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scater-package Single-cell analysis toolkit for expression in R

Description

scater provides a class and numerous functions for the quality control, normalisation and visualisa-
tion of single-cell RNA-seq expression data.

Details

In particular, scater provides easy generation of quality control metrics and simple functions to
visualise quality control metrics and their relationships.

accessors Additional accessors for the typical elements of a SingleCellExperi-
ment object.

Description

Convenience functions to access commonly-used assays of the SingleCellExperiment object.

Usage

norm_exprs(object)

norm_exprs(object) <- value

stand_exprs(object)

stand_exprs(object) <- value

fpkm(object)

fpkm(object) <- value

Arguments

object SingleCellExperiment class object from which to access or to which to as-
sign assay values. Namely: "exprs", norm_exprs", "stand_exprs", "fpkm". The
following are imported from SingleCellExperiment: "counts", "normcounts",
"logcounts", "cpm", "tpm".

value a numeric matrix (e.g. for exprs)
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Value

a matrix of normalised expression data

a matrix of standardised expressiond data

a matrix of FPKM values

A matrix of numeric, integer or logical values.

Author(s)

Davis McCarthy

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

example_sce <- normalize(example_sce)
head(logcounts(example_sce)[,1:10])
head(exprs(example_sce)[,1:10]) # identical to logcounts()

example_sce <- SingleCellExperiment(
assays = list(norm_counts = sc_example_counts), colData = sc_example_cell_info)

counts(example_sce) <- sc_example_counts
norm_exprs(example_sce) <- log2(calculateCPM(example_sce, use.size.factors = FALSE) + 1)

stand_exprs(example_sce) <- log2(calculateCPM(example_sce, use.size.factors = FALSE) + 1)

tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e4)

cpm(example_sce) <- calculateCPM(example_sce, use.size.factors = FALSE)

fpkm(example_sce)

areSizeFactorsCentred Check if the size factors are centred at unity

Description

Checks if each set of size factors is centred at unity, such that abundances can be reasonably com-
pared between features normalized with different sets of size factors.

Usage

areSizeFactorsCentred(object, centre = 1, tol = 1e-06)
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Arguments

object an SingleCellExperiment object containing multiple sets of size factors.

centre a numeric scalar, the value around which all sets of size factors should be cen-
tred.

tol a numeric scalar, the tolerance for testing equality of the mean of each size factor
set to centre.

Value

a SingleCellExperiment object with centred size factors

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
keep_gene <- rowSums(counts(example_sce)) > 0
example_sce <- example_sce[keep_gene,]

sizeFactors(example_sce) <- runif(ncol(example_sce))
areSizeFactorsCentred(example_sce)
example_sce <- normalize(example_sce, centre = TRUE)
areSizeFactorsCentred(example_sce)

arrange Arrange columns (cells) of a SingleCellExperiment object

Description

The SingleCellExperiment returned will have cells ordered by the corresponding variable in
colData(object).

Usage

arrange(object, ...)

## S4 method for signature 'SingleCellExperiment'
arrange(object, ...)

Arguments

object A SingleCellExperiment object.

... Additional arguments to be passed to dplyr::arrange to act on colData(object).

Value

An SingleCellExperiment object.
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- arrange(example_sce, Cell_Cycle)

bootstraps Accessor and replacement for bootstrap results in a
SingleCellExperiment object

Description

SingleCellExperiment objects can contain bootstrap expression values (for example, as generated
by the kallisto software for quantifying feature abundance). These functions conveniently access
and replace the ’bootstrap’ elements in the assays slot with the value supplied, which must be an
matrix of the correct size, namely the same number of rows and columns as the SingleCellExperiment
object as a whole.

Usage

bootstraps(object)

bootstraps(object) <- value

## S4 method for signature 'SingleCellExperiment'
bootstraps(object)

## S4 replacement method for signature 'SingleCellExperiment,array'
bootstraps(object) <- value

Arguments

object a SingleCellExperiment object.

value an array of class "numeric" containing bootstrap expression values

Value

If accessing bootstraps slot of an SingleCellExperiment, then an array with the bootstrap values,
otherwise an SingleCellExperiment object containing new bootstrap values.

Author(s)

Davis McCarthy
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
bootstraps(example_sce)

calcAverage Calculate average counts, adjusting for size factors or library size

Description

Calculate average counts per feature, adjusting them as appropriate to take into account for size
factors for normalization or library sizes (total counts).

Usage

calcAverage(object, size.factors = NULL)

Arguments

object a SingleCellExperiment object or a matrix of counts

size.factors numeric(), vector of size factors to use to scale library size in computation of
counts-per-million. Extracted from the object if it is a SingleCellExperiment
object; if object is a matrix, then if non-NULL, the provided size factors are
used. Default is NULL, in which case size factors are all set to 1 (i.e. library size
adjustment only).

Value

Vector of average count values with same length as number of features.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

## calculate average counts
ave_counts <- calcAverage(example_sce)
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calcIsExprs Calculate which features are expressed in which cells using a thresh-
old on observed counts, transcripts-per-million, counts-per-million,
FPKM, or defined expression levels.

Description

Calculate which features are expressed in which cells using a threshold on observed counts, transcripts-
per-million, counts-per-million, FPKM, or defined expression levels.

Usage

calcIsExprs(object, lowerDetectionLimit = 0, exprs_values = "counts")

Arguments

object a SingleCellExperiment object with expression and/or count data.
lowerDetectionLimit

numeric scalar giving the minimum expression level for an expression observa-
tion in a cell for it to qualify as expressed.

exprs_values character scalar indicating whether the count data ("counts"), the log-transformed
count data ("logcounts"), transcript-per-million ("tpm"), counts-per-million
("cpm") or FPKM ("fpkm") should be used to define if an observation is ex-
pressed or not. Defaults to the first available value of those options in the order
shown.

Value

a logical matrix indicating whether or not a feature in a particular cell is expressed.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
assay(example_sce, "is_exprs") <- calcIsExprs(example_sce,
lowerDetectionLimit = 1, exprs_values = "counts")

calculateCPM Calculate counts per million (CPM)

Description

Calculate count-per-million (CPM) values from the count data.

Usage

calculateCPM(object, use.size.factors = TRUE)
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Arguments

object an SingleCellExperiment object

use.size.factors

a logical scalar specifying whether the size factors should be used to construct
effective library sizes, or if the library size should be directly defined as the sum
of counts for each cell.

Value

Matrix of CPM values.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
cpm(example_sce) <- calculateCPM(example_sce, use.size.factors = FALSE)

calculateFPKM Calculate fragments per kilobase of exon per million reads mapped
(FPKM)

Description

Calculate fragments per kilobase of exon per million reads mapped (FPKM) values for expression
from counts for a set of features.

Usage

calculateFPKM(object, effective_length, use.size.factors = TRUE)

Arguments

object an SingleCellExperiment object

effective_length

vector of class "numeric" providing the effective length for each feature in the
SCESet object

use.size.factors

a logical scalar, see calculateCPM

Value

Matrix of FPKM values.
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
effective_length <- rep(1000, 2000)
fpkm(example_sce) <- calculateFPKM(example_sce, effective_length,
use.size.factors = FALSE)

calculateQCMetrics Calculate QC metrics

Description

Calculate QC metrics

Usage

calculateQCMetrics(object, exprs_values = "counts", feature_controls = NULL,
cell_controls = NULL, nmads = 5, pct_feature_controls_threshold = 80)

Arguments

object an SingleCellExperiment object containing expression values and experimental
information. Must have been appropriately prepared.

exprs_values character(1), indicating slot of the assays of the object should be used to define
expression? Valid options are "counts" [default; recommended], "tpm", "fpkm"
and "logcounts", or anything else in the object added manually by the user.

feature_controls

a named list containing one or more vectors (character vector of feature names,
logical vector, or a numeric vector of indices are all acceptable) used to identify
feature controls (for example, ERCC spike-in genes, mitochondrial genes, etc).

cell_controls a character vector of cell (sample) names, or a logical vector, or a numeric vec-
tor of indices used to identify cell controls (for example, blank wells or bulk
controls).

nmads numeric scalar giving the number of median absolute deviations to be used to
flag potentially problematic cells based on total_counts (total number of counts
for the cell, or library size) and total_features (number of features with non-
zero expression). For total_features, cells are flagged for filtering only if to-
tal_features is nmads below the median. Default value is 5.

pct_feature_controls_threshold

numeric scalar giving a threshold for percentage of expression values accounted
for by feature controls. Used as to flag cells that may be filtered based on high
percentage of expression from feature controls.
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Details

Calculate useful quality control metrics to help with pre-processing of data and identification of
potentially problematic features and cells.

The following QC metrics are computed:

total_counts: Total number of counts for the cell (aka “library size”)

log10_total_counts: Total counts on the log10-scale

total_features: The number of endogenous features (i.e. not control features) for the cell that have
expression above the detection limit (default detection limit is zero)

filter_on_depth: Would this cell be filtered out based on its log10-depth being (by default) more
than 5 median absolute deviations from the median log10-depth for the dataset?

filter_on_coverage: Would this cell be filtered out based on its coverage being (by default) more
than 5 median absolute deviations from the median coverage for the dataset?

filter_on_pct_counts_feature_controls: Should the cell be filtered out on the basis of having a
high percentage of counts assigned to control features? Default threshold is 80 percent (i.e.
cells with more than 80 percent of counts assigned to feature controls are flagged).

counts_feature_controls: Total number of counts for the cell that come from (one or more sets of
user-defined) control features. Defaults to zero if no control features are indicated. If more
than one set of feature controls are defined (for example, ERCC and MT genes are defined as
controls), then this metric is produced for all sets, plus the union of all sets (so here, we get
columns counts_feature_controls_ERCC, counts_feature_controls_MT and counts_feature_controls).

log10_counts_feature_controls: Just as above, the total number of counts from feature controls,
but on the log10-scale. Defaults to zero (i.e.~log10(0 + 1), offset to avoid negative infinite
values) if no feature control are indicated.

pct_counts_feature_controls: Just as for the counts described above, but expressed as a percent-
age of the total counts. Defined for all control sets and their union, just like the raw counts.
Defaults to zero if no feature controls are defined.

filter_on_pct_counts_feature_controls: Would this cell be filtered out on the basis that the per-
centage of counts from feature controls is higher than a defined threhold (default is 80%)? Just
as with counts_feature_controls, this is defined for all control sets and their union.

pct_counts_top_50_features: What percentage of the total counts is accounted for by the 50
highest-count features? Also computed for the top 100 and top 200 features, with the ob-
vious changes to the column names. Note that the top “X” percentage will not be computed if
the total number of genes is less than “X”.

pct_dropout: Percentage of features that are not “detectably expressed”, i.e. have expression be-
low the lowerDetectionLimit threshold.

counts_endogenous_features: Total number of counts for the cell that come from endogenous
features (i.e. not control features). Defaults to ‘depth‘ if no control features are indicated.

log10_counts_endogenous_features: Total number of counts from endogenous features on the
log10-scale. Defaults to all counts if no control features are indicated.

n_detected_feature_controls: Number of defined feature controls that have expression greater
than the threshold defined in the object (that is, they are “detectably expressed”; see object@lowerDetectionLimit
to check the threshold). As with other metrics for feature controls, defined for all sets of fea-
ture controls (set names appended as above) and their union. So we might commonly get
columns n_detected_feature_controls_ERCC, n_detected_feature_controls_MT and
n_detected_feature_controls (ERCC and MT genes detected).
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is_cell_control: Has the cell been defined as a cell control? If more than one set of cell con-
trols are defined (for example, blanks and bulk libraries are defined as cell controls), then
this metric is produced for all sets, plus the union of all sets (so we could typically get
columns is_cell_control_Blank, is_cell_control_Bulk, and is_cell_control, the lat-
ter including both blanks and bulks as cell controls).

