes all saved cells from the list.

“Save list to R”: Stops the app and returns the list of saved cells to R.

Spike-in normalization 39

Value

If run=FALSE, a Shiny app object is returned, which can be run with runApp. This transfers control
to a browser window where cells can be selected. Upon stopping the app with the “Save list to R”
button, control is transferred back to R and the list of saved cells is returned. Each element of the
list is a logical vector indicating which cells were saved in that group of interest.

If run=TRUE, a Shiny app object is created and run. This returns a list of saved cells upon stopping
the app as previously described.

Author(s)

Aaron Lun

See Also

runApp

Examples

Setting up PCs.
example(SingleCellExperiment)
pcs <- reducedDim(sce, "PCA")
x <- pcs[,1]
y <- pcs[,2]

Creating the app object.
app <- selectorPlot(x, y, run=FALSE)
if (interactive()) { saved <- shiny::runApp(app) }

Not run: # Running the app directly from the function.
saved <- selectorPlot(x, y)

End(Not run)

Spike-in normalization

Normalization with spike-in counts

Description

Compute size factors based on the coverage of spike-in transcripts.

Usage

S4 method for signature 'SingleCellExperiment'
computeSpikeFactors(x, type=NULL, assay.type="counts", sf.out=FALSE, general.use=TRUE)

Arguments

x A SingleCellExperiment object with rows corresponding spike-in transcripts.

type A character vector specifying which spike-in sets to use.

assay.type A string indicating which assay contains the counts.

40 Spike-in normalization

sf.out A logical scalar indicating whether only size factors should be returned.

general.use A logical scalar indicating whether the size factors should be stored for general
use by all genes.

Details

The size factor for each cell is defined as the sum of all spike-in counts in each cell. This is
equivalent to normalizing to equalize spike-in coverage between cells. Size factors are scaled so that
the mean of all size factors is unity, for standardization purposes if one were to compare different
sets of size factors.

Spike-in counts are assumed to be stored in the rows specified by isSpike(x). This specification
should have been performed by supplying the names of the spike-in sets – see ?isSpike for more
details. By default, if multiple spike-in sets are available, all of them will be used to compute the
size factors. The function can be restricted to a subset of the spike-ins by specifying the names of
the desired spike-in sets in type.

By default, the function will store several copies of the same size factors in the output object. One
copy will be stored in sizeFactors(x) for normalization of all genes – this can be disabled by
setting general.use=FALSE. One copy will also be stored in sizeFactors(x, type=s), where
s is the name of a spike-in set in type. (If type=NULL, a copy is stored for every spike-in set, as
all of them would be used to compute the size factors.) Separate storage allows spike-in-specific
normalization in normalize,SingleCellExperiment-method.

Value

If sf.out=TRUE, a numeric vector of size factors is returned directly.

Otherwise, an object of class x is returned, containing size factors for all cells. A copy of the vector
is stored for each spike-in set that was used to compute the size factors. If general.use=TRUE, a
copy is also stored for use by non-spike-in genes.

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

isSpike

Examples

################
Mocking up some data.
set.seed(100)
ncells <- 200

nspikes <- 100
spike.means <- 2^runif(nspikes, 3, 8)
spike.disp <- 100/spike.means + 0.5
spike.data <- matrix(rnbinom(nspikes*ncells, mu=spike.means, size=1/spike.disp), ncol=ncells)

technicalCV2 41

ngenes <- 2000
cell.means <- 2^runif(ngenes, 2, 10)
cell.disp <- 100/cell.means + 0.5
cell.data <- matrix(rnbinom(ngenes*ncells, mu=cell.means, size=1/cell.disp), ncol=ncells)

combined <- rbind(cell.data, spike.data)
colnames(combined) <- seq_len(ncells)
rownames(combined) <- seq_len(nrow(combined))
y <- SingleCellExperiment(list(counts=combined))
isSpike(y, "Spike") <- ngenes + seq_len(nspikes)

################
Computing and storing spike-in size factors.
y2 <- computeSpikeFactors(y)
head(sizeFactors(y2))
head(sizeFactors(y2, type="Spike"))

general.use=FALSE does not modify general size factors
sizeFactors(y2) <- 1
sizeFactors(y2, type="Spike") <- 1
y2 <- computeSpikeFactors(y2, general.use=FALSE)
head(sizeFactors(y2))
head(sizeFactors(y2, type="Spike"))

technicalCV2 Model the technical coefficient of variation

Description

Model the technical coefficient of variation as a function of the mean, and determine the significance
of highly variable genes.