These cell-level QC metrics are added as columns to the “phenotypeData” slot of the SingleCellExperiment
object so that they can be inspected and are readily available for other functions to use. Furthermore,
wherever “counts” appear in the above metrics, the same metrics will also be computed for “exprs”,
“tpm” and “fpkm” values (if TPM and FPKM values are present in the SingleCellExperiment
object), with the appropriate term replacing “counts” in the name. The following feature-level QC
metrics are also computed:

mean_exprs: The mean expression level of the gene/feature.

exprs_rank: The rank of the feature’s mean expression level in the cell.

n_cells_counts: The number of cells for which the expression level of the feature is above the
detection limit (default detection limit is zero).

total_feature_counts: The total number of counts assigned to that feature across all cells.

log10_total_feature_counts: Total feature counts on the log10-scale.

pct_total_counts: The percentage of all counts that are accounted for by the counts assigned to the
feature.

pct_dropout: The percentage of all cells that have no detectable expression (i.e. is_exprs(object)
is FALSE) for the feature.

is_feature_control: Is the feature a control feature? Default is ‘FALSE‘ unless control features
are defined by the user. If more than one feature control set is defined (as above), then a
column of this type is produced for each control set (e.g. here, is_feature_control_ERCC
and is_feature_control_MT) as well as the column named is_feature_control, which
indicates if the feature belongs to any of the control sets.

These feature-level QC metrics are added as columns to the “featureData” slot of the SingleCellExperiment
object so that they can be inspected and are readily available for other functions to use. As
with the cell-level metrics, wherever “counts” appear in the above, the same metrics will also be
computed for “exprs”, “tpm” and “fpkm” values (if TPM and FPKM values are present in the
SingleCellExperiment object), with the appropriate term replacing “counts” in the name.

Value

an SingleCellExperiment object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)

## with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:40))

## with a named set of feature controls defined
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example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(ERCC = 1:40))

calculateTPM Calculate transcripts-per-million (TPM)

Description

Calculate transcripts-per-million (TPM) values for expression from counts for a set of features.

Usage

calculateTPM(object, effective_length = NULL, calc_from = "counts")

Arguments

object a SingleCellExperiment object

effective_length

vector of class "numeric" providing the effective length for each feature in the
SingleCellExperiment object

calc_from character string indicating whether to compute TPM from "counts", "normcounts"
or "fpkm". Default is to use "counts", in which case the effective_length
argument must be supplied.

Value

Matrix of TPM values.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e04,

calc_from = "counts")

## calculate from FPKM
fpkm(example_sce) <- calculateFPKM(example_sce, effective_length = 5e04,
use.size.factors = FALSE)
tpm(example_sce) <- calculateTPM(example_sce, effective_length = 5e04,

calc_from = "fpkm")
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deprecated Retrieve a representation of gene expression

Description

Deprecated from scater version 1.3.29.

Deprecated from scater version 1.5.2.

Deprecated from scater version 1.5.2.

Usage

getExprs(object)

toCellDataSet(sce, exprs_values = "exprs")

fromCellDataSet(cds, exprs_values = "tpm", logged = FALSE,
logExprsOffset = 1)

Arguments

object An object of type SCESet

sce An SCESet object

exprs_values What should exprs(cds) be mapped from in the SCESet? Should be one of
"exprs", "tpm", "fpkm", "counts"

cds A CellDataSet from the monocle package

logged logical, if exprs_values="exprs", are the expression values already on the
log2 scale, or not?

logExprsOffset numeric, value to add prior to log-transformation.

Value

A matrix representation of expression values.

An object of class CellDataSet

An object of class SCESet

Examples

## Not run: "Deprecated"
## Not run: "Deprecated"
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downsampleCounts Downsample a count matrix

Description

Downsample a count matrix to a desired proportion.

Usage

downsampleCounts(x, prop)

Arguments

x matrix of counts

prop numeric scalar or vector of length ncol(x) in [0, 1] indicating the downsam-
pling proportion

Details

Given multiple 10X batches of very different sequencing depths, it can be beneficial to downsample
the deepest batches to match the coverage of the shallowest batches. This avoids differences in
technical noise that can drive clustering by batch.

Downsampling without replacement is performed on the counts in each cell to generate the output
matrix. Each count in the returned matrix is guaranteed to be smaller than the original value in x.
This provides an alternative to downsampling in the CellRanger aggr function.

Value

an integer matrix of downsampled counts

Examples

sce10x <- read10xResults(system.file("extdata", package="scater"))
downsampled <- downsampleCounts(counts(sce10x), prop = 0.5)

filter Return SingleCellExperiment with cells matching conditions.

Description

Subsets the columns (cells) of a SingleCellExperiment based on matching conditions in the rows
of colData(object).

Usage

filter(object, ...)

## S4 method for signature 'SingleCellExperiment'
filter(object, ...)
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Arguments

object A SingleCellExperiment object.

... Additional arguments to be passed to dplyr::filter to act on colData(object).

Value

An SingleCellExperiment object.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce_treat1 <- filter(example_sce, Treatment == "treat1")

findImportantPCs Find most important principal components for a given variable

Description

Find most important principal components for a given variable

Usage

findImportantPCs(object, variable = "total_features",
plot_type = "pcs-vs-vars", exprs_values = "logcounts", ntop = 500,
feature_set = NULL, scale_features = TRUE, theme_size = 10)

Arguments

object an SCESet object containing expression values and experimental information.
Must have been appropriately prepared.

variable character scalar providing a variable name (column from colData(object)) for
which to determine the most important PCs.

plot_type character string, indicating which type of plot to produce. Default, "pairs-pcs"
produces a pairs plot for the top 5 PCs based on their R-squared with the variable
of interest. A value of "pcs-vs-vars" produces plots of the top PCs against the
variable of interest.

exprs_values which slot of the assayData in the object should be used to define expression?
Valid options are "counts", "tpm", "fpkm" and "logcounts" (default), or anything
else in the object added manually by the user.

ntop numeric scalar indicating the number of most variable features to use for the
PCA. Default is 500, but any ntop argument is overrided if the feature_set
argument is non-NULL.

feature_set character, numeric or logical vector indicating a set of features to use for the
PCA. If character, entries must all be in rownames(object). If numeric, values
are taken to be indices for features. If logical, vector is used to index features
and should have length equal to nrow(object).
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scale_features logical, should the expression values be standardised so that each feature has
unit variance? Default is TRUE.

theme_size numeric scalar providing base font size for ggplot theme.

Details

Plot the top 5 or 6 most important PCs (depending on the plot_type argument for a given variable.
Importance here is defined as the R-squared value from a linear model regressing each PC onto the
variable of interest.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]
example_sce <- calculateQCMetrics(example_sce)
findImportantPCs(example_sce, variable="total_features")

getBMFeatureAnnos Get feature annotation information from Biomart

Description

Use the biomaRt package to add feature annotation information to an SingleCellExperiment.

Usage

getBMFeatureAnnos(object, filters = "ensembl_transcript_id",
attributes = c("ensembl_transcript_id", "ensembl_gene_id", feature_symbol,
"chromosome_name", "transcript_biotype", "transcript_start", "transcript_end",
"transcript_count"), feature_symbol = "mgi_symbol",
feature_id = "ensembl_gene_id", biomart = "ENSEMBL_MART_ENSEMBL",
dataset = "mmusculus_gene_ensembl", host = "www.ensembl.org")

Arguments

object an SingleCellExperiment object

filters character vector defining the "filters" terms to pass to the biomaRt::getBM func-
tion.

attributes character vector defining the biomaRt attributes to pass to the attributes ar-
gument of getBM.
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feature_symbol character string defining the biomaRt attribute to be used to define the sym-
bol to be used for each feature (which appears as the feature_symbol in row-
Data(object), subsequently). Default is "mgi_symbol", gene symbols for mouse.
This should be changed if the organism is not Mus musculus!

feature_id character string defining the biomaRt attribute to be used to define the ID to
be used for each feature (which appears as the feature_id in rowData(object),
subsequently). Default is "ensembl_gene_id", Ensembl gene IDs for mouse.
This should be changed if the organism is not Mus musculus!

biomart character string defining the biomaRt to be used. Default is "ENSEMBL_MART_ENSEMBL".

dataset character string defining the biomaRt dataset to use. Default is "mmusculus_gene_ensembl",
which should be changed if the organism is not the mouse!

host optional character string argument which can be used to select a particular "host"
from biomaRt to use. Useful for accessing archived versions of biomaRt data.
Default is "www.ensembl.org", in which case the current version of the biomaRt
(now hosted by Ensembl) is used.

Details

See the documentation for the biomaRt package, specifically for the functions useMart and getBM,
for information on what are permitted values for the filters, attributes, biomart, dataset and host
arguments.

Value

a SingleCellExperiment object

Examples

## Not run:
object <- getBMFeatureAnnos(object)

## End(Not run)

isOutlier Identify if a cell is an outlier based on a metric

Description

Convenience function to determine which values for a metric are outliers based on median-absolute-
deviation (MAD).

Usage

isOutlier(metric, nmads = 5, type = c("both", "lower", "higher"),
log = FALSE, subset = NULL, batch = NULL, min.diff = NA)
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Arguments

metric numeric or integer vector of values for a metric

nmads scalar, number of median-absolute-deviations away from median required for a
value to be called an outlier

type character scalar, choice indicate whether outliers should be looked for at both
tails (default: "both") or only at the lower end ("lower") or the higher end
("higher")

log logical, should the values of the metric be transformed to the log10 scale before
computing median-absolute-deviation for outlier detection?

subset logical or integer vector, which subset of values should be used to calculate
the median/MAD? If NULL, all values are used. Missing values will trigger a
warning and will be automatically ignored.

batch factor of length equal to metric, specifying the batch to which each observation
belongs. A median/MAD is calculated for each batch, and outliers are then
identified within each batch.

min.diff numeric scalar indicating the minimum difference from the median to consider
as an outlier. The outlier threshold is defined from the larger of nmads MADs
and min.diff, to avoid calling many outliers when the MAD is very small. If
NA, it is ignored.

Value

a logical vector of the same length as the metric argument

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)

## with a set of feature controls defined
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:40))
isOutlier(example_sce$total_counts, nmads = 3)

kallisto-wrapper kallisto wrapper functions

Description

Run the abundance quantification tool kallisto on a set of FASTQ files. Requires kallisto
(http://pachterlab.github.io/kallisto/) to be installed and a kallisto feature index must
have been generated prior to using this function. See the kallisto website for installation and basic
usage instructions.