Usage

S4 method for signature 'ANY'
technicalCV2(x, is.spike, sf.cell=NULL, sf.spike=NULL,

cv2.limit=0.3, cv2.tol=0.8, min.bio.disp=0.25)

S4 method for signature 'SingleCellExperiment'
technicalCV2(x, spike.type=NULL, ..., assay.type="counts")

Arguments

x A numeric matrix of counts, where each column corresponds to a cell and each
row corresponds to a spike-in transcript. Alternatively, a SingleCellExperiment
object that contains such values.

is.spike A vector indicating which rows of x correspond to spike-in transcripts.

sf.cell A numeric vector containing size factors for endogenous genes.

sf.spike A numeric vector containing size factors for spike-in transcripts.
cv2.limit, cv2.tol

Numeric scalars that determine the minimum mean abundance for the spike-in
transcripts to be used for trend fitting.

42 technicalCV2

min.bio.disp A numeric scalar specifying the minimum biological dispersion.

spike.type A character vector containing the names of the spike-in sets to use.

... Additional arguments to pass to technicalCV2,ANY-method.

assay.type A string specifying which assay values to use.

Details

This function will estimate the squared coefficient of variation (CV2) and mean for each spike-in
transcript. A mean-dependent trend is fitted to the CV2 values for the transcripts using a Gamma
GLM with glmgam.fit. Only high-abundance transcripts are used for stable trend fitting. (Specifi-
cally, a mean threshold is selected by taking all transcripts with CV2 above cv2.limit, and taking
the quantile of this subset at cv2.tol. A warning will be thrown and all spike-ins will be used if
the subset is empty.)

The trend is used to determine the technical CV2 for each endogenous gene based on its mean. To
identify highly variable genes, the null hypothesis is that the total CV2 for each gene is less than
or equal to the technical CV2 plus min.bio.disp. Deviations from the null are identified using
a chi-squared test. The additional min.bio.disp is necessary for a ratio-based test, as otherwise
genes with large relative (but small absolute) CV2 would be favoured.

For technicalCV2,ANY-method, the rows corresponding to spike-in transcripts are specified with
is.spike. These rows will be used for trend fitting, while all other rows are treated as endogenous
genes. If either sf.cell or sf.spike are not specified, the estimateSizeFactorsForMatrix
function is applied to compute size factors.

For technicalCV2,SingleCellExperiment-method, transcripts from spike-in sets named in spike.type
will be used for trend fitting. If spike.type=NULL, all spike-in sets listed in x will be used. Size
factors for the endogenous genes are automatically extracted via sizeFactors. Spike-in-specific
size factors for spike.type are extracted from x, if available; otherwise they are set to the size
factors for the endogenous genes. Note that the spike-in-specific factors must be the same for each
set in spike.type.

Users can also set is.spike to NA in technicalCV2,ANY-method; or spike.type to NA in technicalCV2,SingleCellExperiment-method.
In such cases, all rows will be used for trend fitting, and (adjusted) p-values will be reported for all
rows. This should be used in cases where there are no spike-ins. Here, the assumption is that most
endogenous genes do not exhibit high biological variability and thus can be used to model technical
variation.

Value

A data frame is returned containing one row per row of x (including both endogenous genes and
spike-in transcripts). Each row contains the following information:

mean: A numeric field, containing mean (scaled) counts for all genes and transcripts.

var: A numeric field, containing the variances for all genes and transcripts.

cv2: A numeric field, containing CV2 values for all genes and transcripts.

trend: A numeric field, containing the fitted value of the trend in the CV2 values. Note that
the fitted value is reported for all genes and transcripts, but the trend is only fitted using the
transcripts.

p.value: A numeric field, containing p-values for all endogenous genes (NA for rows correspond-
ing to spike-in transcripts).