Read kallisto results for a single sample into a list

After generating transcript/feature abundance results using kallisto for a batch of samples, read
these abundance values into a SingleCellExperiment object.

http://pachterlab.github.io/kallisto/
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Usage

runKallisto(targets_file, transcript_index, single_end = TRUE,
output_prefix = "output", fragment_length = NULL,
fragment_standard_deviation = NULL, n_cores = 2,
n_bootstrap_samples = 0, bootstrap_seed = NULL, correct_bias = TRUE,
plaintext = FALSE, kallisto_version = "current", verbose = TRUE,
dry_run = FALSE, kallisto_cmd = "kallisto")

readKallistoResultsOneSample(directory, read_h5 = FALSE,
kallisto_version = "current")

readKallistoResults(kallisto_log = NULL, samples = NULL,
directories = NULL, read_h5 = FALSE, kallisto_version = "current",
logExprsOffset = 1, verbose = TRUE)

Arguments

targets_file character string giving the path to a tab-delimited text file with either 2 columns
(single-end reads) or 3 columns (paired-end reads) that gives the sample names
(first column) and FastQ file names (column 2 and if applicable 3). The file is
assumed to have column headers, although these are not used.

transcript_index

character string giving the path to the kallisto index to be used for the feature
abundance quantification.

single_end logical, are single-end reads used, or paired-end reads?
output_prefix character string giving the prefix for the output folder that will contain the

kallisto results. The default is "output" and the sample name (column 1 of
targets_file) is appended (preceded by an underscore).

fragment_length

scalar integer or numeric giving the estimated average fragment length. Re-
quired argument if single_end is TRUE, optional if FALSE (kallisto default for
paired-end data is that the value is estimated from the input data).

fragment_standard_deviation

scalar numeric giving the estimated standard deviation of read fragment length.
Required argument if single_end is TRUE, optional if FALSE (kallisto default
for paired-end data is that the value is estimated from the input data).

n_cores integer giving the number of cores (nodes/threads) to use for the kallisto jobs.
The package parallel is used. Default is 2 cores.

n_bootstrap_samples

integer giving the number of bootstrap samples that kallisto should use (default
is 0). With bootstrap samples, uncertainty in abundance can be quantified.

bootstrap_seed scalar integer or numeric giving the seed to use for the bootstrap sampling (de-
fault used by kallisto is 42). Optional argument.

correct_bias logical, should kallisto’s option to model and correct abundances for sequence
specific bias? Requires kallisto version 0.42.2 or higher.

plaintext logical, if TRUE then bootstrapping results are returned in a plain text file rather
than an HDF5 https://www.hdfgroup.org/HDF5/ file.

kallisto_version

character string indicating whether or not the version of kallisto to be used is
"pre-0.42.2" or "current". This is required because the kallisto developers
changed the output file extensions and added features in version 0.42.2.

https://www.hdfgroup.org/HDF5/


kallisto-wrapper 21

verbose logical, should timings for the run be printed?

dry_run logical, if TRUE then a list containing the kallisto commands that would be run
and the output directories is returned. Can be used to read in results if kallisto is
run outside an R session or to produce a script to run outside of an R session.

kallisto_cmd (optional) string giving full command to use to call kallisto, if simply typing
"kallisto" at the command line does not give the required version of kallisto or
does not work. Default is simply "kalliso". If used, this argument should give
the full path to the desired kallisto binary.

directory character string giving the path to the directory containing the kallisto results for
the sample.

read_h5 logical, if TRUE then read in bootstrap results from the HDF5 object produced
by kallisto.

kallisto_log list, generated by runKallisto. If provided, then samples and directories
arguments are ignored.

samples character vector providing a set of sample names to use for the abundance re-
sults.

directories character vector providing a set of directories containing kallisto abundance re-
sults to be read in.

logExprsOffset numeric scalar, providing the offset used when doing log2-transformations of
expression data to avoid trying to take logs of zero. Default offset value is 1.

Details

A kallisto transcript index can be built from a FASTA file: kallisto index [arguments] FASTA-file.
See the kallisto documentation for further details.

The directory is expected to contain results for just a single sample. Putting more than one sam-
ple’s results in the directory will result in unpredictable behaviour with this function. The function
looks for the files (with the default names given by kallisto) ’abundance.txt’, ’run_info.json’ and (if
read_h5=TRUE) ’abundance/h5’. If these files are missing, or if results files have different names,
then this function will not find them.

This function expects to find only one set of kallisto abundance results per directory; multiple
adundance results in a given directory will be problematic.

Value

A list containing three elements for each sample for which feature abundance has been quantified:
(1) kallisto_call, the call used for kallisto, (2) kallisto_log the log generated by kallisto, and
(3) output_dir the directory in which the kallisto results can be found.

A list with two elements: (1) a data.frame abundance with columns for ’target_id’ (feature, tran-
script, gene etc), ’length’ (feature length), ’eff_length’ (effective feature length), ’est_counts’ (esti-
mated feature counts), ’tpm’ (transcripts per million) and possibly many columns containing boot-
strap estimated counts; and (2) a list run_info with details about the kallisto run that generated the
results.

a SingleCellExperiment object

Examples

## Not run:
## If in kallisto's 'test' directory, then try these calls:
## Generate 'targets.txt' file:
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write.table(data.frame(Sample="sample1", File1="reads_1.fastq.gz", File2="reads_1.fastq.gz"),
file="targets.txt", quote=FALSE, row.names=FALSE, sep="\t")

kallisto_log <- runKallisto("targets.txt", "transcripts.idx", single_end=FALSE,
output_prefix="output", verbose=TRUE, n_bootstrap_samples=10,
dry_run = FALSE)

## End(Not run)
# If kallisto results are in the directory "output", then call:
# readKallistoResultsOneSample("output")
## Not run:
kallisto_log <- runKallisto("targets.txt", "transcripts.idx", single_end=FALSE,

output_prefix="output", verbose=TRUE, n_bootstrap_samples=10)
sceset <- readKallistoResults(kallisto_log)

## End(Not run)

multiplot Multiple plot function for ggplot2 plots

Description

Place multiple ggplot plots on one page.

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

..., plotlist ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)

cols numeric scalar giving the number of columns in the layout

layout a matrix specifying the layout. If present, cols is ignored.

Details

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go
in the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom. There is
no way to tweak the relative heights or widths of the plots with this simple function. It was adapted
from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Value

a ggplot plot object

Examples

library(ggplot2)
## This example uses the ChickWeight dataset, which comes with ggplot2
## First plot
p1 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet, group = Chick)) +

geom_line() +
ggtitle("Growth curve for individual chicks")

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
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## Second plot
p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +

geom_point(alpha = .3) +
geom_smooth(alpha = .2, size = 1) +
ggtitle("Fitted growth curve per diet")

## Third plot
p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, colour = Diet)) +

geom_density() +
ggtitle("Final weight, by diet")

## Fourth plot
p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight, fill = Diet)) +

geom_histogram(colour = "black", binwidth = 50) +
facet_grid(Diet ~ .) +
ggtitle("Final weight, by diet") +
theme(legend.position = "none") # No legend (redundant in this graph)

## Combine plots and display
multiplot(p1, p2, p3, p4, cols = 2)

mutate Add new variables to colData(object).

Description

Adds ne

Usage

mutate(object, ...)

## S4 method for signature 'SingleCellExperiment'
mutate(object, ...)

Arguments

object a SingleCellExperiment object.

... Additional arguments to be passed to dplyr::mutate to act on colData(object).

Value

An SingleCellExperiment object.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- mutate(example_sce, is_quiescent = Cell_Cycle == "G0")
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newSCESet Create a new SCESet object

Description

Deprecated from scater version 1.3.29; the package now uses the SingleCellExperiment class.
To convert an SCESet object to SingleCellExperiment see the toSingleCellExperiment function.
This function is retained for backwards compatibility.

Usage

newSCESet(exprsData = NULL, countData = NULL, tpmData = NULL,
fpkmData = NULL, cpmData = NULL, phenoData = NULL, featureData = NULL,
experimentData = NULL, is_exprsData = NULL,
cellPairwiseDistances = dist(vector()),
featurePairwiseDistances = dist(vector()), lowerDetectionLimit = NULL,
logExprsOffset = NULL)

Arguments

exprsData expression data matrix for an experiment (features x cells)

countData data matrix containing raw count expression values

tpmData matrix of class "numeric" containing transcripts-per-million (TPM) expression
values

fpkmData matrix of class "numeric" containing fragments per kilobase of exon per million
reads mapped (FPKM) expression values

cpmData matrix of class "numeric" containing counts per million (CPM) expression val-
ues (optional)

phenoData data frame containing attributes of individual cells

featureData data frame containing attributes of features (e.g. genes)

experimentData MIAME class object containing metadata data and details about the experiment
and dataset.

is_exprsData matrix of class "logical", indicating whether or not each observation is above
the lowerDetectionLimit.

cellPairwiseDistances

object of class "dist" (or a class that extends "dist") containing cell-cell dis-
tance or dissimilarity values.

featurePairwiseDistances

object of class "dist" (or a class that extends "dist") containing feature-feature
distance or dissimilarity values.

lowerDetectionLimit

the minimum expression level that constitutes true expression (defaults to zero
and uses count data to determine if an observation is expressed or not).

logExprsOffset numeric scalar, providing the offset used when doing log2-transformations of
expression data to avoid trying to take logs of zero. Default offset value is 1.
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Details

This function now returns a SingleCellExperiment object, whereas earlier versions produced an
SCESet object. The scater package now uses SingleCellExperiment as its data structure instead
of SCESet.

Value

a SingleCellExperiment object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
## Not run:
example_sce <- newSCESet(countData = sc_example_counts, phenoData = pd)

## End(Not run)

nexprs Count the number of expressed genes per cell

Description

An efficient internal function that avoids the need to construct ’is_exprs_mat’ by counting the num-
ber of expressed genes per cell on the fly.

Usage

nexprs(object, lowerDetectionLimit = 0, exprs_values = "counts",
byrow = FALSE, subset_row = NULL, subset_col = NULL)

Arguments

object a SingleCellExperiment object
lowerDetectionLimit

numeric scalar providing the value above which observations are deemed to be
expressed. Defaults to object@lowerDetectionLimit.

exprs_values character scalar indicating whether the count data ("counts"), the log-transformed
count data ("logcounts"), transcript-per-million ("tpm"), counts-per-million
("cpm") or FPKM ("fpkm") should be used to define if an observation is ex-
pressed or not. Defaults to the first available value of those options in the or-
der shown. However, if is_exprs(object) is present, it will be used directly;
exprs_values and lowerDetectionLimit are ignored.

byrow logical scalar indicating if TRUE to count expressing cells per feature (i.e. gene)
and if FALSE to count expressing features (i.e. genes) per cell.

subset_row logical, integeror character vector indicating which rows (i.e. features/genes)
to use when calculating the number of expressed features in each cell, when
byrow=FALSE.

subset_col logical, integer or character vector indicating which columns (i.e., cells) to use
to calculate the number of cells expressing each gene when byrow=TRUE.
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Value

a numeric vector of the same length as the number of features if byrow argument is TRUE and the
same length as the number of cells if byrow is FALSE

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
nexprs(example_sce)[1:10]
nexprs(example_sce, byrow = TRUE)[1:10]

normaliseExprs Normalise expression expression levels for an SingleCellExperiment
object

Description

Compute normalised expression values from an SingleCellExperiment object and return the object
with the normalised expression values added.

Usage

normaliseExprs(object, method = "none", design = NULL, feature_set = NULL,
exprs_values = "counts", return_norm_as_exprs = TRUE, return_log = TRUE,
...)

normalizeExprs(...)

Arguments

object an SingleCellExperiment object.

method character string specified the method of calculating normalisation factors. Passed
to calcNormFactors.

design design matrix defining the linear model to be fitted to the normalised expression
values. If not NULL, then the residuals of this linear model fit are used as the
normalised expression values.

feature_set character, numeric or logical vector indicating a set of features to use for calcu-
lating normalisation factors. If character, entries must all be in featureNames(object).
If numeric, values are taken to be indices for features. If logical, vector is used
to index features and should have length equal to nrow(object).

exprs_values character string indicating which slot of the assayData from the SingleCellExperiment
object should be used for the calculations. Valid options are 'counts', 'tpm',
'cpm', 'fpkm' and 'exprs'. Defaults to the first available value of these op-
tions in in order shown.
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return_norm_as_exprs

logical, should the normalised expression values be returned to the exprs slot
of the object? Default is TRUE. If FALSE, values in the exprs slot will be
left untouched. Regardless, normalised expression values will be returned to the
norm_exprs slot of the object.

return_log logical(1), should normalized values be returned on the log scale? Default is
TRUE. If TRUE and return_norm_as_exprs is TRUE then normalised output is
stored as "logcounts" in the returned object; if TRUE and return_norm_as_exprs
is FALSE then normalised output is stored as "norm_exprs"; if FALSE output is
stored as "normcounts"

... arguments passed to normaliseExprs (in the case of normalizeExprs) or to
calcNormFactors.