FDR: A numeric field, containing adjusted p-values for all genes.

testVar 43

Author(s)

Aaron Lun, based on code from Brennecke et al. (2013)

References

Brennecke P, Anders S, Kim JK et al. (2013). Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10:1093-95

See Also

glmgam.fit, estimateSizeFactorsForMatrix

Examples

Mocking up some data.
ngenes <- 10000
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
nsamples <- 50
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
is.spike <- logical(ngenes)
is.spike[seq_len(500)] <- TRUE

Running it directly on the counts.
out <- technicalCV2(counts, is.spike)
head(out)
plot(out$mean, out$cv2, log="xy")
points(out$mean, out$trend, col="red", pch=16, cex=0.5)

Same again with an SingleCellExperiment.
rownames(counts) <- paste0("X", seq_len(ngenes))
colnames(counts) <- paste0("Y", seq_len(nsamples))
X <- SingleCellExperiment(list(counts=counts))
isSpike(X, "Spikes") <- is.spike

Dummying up some size factors (for convenience only, use computeSumFactors() instead).
sizeFactors(X) <- 1
X <- computeSpikeFactors(X, general.use=FALSE)

Running it.
out <- technicalCV2(X, spike.type="Spikes")
head(out)

testVar Test for significantly large variances

Description

Test for whether the total variance exceeds that expected under some null hypothesis, for sample
variances estimated from normally distributed observations.

Usage

testVar(total, null, df, design=NULL, test=c("chisq", "f"), second.df=NULL)

44 testVar

Arguments

total A numeric vector of total variances for all genes.

null A numeric scalar or vector of expected variances under the null hypothesis for
all genes.

df An integer scalar specifying the degrees of freedom on which the variances were
estimated.

design A design matrix, used to determine the degrees of freedom if df is missing.

test A string specifying the type of test to perform.

second.df A numeric scalar specifying the second degrees of freedom for the F-distribution
when test="f".

Details

The null hypothesis is that the true variance for each gene is equal to null. (Technically, it is that
the variance is equal to or less than this value, but the most conservative test is obtained at equality.)
If test="chisq", variance estimates are assumed to follow a chi-squared distribution on df degrees
of freedom and scaled by null/df. This is used to compute a p-value for total being greater than
null. The underlying assumption is that the observations are normally distributed under the null,
which is reasonable for log-counts with low-to-moderate dispersions.

The aim is to use this function to identify significantly highly variable genes (HVGs). For example,
the null vector can be set to the values of the trend fitted to the spike-in variances. This will
identify genes with variances significantly greater than technical noise. Alternatively, it can be set
to the trend fitted to the cellular variances, which will identify those that are significantly more
variable than the bulk of genes. Selecting HVGs on p-values is better than using total - null, as
the latter is less precise when null is large.

If test="f", the true variance of each spike-in transcript is assumed to be sampled from a scaled
inverse chi-squared distribution. This accounts for any inflated scatter around the trend due to differ-
ences in amplification efficiency between transcripts. As a result, the gene-wise variance estimates
are should be F-distributed around the trend under the null. The second degrees of freedom is es-
timated from the scatter around the trend in trendVar using fitFDistRobustly, and needs to be
supplied to second.df to calculate an appropriate p-value.

Value

A numeric vector of p-values for all genes.

Author(s)

Aaron Lun

References

Law CW, Chen Y, Shi W and Smyth GK (2014). voom: precision weights unlock linear model
analysis tools for RNA-seq read counts Genome Biol. 15(2), R29.

See Also

trendVar, decomposeVar, fitFDistRobustly

trendVar 45

Examples

set.seed(100)
null <- 100/runif(1000, 50, 2000)
df <- 30
total <- null * rchisq(length(null), df=df)/df

Direct test:
out <- testVar(total, null, df=df)
hist(out)

Rejecting the null:
alt <- null * 5 * rchisq(length(null), df=df)/df
out <- testVar(alt, null, df=df)
plot(alt[order(out)]-null)

Focusing on genes that have high absolute increases in variability:
out <- testVar(alt, null+0.5, df=df)
plot(alt[order(out)]-null)

trendVar Fit a variance trend

Description

Fit a mean-dependent trend to the gene-specific variances in single-cell RNA-seq data.