Details

This function allows the user to compute normalised expression values from an SingleCellExperi-
ment object. The ’raw’ values used can be the values in the 'counts' (default), or another speci-
fied assay slot of the SingleCellExperiment. Normalised expression values are computed through
normalizeSCE and are on the log2-scale by default (if return_log is TRUE), with an offset de-
fined by the metadata(object)$log.exprs.offset value in the SingleCellExperiment object.
These are added to the 'norm_exprs' slot of the returned object. If 'exprs_values' argument is
'counts' and return_log is FALSE a 'normcounts' slot is added, containing normalised counts-
per-million values.

If the raw values are counts, this function will compute size factors using methods in calcNormFactors.
Library sizes are multiplied by size factors to obtain an "effective library size" before calculation of
the aforementioned normalized expression values. If feature_set is specified, only the specified
features will be used to calculate the size factors.

If the user wishes to remove the effects of certain explanatory variables, then the 'design' argu-
ment can be defined. The design argument must be a valid design matrix, for example as produced
by model.matrix, with the relevant variables. A linear model is then fitted using lmFit on expres-
sion values after any size-factor and library size normalisation as descrived above. The returned
values in 'norm_exprs' are the residuals from the linear model fit.

After normalisation, normalised expression values can be accessed with the norm_exprs function
(with corresponding accessor functions for counts, tpm, fpkm, cpm). These functions can also be
used to assign normalised expression values produced with external tools to a SingleCellExperiment
object.

normalizeExprs is exactly the same as normaliseExprs, provided for those who prefer North
American spelling.

Value

an SingleCellExperiment object

Author(s)

Davis McCarthy

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
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assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
keep_gene <- rowSums(counts(example_sce)) > 0
example_sce <- example_sce[keep_gene,]

## Apply TMM normalisation taking into account all genes
example_sce <- normaliseExprs(example_sce, method = "TMM")
## Scale counts relative to a set of control features (here the first 100 features)
example_sce <- normaliseExprs(example_sce, method = "none",
feature_set = 1:100)

normalize Normalise a SingleCellExperiment object using pre-computed size
factors

Description

Compute normalised expression values from a SingleCellExperiment object using the size factors
stored in the object. Return the object with the normalised expression values added.

Usage

normalizeSCE(object, exprs_values = "counts", return_log = TRUE,
log_exprs_offset = NULL, centre_size_factors = TRUE,
return_norm_as_exprs = TRUE)

## S4 method for signature 'SingleCellExperiment'
normalize(object, exprs_values = "counts",
return_log = TRUE, log_exprs_offset = NULL, centre_size_factors = TRUE,
return_norm_as_exprs = TRUE)

normalise(...)

Arguments

object a SingleCellExperiment object.

exprs_values character string indicating which slot of the assayData from the SingleCellExperiment
object should be used to compute log-transformed expression values. Valid op-
tions are 'counts', 'tpm', 'cpm' and 'fpkm'. Defaults to the first available
value of the options in the order shown.

return_log logical(1), should normalized values be returned on the log scale? Default is
TRUE. If TRUE, output is stored as "logcounts" in the returned object; if FALSE
output is stored as "normcounts"

log_exprs_offset

scalar numeric value giving the offset to add when taking log2 of normalised val-
ues to return as expression values. If NULL, value is taken from metadata(object)$log.exprs.offset
if defined, otherwise 1.

centre_size_factors

logical, should size factors centred at unity be stored in the returned object if
exprs_values="counts"? Defaults to TRUE. Regardless, centred size factors
will always be used to calculate exprs from count data. This argument is ig-
nored for other exprs_values, where no size factors are used/modified.
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return_norm_as_exprs

logical, should the normalised expression values be returned to the exprs slot
of the object? Default is TRUE. If FALSE, values in the exprs slot will be
left untouched. Regardless, normalised expression values will be returned in the
norm_exprs(object) slot.

... arguments passed to normalize when calling normalise.

Details

normalize is exactly the same as normalise, the option provided for those who have a preference
for North American or British/Australian spelling.

Value

an SingleCellExperiment object

Warning about centred size factors

Centring the size factors ensures that the computed exprs can be interpreted as being on the same
scale as log-counts. This does not affect relative comparisons between cells in the same object, as
all size factors are scaled by the same amount. However, if two different SingleCellExperiment
objects are run separately through normalize, the size factors in each object will be rescaled dif-
ferently. This means that the size factors and exprs will not be comparable between objects.

This lack of comparability is not always obvious. For example, if we subsetted an existing SingleCellExperiment,
and ran normalize separately on each subset, the resulting exprs in each subsetted object would
not be comparable to each other. This is despite the fact that all cells were originally derived from
a single SingleCellExperiment object.

In general, it is advisable to only compare size factors and exprs between cells in one SingleCellExperiment
object. If objects are to be combined, new size factors should be computed using all cells in the
combined object, followed by running normalize.

Author(s)

Davis McCarthy and Aaron Lun

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
keep_gene <- rowSums(counts(example_sce)) > 0
example_sce <- example_sce[keep_gene,]

## Apply TMM normalisation taking into account all genes
example_sce <- normaliseExprs(example_sce, method = "TMM")
## Scale counts relative to a set of control features (here the first 100 features)
example_sce <- normaliseExprs(example_sce, method = "none",
feature_set = 1:100)

## normalize the object using the saved size factors
example_sce <- normalize(example_sce)
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plotExplanatoryVariables

Plot explanatory variables ordered by percentage of phenotypic vari-
ance explained

Description

Plot explanatory variables ordered by percentage of phenotypic variance explained

Usage

plotExplanatoryVariables(object, method = "density",
exprs_values = "logcounts", nvars_to_plot = 10, min_marginal_r2 = 0,
variables = NULL, return_object = FALSE, theme_size = 10, ...)

Arguments

object an SingleCellExperiment object containing expression values and experimental
information. Must have been appropriately prepared.

method character scalar indicating the type of plot to produce. If "density", the function
produces a density plot of R-squared values for each variable when fitted as
the only explanatory variable in a linear model. If "pairs", then the function
produces a pairs plot of the explanatory variables ordered by the percentage
of feature expression variance (as measured by R-squared in a marginal linear
model) explained.

exprs_values which slot of the assayData in the object should be used to define expression?
Valid options are "logcounts" (default), "tpm", "fpkm", "cpm", and "counts".

nvars_to_plot integer, the number of variables to plot in the pairs plot. Default value is 10.
min_marginal_r2

numeric scalar giving the minimal value required for median marginal R-squared
for a variable to be plotted. Only variables with a median marginal R-squared
strictly larger than this value will be plotted.

variables optional character vector giving the variables to be plotted. Default is NULL, in
which case all variables in colData(object) are considered and the nvars_to_plot
variables with the highest median marginal R-squared are plotted.

return_object logical, should an SingleCellExperiment object with median marginal R-
squared values added to varMetadata(object) be returned?

theme_size numeric scalar giving font size to use for the plotting theme

... parameters to be passed to pairs.

Details

If the method argument is "pairs", then the function produces a pairs plot of the explanatory vari-
ables ordered by the percentage of feature expression variance (as measured by R-squared in a
marginal linear model) explained by variable. Median percentage R-squared is reported on the plot
for each variable. Discrete variables are coerced to a factor and plotted as integers with jittering.
Variables with only one unique value are quietly ignored.
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Value

A ggplot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]
example_sce <- calculateQCMetrics(example_sce)
vars <- names(colData(example_sce))[c(2:3, 5:14)]
plotExplanatoryVariables(example_sce, variables=vars)

plotExpression Plot expression values for a set of features (e.g. genes or transcripts)

Description

Plot expression values for a set of features (e.g. genes or transcripts)

Usage

plotExpression(object, features, x = NULL, exprs_values = "logcounts",
log2_values = FALSE, colour_by = NULL, shape_by = NULL,
size_by = NULL, ncol = 2, xlab = NULL, show_median = FALSE,
show_violin = TRUE, theme_size = 10, ...)

plotExpressionDefault(object, aesth, ncol = 2, xlab = NULL, ylab = NULL,
show_median = FALSE, show_violin = TRUE, show_smooth = FALSE,
theme_size = 10, alpha = 0.6, size = NULL, scales = "fixed",
one_facet = FALSE, se = TRUE, jitter = "swarm")

Arguments

object an SingleCellExperiment object containing expression values and experimen-
tal information. Must have been appropriately prepared. For the plotExpressionDefault
method, the object argument is a data.frame in ’long’ format providing ex-
pression values for a set of features to plot, plus metadata used in the aesth
argument, but this is not meant to be a user-level operation.

features a character vector of feature names or Boolean vector or numeric vector of in-
dices indicating which features should have their expression values plotted

x character string providing a column name of pData(object) or a feature name
(i.e. gene or transcript) to plot on the x-axis in the expression plot(s). If a feature
name, then expression values for the feature will be plotted on the x-axis for each
subplot.
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exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "norm_tpm"
(normalised TPM values), "fpkm" (FPKM values), "norm_fpkm" (normalised
FPKM values), "counts" (counts for each feature), "norm_counts", "cpm"
(counts-per-million), "norm_cpm" (normalised counts-per-million), "logcounts"
(log-transformed count data; default), "norm_exprs" (normalised expression
values) or "stand_exprs" (standardised expression values) or any other slots
that have been added to the "assayData" slot by the user.

log2_values should the expression values be transformed to the log2-scale for plotting (with
an offset of 1 to avoid logging zeroes)?

colour_by optional character string supplying name of a column of pData(object) which
will be used as a variable by which to colour expression values on the plot.
Alternatively, a data frame with one column, containing a value for each cell
that will be mapped to a colour.

shape_by optional character string supplying name of a column of pData(object) which
will be used as a variable to define the shape of points for expression values on
the plot. Alternatively, a data frame with one column containing values to map
to shapes.

size_by optional character string supplying name of a column of pData(object) which
will be used as a variable to define the size of points for expression values on
the plot. Alternatively, a data frame with one column containing values to map
to sizes.

ncol number of columns to be used for the panels of the plot

xlab label for x-axis; if NULL (default), then x will be used as the x-axis label

show_median logical, show the median for each group on the plot

show_violin logical, show a violin plot for the distribution for each group on the plot

theme_size numeric scalar giving default font size for plotting theme (default is 10)

... optional arguments (from those listed above) passed to plotExpressionDefault

aesth an aes object to use in the call to ggplot.

ylab character string defining a label for the y-axis (y-axes) of the plot.

show_smooth logical, show a smoothed fit through the expression values on the plot

alpha numeric value between 0 (completely transparent) and 1 (completely solid) defin-
ing how transparent plotted points (cells) should be. Points are jittered horizon-
tally if the x-axis value is categorical rather than numeric to avoid overplotting.

size numeric scalar optionally providing size for points if size_by argument is not
given. Default is NULL, in which case ggplot2 default is used.

scales character scalar, should scales be fixed ("fixed"), free ("free"), or free in one
dimension ("free_x"; "free_y", the default). Passed to the scales argument in
the facet_wrap function from the ggplot2 package.

one_facet logical, should expression values for features be plotted in one facet instead of
mutiple facets, one per feature? Default if x = NULL.

se logical, should standard errors be shown (default TRUE) for the smoothed fit
through the cells. (Ignored if show_smooth is FALSE).

jitter character scalar to define whether points are to be jittered ("jitter") or pre-
sented in a "beeswarm" style (if "swarm"; default). "Beeswarm" style usually
looks more attractive, but for datasets with a large number of cells, or for dense
plots, the jitter option may work better.
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Details

Plot expression values (default log2(counts-per-million + 1), if available) for a set of features.

Value

a ggplot plot object

Examples

## prepare data
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)
sizeFactors(example_sce) <- colSums(counts(example_sce))
example_sce <- normalize(example_sce)

## default plot
plotExpression(example_sce, 1:15)
plotExpression(example_sce, 1:15, jitter = "jitter")

## plot expression against an x-axis value
plotExpression(example_sce, 1:6, "Mutation_Status")

## explore options
plotExpression(example_sce, 1:6, x = "Mutation_Status", exprs_values = "logcounts",
colour_by = "Cell_Cycle", show_violin = TRUE, show_median = TRUE)
plotExpression(example_sce, 1:6, x = "Mutation_Status", exprs_values = "counts",
colour_by = "Cell_Cycle", show_violin = TRUE, show_median = TRUE)

plotExpression(example_sce, "Gene_0001", x = "Mutation_Status")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Mutation_Status")
plotExpression(example_sce, "Gene_0001", x = "Gene_0002")
plotExpression(example_sce, c("Gene_0001", "Gene_0004"), x="Gene_0002")
## plot expression against expression values for Gene_0004
plotExpression(example_sce, 1:4, "Gene_0004")
plotExpression(example_sce, 1:4, "Gene_0004", show_smooth = TRUE)
plotExpression(example_sce, 1:4, "Gene_0004", show_smooth = TRUE, se = FALSE)

plotExprsFreqVsMean Plot frequency of expression against mean expression level

Description

Plot frequency of expression against mean expression level

Usage

plotExprsFreqVsMean(object, feature_set = NULL, feature_controls = NULL,
shape = 1, alpha = 0.7, show_smooth = TRUE, se = TRUE, ...)
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Arguments

object an SingleCellExperiment object.

feature_set character, numeric or logical vector indicating a set of features to plot. If char-
acter, entries must all be in rownames(object). If numeric, values are taken to
be indices for features. If logical, vector is used to index features and should
have length equal to nrow(object). If NULL, then the function checks if feature
controls are defined. If so, then only feature controls are plotted, if not, then all
features are plotted.

feature_controls

character, numeric or logical vector indicating a set of features to be used as
feature controls for computing technical dropout effects. If character, entries
must all be in rownames(object). If numeric, values are taken to be indices
for features. If logical, vector is used to index features and should have length
equal to nrow(object). If NULL, then the function checks if feature controls are
defined. If so, then these feature controls are used.

shape (optional) numeric scalar to define the plotting shape.

alpha (optional) numeric scalar (in the interval 0 to 1) to define the alpha level (trans-
parency) of plotted points.

show_smooth logical, should a smoothed fit through feature controls (if available; all features
if not) be shown on the plot? Lowess used if a small number of feature controls.
For details see geom_smooth.

se logical, should standard error (confidence interval) be shown for smoothed fit?

... further arguments passed to plotMetadata (should only be size, if anythin).

Details

This function plots gene expression frequency versus mean expression level, which can be useful to
assess the effects of technical dropout in the dataset. We fit a non-linear least squares curve for the
relationship between expression frequency and mean expression and use this to define the number
of genes above high technical dropout and the numbers of genes that are expressed in at least 50 of
genes to be treated as feature controls can be specified, otherwise any feature controls previously
defined are used.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:500))

plotExprsFreqVsMean(example_sce)

example_sce <- calculateQCMetrics(
example_sce, feature_controls = list(controls1 = 1:20,
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controls2 = 500:1000),
cell_controls = list(set_1 = 1:5,
set_2 = 31:40))

plotExprsFreqVsMean(example_sce)

plotExprsVsTxLength Plot expression against transcript length

Description

Plot expression values from an SingleCellExperiment object against transcript length values de-
fined in the SingleCellExperiment object or supplied as an argument.

Usage

plotExprsVsTxLength(object, tx_length = "median_feat_eff_len",
exprs_values = "logcounts", colour_by = NULL, shape_by = NULL,
size_by = NULL, xlab = NULL, show_exprs_sd = FALSE,
show_smooth = FALSE, alpha = 0.6, theme_size = 10,
log2_values = FALSE, size = NULL, se = TRUE)

Arguments

object an SingleCellExperiment object

tx_length transcript lengths to plot on the x-axis. Can be one of: (1) the name of a column
of rowData(object) containing the transcript length values, or (2) the name of
an element of assays(object) containing a matrix of transcript length values,
or (3) a numeric vector of length equal to the number of rows of object (number
of features).

exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "norm_tpm"
(normalised TPM values), "fpkm" (FPKM values), "norm_fpkm" (normalised
FPKM values), "counts" (counts for each feature), "norm_counts", "cpm"
(counts-per-million), "norm_cpm" (normalised counts-per-million), "logcounts"
(log-transformed count data; default), "norm_exprs" (normalised expression
values) or "stand_exprs" (standardised expression values) or any other slots
that have been added to the "assays" slot by the user.

colour_by optional character string supplying name of a column of rowData(object)
which will be used as a variable by which to colour expression values on the
plot. Alternatively, a data frame with one column, containing a value for each
feature to map to a colour.

shape_by optional character string supplying name of a column of rowData(object)
which will be used as a variable to define the shape of points for expression
values on the plot. Alternatively, a data frame with one column containing val-
ues to map to shapes.

size_by optional character string supplying name of a column of rowData(object)
which will be used as a variable to define the size of points for expression values
on the plot. Alternatively, a data frame with one column containing values to
map to sizes.
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xlab label for x-axis; if NULL (default), then x will be used as the x-axis label

show_exprs_sd logical, show the standard deviation of expression values for each feature on the
plot

show_smooth logical, show a smoothed fit through the expression values on the plot

alpha numeric value between 0 (completely transparent) and 1 (completely solid) defin-
ing how transparent plotted points (cells) should be. Points are jittered horizon-
tally if the x-axis value is categorical rather than numeric to avoid overplotting.

theme_size numeric scalar giving default font size for plotting theme (default is 10)

log2_values should the expression values be transformed to the log2-scale for plotting (with
an offset of 1 to avoid logging zeroes)?

size numeric scalar optionally providing size for points if size_by argument is not
given. Default is NULL, in which case ggplot2 default is used.

se logical, should standard errors be shown (default TRUE) for the smoothed fit
through the cells. (Ignored if show_smooth is FALSE).

Value

a ggplot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
rd <- DataFrame(gene_id = rownames(sc_example_counts),

feature_id = paste("feature", rep(1:500, each = 4), sep = "_"),
median_tx_length = rnorm(2000, mean = 5000, sd = 500))

rownames(rd) <- rownames(sc_example_counts)
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info, rowData = rd)
example_sce <- normalize(example_sce)

plotExprsVsTxLength(example_sce, "median_tx_length")
plotExprsVsTxLength(example_sce, "median_tx_length", show_smooth = TRUE)
plotExprsVsTxLength(example_sce, "median_tx_length", show_smooth = TRUE,
show_exprs_sd = TRUE)

## using matrix of tx length values in assays(object)
mat <- matrix(rnorm(ncol(example_sce) * nrow(example_sce), mean = 5000,
sd = 500), nrow = nrow(example_sce))

dimnames(mat) <- dimnames(example_sce)
assay(example_sce, "tx_len") <- mat

plotExprsVsTxLength(example_sce, "tx_len", show_smooth = TRUE,
show_exprs_sd = TRUE)

## using a vector of tx length values
plotExprsVsTxLength(example_sce, rnorm(2000, mean = 5000, sd = 500))
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plotFeatureData Plot feature (gene) data from a SingleCellExperiment object

Description

plotFeatureData and plotRowData are synonymous.

Usage

plotFeatureData(object, aesth = aes_string(x = "n_cells_counts", y =
"log10_total_counts"), ...)

plotRowData(...)

Arguments

object an SingleCellExperiment object containing expression values and experimen-
tal information. Must have been appropriately prepared.

aesth aesthetics function call to pass to ggplot. This function expects at least x and y
variables to be supplied. The default is to produce a density plot of number of
cells expressing the feature (requires calculateQCMetrics to have been run on
the SingleCellExperiment object prior).

... arguments passed to plotMetadata, e.g. theme_size, size, alpha, shape.

Details

Plot feature (gene) data from an SingleCellExperiment object. If one variable is supplied then a
density plot will be returned. If both variables are continuous (numeric) then a scatter plot will
be returned. If one variable is discrete and one continuous then a violin plot with jittered points
overlaid will be returned. If both variables are discrete then a jitter plot will be produced. The
object returned is a ggplot object, so further layers and plotting options (titles, facets, themes etc)
can be added.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)
plotFeatureData(example_sce, aesth = aes(x = n_cells_counts, y = log10_total_counts))

plotRowData(example_sce, aesth = aes(x = n_cells_counts, y = log10_total_counts))
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plotHighestExprs Plot the features with the highest expression values

Description

Plot the features with the highest expression values

Usage

plotHighestExprs(object, col_by_variable = "total_features", n = 50,
drop_features = NULL, exprs_values = "counts",
feature_names_to_plot = NULL)

Arguments

object an SCESet object containing expression values and experimental information.
Must have been appropriately prepared.

col_by_variable

variable name (must be a column name of colData(object)) to be used to assign
colours to cell-level values.

n numeric scalar giving the number of the most expressed features to show. De-
fault value is 50.

drop_features a character, logical or numeric vector indicating which features (e.g. genes,
transcripts) to drop when producing the plot. For example, control genes might
be dropped to focus attention on contribution from endogenous rather than syn-
thetic genes.

exprs_values which slot of the assayData in the object should be used to define expression?
Valid options are "counts" (default), "tpm", "fpkm" and "logcounts".

feature_names_to_plot

character scalar indicating which column of the featureData slot in the object
is to be used for the feature names displayed on the plot. Default is NULL, in
which case rownames(object) is used.

Details

Plot the percentage of counts accounted for by the top n most highly expressed features across the
dataset.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:500))
plotHighestExprs(example_sce, col_by_variable="total_features")
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plotHighestExprs(example_sce, col_by_variable="Mutation_Status")
plotQC(example_sce, type = "highest-express")

plotMDS Produce a multidimensional scaling plot for a SingleCellExperiment
object

Description

#’ Produce an MDS plot from the cell pairwise distance data in an SingleCellExperiment dataset.

Usage

plotMDS(object, ncomponents = 2, colour_by = NULL, shape_by = NULL,
size_by = NULL, return_SCE = FALSE, rerun = FALSE, draw_plot = TRUE,
exprs_values = "logcounts", theme_size = 10, legend = "auto", ...)

Arguments

object an SingleCellExperiment object

ncomponents numeric scalar indicating the number of principal components to plot, starting
from the first principal component. Default is 2. If ncomponents is 2, then
a scatterplot of PC2 vs PC1 is produced. If ncomponents is greater than 2, a
pairs plots for the top components is produced. NB: computing more than two
components for t-SNE can become very time consuming.

colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing values to map to colours for all cells.

shape_by character string defining the column of pData(object) to be used as a factor
by which to define the shape of the points in the plot.

size_by character string defining the column of pData(object) to be used as a factor
by which to define the size of points in the plot.

return_SCE logical, should the function return an SingleCellExperiment object with prin-
cipal component values for cells in the reducedDims slot. Default is FALSE, in
which case a ggplot object is returned.

rerun logical, should PCA be recomputed even if object contains a "PCA" element
in the reducedDims slot?

draw_plot logical, should the plot be drawn on the current graphics device? Only used if
return_SCE is TRUE, otherwise the plot is always produced.

exprs_values a string specifying the expression values to use for colouring the points, if
colour_by or size_by are set as feature names.

theme_size numeric scalar giving default font size for plotting theme (default is 10).