Usage

S4 method for signature 'ANY'
trendVar(x, method=c("loess", "spline", "semiloess"),

span=0.3, family="symmetric", degree=1, df=4,
parametric=FALSE, start=NULL, min.mean=0.1,
design=NULL, subset.row=NULL)

S4 method for signature 'SingleCellExperiment'
trendVar(x, subset.row=NULL, ..., assay.type="logcounts", use.spikes=TRUE)

Arguments

x A numeric matrix-like object of normalized log-expression values, where each
column corresponds to a cell and each row corresponds to a spike-in transcript.
Alternatively, a SingleCellExperiment object that contains such values.

method A string specifying the algorithm to use for smooth trend fitting.
span, family, degree

Arguments to pass to loess.

df Arguments to pass to robustSmoothSpline.

parametric A logical scalar indicating whether a parametric curve should be fitted prior to
smoothing.

start A named list of numeric scalars, containing starting values for parametric fitting
with nls. This is automatically generated with the most suitable values if set to
NULL.

46 trendVar

min.mean A numeric scalar specifying the minimum mean log-expression in order for a
gene to be used for trend fitting.

design A numeric matrix describing the uninteresting factors contributing to expression
in each cell.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to trendVar,ANY-method.

assay.type A string specifying which assay values to use, e.g., counts or exprs.

use.spikes A logical scalar specifying whether the trend should be fitted to variances for
spike-in transcripts or endogenous genes.

Details

This function fits an abundance-dependent trend to the variance of the log-normalized expression for
the spike-in transcripts. For SingleCellExperiment objects, these expression values can be computed
by normalize after setting the size factors, e.g., with computeSpikeFactors. Log-transformed
values are used as these are more robust to genes/transcripts with strong expression in only one or
two outlier cells.

The mean and variance of the normalized log-counts is calculated for each spike-in transcript, and
a trend is fitted to the variance against the mean for all transcripts. The fitted value of this trend
represents technical variability due to sequencing, drop-outs during capture, etc. Variance decom-
position to biological and technical components for endogenous genes can then be performed later
with decomposeVar.

The design matrix can be set if there are factors that should be blocked, e.g., batch effects, known
(and uninteresting) clusters. Otherwise, it will default to an all-ones matrix, effectively treating all
cells as part of the same group.

Value

A named list is returned, containing:

mean: A numeric vector of mean log-CPMs for all spike-in transcripts.

var: A numeric vector of the variances of log-CPMs for all spike-in transcripts.

trend: A function that returns the fitted value of the trend at any mean log-CPM.

design: A numeric matrix, containing the design matrix that was used.

df2: A numeric scalar, specifying the second degrees of freedom for a scaled F-distribution de-
scribing the variability of variance estimates around the trend.

Trend fitting options

If parametric=FALSE, smoothing is performed directly on the log-variances. This is the default as
it provides the most stable performance on arbitrary mean-variance relationships.

If parametric=TRUE, wa non-linear curve of the form

y =
ax

xn + b

is fitted to the variances against the means using nls. The specified smoothing algorihtm is applied
to the log-ratios of the variance to the fitted value. The aim is to use the parametric curve to reduce
the sharpness of the expected mean-variance relationship[for easier smoothing. Conversely, the
parametric form is not exact, so the smoothers will model any remaining trends in the residuals.

trendVar 47

The method argument specifies the smoothing algorithm to be applied on the log-ratios/variances.
By default, a robust loess curve is used for trend fitting via loess. This provides a fairly flexible
fit while protecting against genes with very large or very small variances. Some experimentation
with span, degree or family may be required to obtain satisfactory results. If method="spline",
a smoothing spline of degree df will be used instead, fitted using the smooth.spline function.