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

... arguments passed to S4 plotMDS method
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Details

The function cmdscale is used internally to compute the multidimensional scaling components to
plot.

Value

If return_SCE is TRUE, then the function returns an SingleCellExperiment object, otherwise it
returns a ggplot object.

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

## Examples plotting
plotMDS(example_sce)
plotMDS(example_sce, colour_by = "Cell_Cycle")
plotMDS(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment")

## define cell-cell distances differently
plotMDS(example_sce, colour_by = "Cell_Cycle",
shape_by = "Treatment", size_by = "Mutation_Status", method = "canberra")

plotMetadata Plot metadata for cells or features

Description

Plot metadata for cells or features

Usage

plotMetadata(object, aesth = aes_string(x = "log10(total_counts)", y =
"total_features"), shape = NULL, alpha = NULL, size = NULL,
theme_size = 10)

Arguments

object a data.frame (or object that can be coerced to such) object containing metadata
in columns to plot.

aesth aesthetics function call to pass to ggplot. This function expects at least x and y
variables to be supplied. The default is to plot total_features against log10(total_counts).

shape numeric scalar to define the plotting shape. Ignored if shape is included in the
aesth argument.
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alpha numeric scalar (in the interval 0 to 1) to define the alpha level (transparency) of
plotted points. Ignored if alpha is included in the aesth argument.

size numeric scalar to define the plotting size. Ignored if size is included in the aesth
argument.

theme_size numeric scalar giving default font size for plotting theme (default is 10)

Details

Plot cell or feature metadata from an SingleCellExperiment object. If one variable is supplied then
a density plot will be returned. If both variables are continuous (numeric) then a scatter plot will
be returned. If one variable is discrete and one continuous then a violin plot with jittered points
overlaid will be returned. If both variables are discrete then a jitter plot will be produced. The
object returned is a ggplot object, so further layers and plotting options (titles, facets, themes etc)
can be added.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)
plotMetadata(colData(example_sce))

plotPhenoData Plot cell phenotype data from an SingleCellExperiment object

Description

plotPhenoData, plotColData and plotCellData are synonymous.

Usage

plotPhenoData(object, aesth = aes_string(x = "log10(total_counts)", y =
"total_features"), ...)

plotColData(...)

plotCellData(...)

Arguments

object an SingleCellExperiment object containing expression values and experimen-
tal information. Must have been appropriately prepared.

aesth aesthetics function call to pass to ggplot. This function expects at least x and y
variables to be supplied. The default is to plot total_features against log10(total_counts).

... arguments passed to plotPhenoData (if plotColData or plotCellData) or to
plotMetadata, e.g.theme_size, size, alpha, shape.
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Details

Plot phenotype data from a SingleCellExperiment object. If one variable is supplied then a density
plot will be returned. If both variables are continuous (numeric) then a scatter plot will be returned.
If one variable is discrete and one continuous then a violin plot with jittered points overlaid will be
returned. If both variables are discrete then a jitter plot will be produced. The object returned is a
ggplot object, so further layers and plotting options (titles, facets, themes etc) can be added.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- calculateQCMetrics(example_sce)
plotPhenoData(example_sce, aesth = aes_string(x = "log10(total_counts)",
y = "total_features", colour = "Mutation_Status"))

plotColData(example_sce, aesth = aes_string(x = "log10(total_counts)",
y = "total_features", colour = "Mutation_Status"))

plotCellData(example_sce, aesth = aes_string(x = "log10(total_counts)",
y = "total_features", colour = "Mutation_Status"))

plotPlatePosition Plot cells in plate positions

Description

Plots cells in their position on a plate, coloured by phenotype data or feature expression.

Usage

plotPlatePosition(object, plate_position = NULL, colour_by = NULL,
x_position = NULL, y_position = NULL, exprs_values = "logcounts",
theme_size = 24, legend = "auto")

Arguments

object an SingleCellExperiment object. If object$plate_position is not NULL,
then this will be used to define each cell’s position on the plate, unless the
plate_position argument is specified.

plate_position optional character vector providing a position on the plate for each cell (e.g.
A01, B12, etc, where letter indicates row and number indicates column). Speci-
fying this argument overrides any plate position information extracted from the
SingleCellExperiment object.
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colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing values to map to colours for all cells.

x_position numeric vector providing x-axis positions for the cells (ignored if plate_position
is not NULL)

y_position numeric vector providing y-axis positions for the cells (ignored if plate_position
is not NULL)

exprs_values a string specifying the expression values to use for colouring the points, if
colour_by is set as a feature name.

theme_size numeric scalar giving default font size for plotting theme (default is 10).

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

Details

This function expects plate positions to be given in a charcter format where a letter indicates the
row on the plate and a numeric value indicates the column. So each cell has a plate position such as
"A01", "B12", "K24" and so on. From these plate positions, the row is extracted as the letter, and
the column as the numeric part. If object$plate_position or the plate_position argument are
used to define plate positions, then positions should be provided in this format. Alternatively, nu-
meric values to be used as x- and y-coordinates by supplying both the x_position and y_position
arguments to the function.

Value

A ggplot object.

Examples

## prepare data
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
example_sce <- calculateQCMetrics(example_sce)

## define plate positions
example_sce$plate_position <- paste0(
rep(LETTERS[1:5], each = 8), rep(formatC(1:8, width = 2, flag = "0"), 5))

## plot plate positions
plotPlatePosition(example_sce, colour_by = "Mutation_Status")

## Must have exprs slot defined in object
plotPlatePosition(example_sce, colour_by = "Gene_0004")
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plotQC Produce QC diagnostic plots

Description

Produce QC diagnostic plots

Usage

plotQC(object, type = "highest-expression", ...)

Arguments

object an SingleCellExperiment object containing expression values and experimental
information. Must have been appropriately prepared.

type character scalar providing type of QC plot to compute: "highest-expression"
(showing features with highest expression), "find-pcs" (showing the most impor-
tant principal components for a given variable), "explanatory-variables" (show-
ing a set of explanatory variables plotted against each other, ordered by marginal
variance explained), or "exprs-mean-vs-freq" (plotting the mean expression lev-
els against the frequency of expression for a set of features).

... arguments passed to plotHighestExprs, findImportantPCs, plotExplanatoryVariables
and {plotExprsMeanVsFreq} as appropriate.

Details

Display useful quality control plots to help with pre-processing of data and identification of poten-
tially problematic features and cells.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- normalize(example_sce)

drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]
example_sce <- calculateQCMetrics(example_sce)
plotQC(example_sce, type="high", col_by_variable="Mutation_Status")
plotQC(example_sce, type="find", variable="total_features")
vars <- names(colData(example_sce))[c(2:3, 5:14)]
plotQC(example_sce, type="expl", variables=vars)
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plotReducedDim Plot reduced dimension representation of cells

Description

Plot reduced dimension representation of cells

Usage

plotReducedDimDefault(df_to_plot, ncomponents = 2, percentVar = NULL,
colour_by = NULL, shape_by = NULL, size_by = NULL, theme_size = 10,
legend = "auto")

plotReducedDim(object, use_dimred, ncomponents = 2, colour_by = NULL,
shape_by = NULL, size_by = NULL, exprs_values = "logcounts",
percentVar = NULL, ...)

Arguments

df_to_plot data.frame containing a reduced dimension represenation of cells and optional
metadata for the plot.

ncomponents numeric scalar indicating the number of principal components to plot, starting
from the first principal component. Default is 2. If ncomponents is 2, then
a scatterplot of Dimension 2 vs Dimension 1 is produced. If ncomponents is
greater than 2, a pairs plots for the top dimensions is produced.

percentVar numeric vector giving the proportion of variance in expression explained by
each reduced dimension. Only expected to be used internally in the plotPCA
function.

colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing values to map to colours for all cells.

shape_by character string defining the column of pData(object) to be used as a factor
by which to define the shape of the points in the plot.

size_by character string defining the column of pData(object) to be used as a factor
by which to define the size of points in the plot.

theme_size numeric scalar giving default font size for plotting theme (default is 10).

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

object an SingleCellExperiment object with a non-NULL reducedDimension slot.

use_dimred character, name of reduced dimension representation of cells stored in SingleCellExperiment
object to plot (e.g. "PCA", "TSNE", etc).

exprs_values a string specifying the expression values to use for colouring the points, if
colour_by or size_by are set as feature names.

... optional arguments (from those listed above) passed to plotReducedDimDefault
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Details

The function plotReducedDim.default assumes that the first ncomponents columns of df_to_plot
contain the reduced dimension components to plot, and that any subsequent columns define factors
for colour_by, shape_by and size_by in the plot.

Value

a ggplot plot object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

reducedDim(example_sce, "PCA") <- prcomp(t(exprs(example_sce)), scale. = TRUE)$x
plotReducedDim(example_sce, "PCA")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle", shape_by="Treatment")
plotReducedDim(example_sce, "PCA", colour_by="Cell_Cycle", size_by="Treatment")
plotReducedDim(example_sce, "PCA", ncomponents=5)
plotReducedDim(example_sce, "PCA", ncomponents=5, colour_by="Cell_Cycle", shape_by="Treatment")
plotReducedDim(example_sce, "PCA", colour_by="Gene_0001")

plotRLE Plot a relative log expression (RLE) plot

Description

Produce a relative log expression (RLE) plot of one or more transformations of cell expression
values.

Usage

plotRLE(object, exprs_mats = list(logcounts = "logcounts"),
exprs_logged = c(TRUE), colour_by = NULL, style = "minimal",
legend = "auto", order_by_colour = TRUE, ncol = 1, ...)

Arguments

object an SingleCellExperiment object

exprs_mats named list of expression matrices. Entries can either be a character string, in
which case the corresponding expression matrix will be extracted from the Sin-
gleCellExperiment object, or a matrix of expression values.

exprs_logged logical vector of same length as exprs_mats indicating whether the correspond-
ing entry in exprs_mats contains logged expression values (TRUE) or not (FALSE).
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colour_by character string defining the column of colData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column, containing values to map to colours for all cells.

style character(1), either "minimal" (default) or "full", defining the boxplot style to
use. "minimal" uses Tufte-style boxplots and is fast for large numbers of cells.
"full" uses the usual ggplot2 and is more detailed and flexible, but can take a
long time to plot for large datasets.

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternative is "none"
(hide all legends).

order_by_colour

logical, should cells be ordered (grouped) by the colour_by variable? Default
is TRUE. Useful for visualising differences between batches or experimental con-
ditions.

ncol integer, number of columns for the facetting of the plot. Default is 1.

... further arguments passed to geom_boxplot.

Details

Unwanted variation can be highly problematic and so its detection is often crucial. Relative log
expression (RLE) plots are a powerful tool for visualising such variation in high dimensional data.
RLE plots are particularly useful for assessing whether a procedure aimed at removing unwanted
variation, i.e. a normalisation procedure, has been successful. These plots, while originally devised
for gene expression data from microarrays, can also be used to reveal unwanted variation in single-
cell expression data, where such variation can be problematic.

If style is "full", as usual with boxplots, the box shows the inter-quartile range and whiskers extend
no more than 1.5 * IQR from the hinge (the 25th or 75th percentile). Data beyond the whiskers are
called outliers and are plotted individually. The median (50th percentile) is shown with a white bar.

If style is "minimal", then median is shown with a circle, the IQR in a grey line, and "whiskers" (as
defined above) for the plots are shown with coloured lines. No outliers are shown for this plot style.

Value

a ggplot plot object

Author(s)

Davis McCarthy

References

Gandolfo LC, Speed TP. RLE Plots: Visualising Unwanted Variation in High Dimensional Data.
arXiv [stat.ME]. 2017. Available: http://arxiv.org/abs/1704.03590

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(

assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
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drop_genes <- apply(logcounts(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

plotRLE(example_sce, list(logcounts= "logcounts", counts = "counts"), c(TRUE, FALSE),
colour_by = "Mutation_Status", style = "minimal")

plotRLE(example_sce, list(logcounts = "logcounts", counts = "counts"), c(TRUE, FALSE),
colour_by = "Mutation_Status", style = "full",
outlier.alpha = 0.1, outlier.shape = 3, outlier.size = 0)

plotScater Plot an overview of expression for each cell

Description

Plot the relative proportion of the library accounted for by the most highly expressed features for
each cell for an SingleCellExperiment dataset.

Usage

plotScater(x, block1 = NULL, block2 = NULL, colour_by = NULL,
nfeatures = 500, exprs_values = "counts", ncol = 3, linewidth = 1.5,
theme_size = 10)

Arguments

x an SingleCellExperiment object

block1 character string defining the column of colData(object) to be used as a factor
by which to separate the cells into blocks (separate panels) in the plot. Default
is NULL, in which case there is no blocking.

block2 character string defining the column of colData(object) to be used as a factor
by which to separate the cells into blocks (separate panels) in the plot. Default
is NULL, in which case there is no blocking.

colour_by character string defining the column of colData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing a value for each cell, which will be mapped to a correspond-
ing colour.

nfeatures numeric scalar indicating the number of features to include in the plot.

exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "counts" (raw
counts) [default], "cpm" (counts per million), or "fpkm" (FPKM values).

ncol number of columns to use for facet_wrap if only one block is defined.

linewidth numeric scalar giving the "size" parameter (in ggplot2 parlance) for the lines
plotted. Default is 1.5.

theme_size numeric scalar giving font size to use for the plotting theme

... arguments passed to plotSCE
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Details

Plots produced by this function are intended to provide an overview of large-scale differences be-
tween cells. For each cell, the features are ordered from most-expressed to least-expressed and the
cumulative proportion of the total expression for the cell is computed across the top nfeatures
features. These plots can flag cells with a very high proportion of the library coming from a small
number of features; such cells are likely to be problematic for analyses. Using the colour and
blocking arguments can flag overall differences in cells under different experimental conditions or
affected by different batch and other variables.

Value

a ggplot plot object

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)

plotScater(example_sce)
plotScater(example_sce, exprs_values = "counts", colour_by = "Cell_Cycle")
plotScater(example_sce, block1 = "Treatment", colour_by = "Cell_Cycle")

cpm(example_sce) <- calculateCPM(example_sce, use.size.factors = FALSE)
plotScater(example_sce, exprs_values = "cpm", block1 = "Treatment",
block2 = "Mutation_Status", colour_by = "Cell_Cycle")
# Error is thrown if chosen expression values are not available

read10xResults Load in data from 10x experiment

Description

Creates a full or sparse matrix from a sparse data matrix provided by 10X genomics.

Usage

read10xResults(data_dir, min_total_cell_counts = NULL,
min_mean_gene_counts = NULL)

read10XResults(...)

Arguments

data_dir Directory containing the matrix.mtx, genes.tsv, and barcodes.tsv files provided
by 10x. A vector or named vector can be given in order to load several data
directories. If a named vector is given, the cell barcode names will be prefixed
with the name.
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min_total_cell_counts

integer(1) threshold such that cells (barcodes) with total counts below the thresh-
old are filtered out

min_mean_gene_counts

numeric(1) threshold such that genes with mean counts below the threshold are
filtered out.

... passed arguments

Details

This function was developed from the Read10X function from the Seurat package.

Value

Returns an SingleCellExperiment object with counts data stored as a sparse matrix with rows and
columns labeled.

Examples

sce10x <- read10xResults(system.file("extdata", package="scater"))

readTxResults Read transcript quantification data with tximport package

Description

After generating transcript/feature abundance results using kallisto, Salmon, Sailfish or RSEM for
a batch of samples, read these abundance values into an SCESet object.

Usage

readTxResults(samples = NULL, files = NULL, log = NULL,
type = "kallisto", txOut = TRUE, logExprsOffset = 1, verbose = TRUE,
...)

Arguments

samples character vector providing a set of sample names to use for the abundance re-
sults.

files character vector providing a set of filenames containing kallisto abundance re-
sults to be read in.

log list (optional), generated by runKallisto. If provided, then samples and files
arguments are ignored.

type character, the type of software used to generate the abundances. Options are
"kallisto", "salmon", "sailfish", "rsem". This argument is passed to tximport.

txOut logical, whether the function should just output transcript-level (default TRUE)
logExprsOffset numeric scalar, providing the offset used when doing log2-transformations of

expression data to avoid trying to take logs of zero. Default offset value is 1.
verbose logical, should function provide output about progress?
... optional parameters passed to tximport. See documentation for tximport for

options and details.
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Details

Note: tximport does not import bootstrap estimates from kallisto, Salmon, or Sailfish. If you want
bootstrap estimates use the readKallistoResults or readSalmonResults functions.

Value

an SCESet object containing the abundance, count and feature length data from the supplied sam-
ples.

References

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates
improve gene-level inferences. F1000Res. 2015;4: 1521.

Examples

## Not run:
## this example requires installation of the tximportData package from
## Bioconductor
library(tximportData)
dir <- system.file("extdata", package = "tximportData")
list.files(dir)
samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)
samples
directories <- file.path(dir, "kallisto", samples$run)
names(directories) <- paste0("sample", 1:6)
files <- file.path(directories, "abundance.tsv")
sce_example <- readTxResults(samples = names(directories),
files = files, type = "kallisto")

## for faster reading of results use the read_tsv function from the readr pkg
library(readr)
sce_example <- readTxResults(samples = names(directories),
files = files, type = "kallisto", reader = read_tsv)

## End(Not run)

rename Rename variables of colData(object).

Description

Rename variables of colData(object).

Usage

rename(object, ...)

## S4 method for signature 'SingleCellExperiment'
rename(object, ...)
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Arguments

object A SingleCellExperiment object.

... Additional arguments to be passed to dplyr::rename to act on colData(object).

Value

An SingleCellExperiment object.

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info)
example_sce <- rename(example_sce, Cell_Phase = Cell_Cycle)

runDiffusionMap Plot a diffusion map for a SingleCellExperiment object

Description

Produce a diffusion map plot of two components for an SingleCellExperiment dataset.

Usage

runDiffusionMap(object, ntop = 500, ncomponents = 2, feature_set = NULL,
exprs_values = "logcounts", scale_features = TRUE, use_dimred = NULL,
n_dimred = NULL, rand_seed = NULL, sigma = NULL,
distance = "euclidean", ...)

plotDiffusionMap(object, colour_by = NULL, shape_by = NULL,
size_by = NULL, return_SCE = FALSE, draw_plot = TRUE, theme_size = 10,
legend = "auto", rerun = FALSE, ncomponents = 2, ...)

Arguments

object an SingleCellExperiment object

ntop numeric scalar indicating the number of most variable features to use for the dif-
fusion map. Default is 500, but any ntop argument is overrided if the feature_set
argument is non-NULL.

ncomponents numeric scalar indicating the number of principal components to plot, starting
from the first diffusion map component. Default is 2. If ncomponents is 2, then
a scatterplot of component 1 vs component 2 is produced. If ncomponents is
greater than 2, a pairs plots for the top components is produced. NB: computing
many components for the diffusion map can become time consuming.

feature_set character, numeric or logical vector indicating a set of features to use for the
diffusion map. If character, entries must all be in featureNames(object). If
numeric, values are taken to be indices for features. If logical, vector is used to
index features and should have length equal to nrow(object).
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exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "norm_tpm"
(normalised TPM values), "fpkm" (FPKM values), "norm_fpkm" (normalised
FPKM values), "counts" (counts for each feature), "norm_counts", "cpm"
(counts-per-million), "norm_cpm" (normalised counts-per-million), "logcounts"
(log-transformed count data; default), "norm_exprs" (normalised expression
values) or "stand_exprs" (standardised expression values) or any other named
element of the assayData slot of the SingleCellExperiment object that can
be accessed with the assay function.

scale_features logical, should the expression values be standardised so that each feature has
unit variance? Default is TRUE.

use_dimred character(1), use named reduced dimension representation of cells stored in
SingleCellExperiment object instead of recomputing (e.g. "PCA"). Default
is NULL, no reduced dimension values are provided to Rtsne.

n_dimred integer(1), number of components of the reduced dimension slot to use. Default
is NULL, in which case (if use_dimred is not NULL) all components of the reduced
dimension slot are used.

rand_seed (optional) numeric scalar that can be passed to set.seed to make plots repro-
ducible.

sigma argument passed to DiffusionMap

distance argument passed to DiffusionMap

... further arguments passed to DiffusionMap

colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing values to map to colours for all cells.

shape_by character string defining the column of pData(object) to be used as a factor
by which to define the shape of the points in the plot.

size_by character string defining the column of pData(object) to be used as a factor
by which to define the size of points in the plot.

return_SCE logical, should the function return an SingleCellExperiment object with prin-
cipal component values for cells in the reducedDims slot. Default is FALSE, in
which case a ggplot object is returned.

draw_plot logical, should the plot be drawn on the current graphics device? Only used if
return_SCE is TRUE, otherwise the plot is always produced.

theme_size numeric scalar giving default font size for plotting theme (default is 10).

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

rerun logical, should PCA be recomputed even if object contains a "PCA" element
in the reducedDims slot?

Details

The function DiffusionMap is used internally to compute the diffusion map.

Value

If return_SCE is TRUE, then the function returns an SingleCellExperiment object, otherwise it
returns a ggplot object.
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References

Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics. 2015; doi:10.1093/bioinformatics/btv325

See Also

destiny

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

## Not run:
## Examples plotting diffusion maps
plotDiffusionMap(example_sce)
plotDiffusionMap(example_sce, colour_by = "Cell_Cycle")
plotDiffusionMap(example_sce, colour_by = "Cell_Cycle",
shape_by = "Treatment")
plotDiffusionMap(example_sce, colour_by = "Cell_Cycle",
shape_by = "Treatment", size_by = "Mutation_Status")
plotDiffusionMap(example_sce, shape_by = "Treatment",
size_by = "Mutation_Status")
plotDiffusionMap(example_sce, feature_set = 1:100, colour_by = "Treatment",
shape_by = "Mutation_Status")

plotDiffusionMap(example_sce, shape_by = "Treatment",
return_SCE = TRUE)

## End(Not run)

runPCA Plot PCA for a SingleCellExperiment object

Description

Produce a principal components analysis (PCA) plot of two or more principal components for an
SingleCellExperiment dataset.

Usage

runPCA(object, ntop = 500, ncomponents = 2, exprs_values = "logcounts",
feature_set = NULL, scale_features = TRUE, pca_data_input = "logcounts",
selected_variables = NULL, detect_outliers = FALSE)

plotPCASCE(object, colour_by = NULL, shape_by = NULL, size_by = NULL,
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return_SCE = FALSE, draw_plot = TRUE, theme_size = 10,
legend = "auto", rerun = FALSE, ncomponents = 2,
detect_outliers = FALSE, ...)