The trendVar function will produce an output trend function with which fitted values can be
computed. When extrapolating to values below the smallest observed mean, the output function
will approach zero. When extrapolating to values above the largest observed mean, the output
function will be set to the fitted value of the trend at the largest mean.

Note that method="semiloess" is the same as parametric=TRUE with method="loess".

Additional notes on row selection

Spike-in transcripts can be selected in trendVar,SingleCellExperiment-method using the use.spikes
method.

• By default, use.spikes=TRUE which means that only rows labelled as spike-ins with isSpike(x)
will be used.

• If use.spikes=FALSE, only the rows not labelled as spike-ins will be used.
• If use.spikes=NA, every row will be used for trend fitting, regardless of whether it corre-

sponds to a spike-in transcript or not.

If use.spikes=FALSE, this implies that trendVar will be applied to the endogenous genes in the
SingleCellExperiment object. For trendVar,ANY-method, it is equivalent to manually supplying
a matrix of normalized expression for endogenous genes. This assumes that most genes exhibit
technical variation and little biological variation, e.g., in a homogeneous population.

Users can also directly specify which rows to use with subset.row, which will interact as expected
with any non-NA value of use.spikes. If subset.row is specified and use.spikes=TRUE, only the
spike-in transcripts in subset.row are used. Otherwise, if use.spikes=FALSE, only the non-spike
in transcripts in subset.row are used.

Low-abundance genes with mean log-expression below min.mean are not used in trend fitting, to
preserve the sensitivity of span-based smoothers at moderate-to-high abundances. It also protects
against discreteness, which can interfere with estimation of the variability of the variance estimates
and accurate scaling of the trend. The default threshold is chosen based on the point at which
discreteness is observed in variance estimates from Poisson-distributed counts. For heterogeneous
droplet data, a lower threshold of 0.001-0.01 should be used.

Obviously, the usefulness of the trend is dependent on the quality of the features to which it is
fitted. For example, the trend will not provide accurate estimates of the technical component if the
coverage of all spike-ins is lower than that of endogenous genes.

Warning on size factor centring

If assay.type="logcounts", trendVar,SingleCellExperiment-method will attempt to deter-
mine if the expression values were computed from counts via normalize. If so, a warning will
be issued if the size factors are not centred at unity. This is because different size factors are typ-
ically used for endogenous genes and spike-in transcripts. If these size factor sets are not centred
at the same value, there will be systematic differences in abundance between these features. This
precludes the use of a spike-in fitted trend with abundances for endogenous genes in decomposeVar.

For other expression values and in trendVar,ANY-method, the onus is on the user to ensure that
normalization preserves differences in abundance. In other words, the scaling factors used to nor-
malize each feature should have the same mean. This ensures that spurious differences in abundance
are not introduced by the normalization process.

48 trendVar

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

nls, loess, decomposeVar, computeSpikeFactors, computeSumFactors, normalize

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.

Normalizing (gene-based factors for genes, spike-in factors for spike-ins)
y <- computeSumFactors(y)
y <- computeSpikeFactors(y, general.use=FALSE)
y <- normalize(y)

Fitting a trend to the spike-ins.
fit <- trendVar(y)
plot(fit$mean, fit$var)
curve(fit$trend(x), col="red", lwd=2, add=TRUE)

Fitting a trend to the endogenous genes.
fit.g <- trendVar(y, use.spikes=FALSE)
plot(fit.g$mean, fit.g$var)
curve(fit.g$trend(x), col="red", lwd=2, add=TRUE)

Index

∗Topic clustering
cyclone, 11
sandbag, 36

∗Topic correlation
correlatePairs, 7

∗Topic normalization
Deconvolution Methods, 15
Quick clustering, 34
Spike-in normalization, 39

∗Topic variance
decomposeVar, 13
Distance-to-median, 21
improvedCV2, 26
technicalCV2, 41
testVar, 43
trendVar, 45

∗Topic
correlatePairs, 7

bpparam, 10
buildSNNGraph, 2, 34, 36
buildSNNGraph,ANY-method

(buildSNNGraph), 2
buildSNNGraph,SingleCellExperiment-method

(buildSNNGraph), 2

calcAverage, 18
cluster_fast_greedy, 34, 35
column, 38
combineVar, 4
computeSpikeFactors, 18, 46, 48
computeSpikeFactors (Spike-in

normalization), 39
computeSpikeFactors,SingleCellExperiment-method

(Spike-in normalization), 39
computeSumFactors, 34–36, 48
computeSumFactors (Deconvolution

Methods), 15
computeSumFactors,ANY-method

(Deconvolution Methods), 15
computeSumFactors,SingleCellExperiment-method

(Deconvolution Methods), 15
convertTo, 5

convertTo,SingleCellExperiment-method
(convertTo), 5

cor, 10
correlateNull (correlatePairs), 7
correlatePairs, 7, 33
correlatePairs,ANY-method

(correlatePairs), 7
correlatePairs,SingleCellExperiment-method

(correlatePairs), 7
cutreeDynamic, 34–36
cyclone, 11, 37
cyclone,ANY-method (cyclone), 11
cyclone,SingleCellExperiment-method

(cyclone), 11

decomposeVar, 4, 5, 13, 21, 44, 46–48
decomposeVar,ANY,list-method

(decomposeVar), 13
decomposeVar,SingleCellExperiment,list-method

(decomposeVar), 13
Deconvolution Methods, 15
Denoise with PCA, 19
denoisePCA (Denoise with PCA), 19
denoisePCA,ANY-method (Denoise with

PCA), 19
denoisePCA,SingleCellExperiment-method

(Denoise with PCA), 19
DESeqDataSetFromMatrix, 7
DGEList, 7
Distance-to-median, 21
DM (Distance-to-median), 21

estimateSizeFactorsForMatrix, 42, 43
Explore Data, 22
exploreData (Explore Data), 22

findMarkers, 24, 32, 33
findMarkers,ANY-method (findMarkers), 24
findMarkers,SingleCellExperiment-method

(findMarkers), 24
fitFDistRobustly, 44

get.knn, 3
get.knnx, 31

49

50 INDEX

glmgam.fit, 42, 43

improvedCV2, 26
improvedCV2,ANY-method (improvedCV2), 26
improvedCV2,SingleCellExperiment-method

(improvedCV2), 26
irlba, 19, 29, 31
isSpike, 40

loess, 45, 47, 48

make_graph, 3
mnnCorrect, 29

newCellDataSet, 7
nls, 45, 46, 48
normalize, 26, 30, 46–48
ns, 28

overlapExprs, 32
overlapExprs,ANY-method (overlapExprs),

32
overlapExprs,SingleCellExperiment-method

(overlapExprs), 32

plotPCA, 21
prcomp_irlba, 3

Quick clustering, 34
quickCluster, 3, 17, 18
quickCluster (Quick clustering), 34
quickCluster,ANY-method (Quick

clustering), 34
quickCluster,SingleCellExperiment-method

(Quick clustering), 34

robustSmoothSpline, 27, 45
runApp, 23, 38, 39

sandbag, 11–13, 36
sandbag,ANY-method (sandbag), 36
sandbag,SingleCellExperiment-method

(sandbag), 36
Selector plot, 38
selectorPlot (Selector plot), 38
sizeFactors, 27, 42
smooth.spline, 27, 47
Spike-in normalization, 39
svd, 31

technicalCV2, 26, 28, 41
technicalCV2,ANY-method (technicalCV2),

41
technicalCV2,SingleCellExperiment-method

(technicalCV2), 41

testVar, 14, 15, 43
trendVar, 13–15, 19–21, 44, 45
trendVar,ANY-method (trendVar), 45
trendVar,SingleCellExperiment-method

(trendVar), 45

	buildSNNGraph
	combineVar
	convertTo
	correlatePairs
	cyclone
	decomposeVar
	Deconvolution Methods
	Denoise with PCA
	Distance-to-median
	Explore Data
	findMarkers
	improvedCV2
	mnnCorrect
	overlapExprs
	Quick clustering
	sandbag
	Selector plot
	Spike-in normalization
	technicalCV2
	testVar
	trendVar
	Index