## S4 method for signature 'SingleCellExperiment'
plotPCA(object, colour_by = NULL,
shape_by = NULL, size_by = NULL, return_SCE = FALSE, draw_plot = TRUE,
theme_size = 10, legend = "auto", rerun = FALSE, ncomponents = 2,
detect_outliers = FALSE, ...)

Arguments

object an SingleCellExperiment object

ntop numeric scalar indicating the number of most variable features to use for the
PCA. Default is 500, but any ntop argument is overrided if the feature_set
argument is non-NULL.

ncomponents numeric scalar indicating the number of principal components to plot, starting
from the first principal component. Default is 2. If ncomponents is 2, then a
scatterplot of PC2 vs PC1 is produced. If ncomponents is greater than 2, a pairs
plots for the top components is produced.

exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "norm_tpm"
(normalised TPM values), "fpkm" (FPKM values), "norm_fpkm" (normalised
FPKM values), "counts" (counts for each feature), "norm_counts", "cpm"
(counts-per-million), "norm_cpm" (normalised counts-per-million), "logcounts"
(log-transformed count data; default), "norm_exprs" (normalised expression
values) or "stand_exprs" (standardised expression values) or any other named
element of the assays slot of the SingleCellExperiment object that can be
accessed with the assay function.

feature_set character, numeric or logical vector indicating a set of features to use for the
PCA. If character, entries must all be in featureNames(object). If numeric,
values are taken to be indices for features. If logical, vector is used to index
features and should have length equal to nrow(object).

scale_features logical, should the expression values be standardised so that each feature has
unit variance? Default is TRUE.

pca_data_input character argument defining which data should be used as input for the PCA.
Possible options are "logcounts" (default), which uses log-count data to pro-
duce a PCA at the cell level; "coldata" or "pdata" (for backwards compatibil-
ity) which uses numeric variables from colData(object) to do PCA at the cell
level; and "rowdata" which uses numeric variables from rowData(object) to
do PCA at the feature level.

selected_variables

character vector indicating which variables in colData(object) to use for the
phenotype-data based PCA. Ignored if the argument pca_data_input is any-
thing other than "pdata".

detect_outliers

logical, should outliers be detected in the PC plot? Only an option when pca_data_input
argument is "pdata". Default is FALSE.

colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column, containing values to map to colours for all cells.
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shape_by character string defining the column of pData(object) to be used as a factor by
which to define the shape of the points in the plot. Alternatively, a data frame
with one column containing values to map to shapes.

size_by character string defining the column of pData(object) to be used as a factor
by which to define the size of points in the plot. Alternatively, a data frame with
one column containing values to map to sizes.

return_SCE logical, should the function return an SingleCellExperiment object with prin-
cipal component values for cells in the reducedDim slot. Default is FALSE, in
which case a ggplot object is returned.

draw_plot logical, should the plot be drawn on the current graphics device? Only used if
return_SCE is TRUE, otherwise the plot is always produced.

theme_size numeric scalar giving default font size for plotting theme (default is 10).

legend character, specifying how the legend(s) be shown? Default is "auto", which
hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

rerun logical, should PCA be recomputed even if object contains a "PCA" element
in the reducedDims slot?

... further arguments passed to plotPCASCE

Details

The function prcomp is used internally to do the PCA. The function checks whether the object
has standardised expression values (by looking at stand_exprs(object)). If yes, the existing
standardised expression values are used for the PCA. If not, then standardised expression values are
computed using scale (with feature-wise unit variances or not according to the scale_features
argument), added to the object and PCA is done using these new standardised expression values.

If the arguments detect_outliers and return_SCE are both TRUE, then the element $outlier
is added to the pData (phenotype data) slot of the SingleCellExperiment object. This ele-
ment contains indicator values about whether or not each cell has been designated as an outlier
based on the PCA. These values can be accessed for filtering low quality cells with, for example,
example_sce$outlier.

Value

either a ggplot plot object or an SingleCellExperiment object

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

## Examples plotting PC1 and PC2
plotPCA(example_sce)
plotPCA(example_sce, colour_by = "Cell_Cycle")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment")
plotPCA(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment",



runTSNE 57

size_by = "Mutation_Status")
plotPCA(example_sce, shape_by = "Treatment", size_by = "Mutation_Status")
plotPCA(example_sce, feature_set = 1:100, colour_by = "Treatment",
shape_by = "Mutation_Status")

## experiment with legend
example_subset <- example_sce[, example_sce$Treatment == "treat1"]
plotPCA(example_subset, colour_by = "Cell_Cycle", shape_by = "Treatment", legend = "all")

plotPCA(example_sce, shape_by = "Treatment", return_SCE = TRUE)

## Examples plotting more than 2 PCs
plotPCA(example_sce, ncomponents = 8)
plotPCA(example_sce, ncomponents = 4, colour_by = "Treatment",
shape_by = "Mutation_Status")

runTSNE Plot t-SNE for an SingleCellExperiment object

Description

Produce a t-distributed stochastic neighbour embedding (t-SNE) plot of two components for an
SingleCellExperiment dataset.

Usage

runTSNE(object, ntop = 500, ncomponents = 2, exprs_values = "logcounts",
feature_set = NULL, use_dimred = NULL, n_dimred = NULL,
scale_features = TRUE, rand_seed = NULL,
perplexity = floor(ncol(object)/5), ...)

plotTSNE(object, colour_by = NULL, shape_by = NULL, size_by = NULL,
return_SCE = FALSE, draw_plot = TRUE, theme_size = 10,
legend = "auto", rerun = FALSE, ncomponents = 2, ...)

Arguments

object an SingleCellExperiment object

ntop numeric scalar indicating the number of most variable features to use for the
t-SNE Default is 500, but any ntop argument is overrided if the feature_set
argument is non-NULL.

ncomponents numeric scalar indicating the number of t-SNE components to plot, starting from
the first t-SNE component. Default is 2. If ncomponents is 2, then a scatterplot
of component 1 vs component 2 is produced. If ncomponents is greater than 2,
a pairs plots for the top components is produced. NB: computing more than two
components for t-SNE can become very time consuming.

exprs_values character string indicating which values should be used as the expression values
for this plot. Valid arguments are "tpm" (transcripts per million), "norm_tpm"
(normalised TPM values), "fpkm" (FPKM values), "norm_fpkm" (normalised
FPKM values), "counts" (counts for each feature), "norm_counts", "cpm"
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(counts-per-million), "norm_cpm" (normalised counts-per-million), "logcounts"
(log-transformed count data; default), "norm_exprs" (normalised expression
values) or "stand_exprs" (standardised expression values), or any other named
element of the assayData slot of the SingleCellExperiment object that can
be accessed with the assay function.

feature_set character, numeric or logical vector indicating a set of features to use for the
t-SNE calculation. If character, entries must all be in featureNames(object).
If numeric, values are taken to be indices for features. If logical, vector is used
to index features and should have length equal to nrow(object).

use_dimred character(1), use named reduced dimension representation of cells stored in
SingleCellExperiment object instead of recomputing (e.g. "PCA"). Default
is NULL, no reduced dimension values are provided to Rtsne.

n_dimred integer(1), number of components of the reduced dimension slot to use. Default
is NULL, in which case (if use_dimred is not NULL) all components of the reduced
dimension slot are used.

scale_features logical, should the expression values be standardised so that each feature has
unit variance? Default is TRUE.

rand_seed (optional) numeric scalar that can be passed to set.seed to make plots repro-
ducible.

perplexity numeric scalar value defining the "perplexity parameter" for the t-SNE plot.
Passed to Rtsne - see documentation for that package for more details.

... further arguments passed to Rtsne

colour_by character string defining the column of pData(object) to be used as a factor
by which to colour the points in the plot. Alternatively, a data frame with one
column containing values to map to colours for all cells.

shape_by character string defining the column of pData(object) to be used as a factor by
which to define the shape of the points in the plot. Alternatively, a data frame
with one column containing values to map to shapes.

size_by character string defining the column of pData(object) to be used as a factor
by which to define the size of points in the plot. Alternatively, a data frame with
one column containing values to map to sizes.

return_SCE logical, should the function return an SingleCellExperiment object with prin-
cipal component values for cells in the reducedDims slot. Default is FALSE, in
which case a ggplot object is returned.

draw_plot logical, should the plot be drawn on the current graphics device? Only used if
return_SCE is TRUE, otherwise the plot is always produced.

theme_size numeric scalar giving default font size for plotting theme (default is 10).
legend character, specifying how the legend(s) be shown? Default is "auto", which

hides legends that have only one level and shows others. Alternatives are "all"
(show all legends) or "none" (hide all legends).

rerun logical, should PCA be recomputed even if object contains a "PCA" element
in the reducedDims slot?

Details

The function Rtsne is used internally to compute the t-SNE. Note that the algorithm is not de-
terministic, so different runs of the function will produce differing plots (see set.seed to set a
random seed for replicable results). The value of the perplexity parameter can have a large effect
on the resulting plot, so it can often be worthwhile to try multiple values to find the most appealing
visualisation.
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Value

If return_SCE is TRUE, then the function returns a SingleCellExperiment object, otherwise it
returns a ggplot object.

References

L.J.P. van der Maaten. Barnes-Hut-SNE. In Proceedings of the International Conference on Learn-
ing Representations, 2013.

See Also

Rtsne

Examples

## Set up an example SingleCellExperiment
data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]

## Examples plotting t-SNE
plotTSNE(example_sce, perplexity = 10)
plotTSNE(example_sce, colour_by = "Cell_Cycle", perplexity = 10)
plotTSNE(example_sce, colour_by = "Cell_Cycle", shape_by = "Treatment",
size_by = "Mutation_Status", perplexity = 10)
plotTSNE(example_sce, shape_by = "Treatment", size_by = "Mutation_Status",
perplexity = 5)
plotTSNE(example_sce, feature_set = 1:100, colour_by = "Treatment",
shape_by = "Mutation_Status", perplexity = 5)

plotTSNE(example_sce, shape_by = "Treatment", return_SCE = TRUE,
perplexity = 10)

salmon-wrapper Salmon wrapper functions

Description

Salmon wrapper functions

After generating transcript/feature abundance results using Salmon for a batch of samples, read
these abundance values into a SingleCellExperiment object.

Run the abundance quantification tool Salmon on a set of FASTQ files. Requires Salmon (https:
//combine-lab.github.io/salmon/) to be installed and a Salmon transcript index must have
been generated prior to using this function. See the Salmon website for installation and basic usage
instructions.

https://combine-lab.github.io/salmon/
https://combine-lab.github.io/salmon/
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Usage

readSalmonResultsOneSample(directory)

readSalmonResults(Salmon_log = NULL, samples = NULL, directories = NULL,
logExprsOffset = 1, verbose = TRUE)

runSalmon(targets_file, transcript_index, single_end = FALSE,
output_prefix = "output", lib_type = "A", n_processes = 2,
n_thread_per_process = 4, n_bootstrap_samples = 0, seqBias = TRUE,
gcBias = TRUE, posBias = FALSE, allowOrphans = FALSE,
advanced_opts = NULL, verbose = TRUE, dry_run = FALSE,
salmon_cmd = "salmon")

Arguments

directory character string giving the path to the directory containing the Salmon results
for the sample.

Salmon_log list, generated by runSalmon. If provided, then samples and directories ar-
guments are ignored.

samples character vector providing a set of sample names to use for the abundance re-
sults.

directories character vector providing a set of directories containing Salmon abundance re-
sults to be read in.

logExprsOffset numeric scalar, providing the offset used when doing log2-transformations of
expression data to avoid trying to take logs of zero. Default offset value is 1.

verbose logical, should function provide output about progress?

targets_file character string giving the path to a tab-delimited text file with either 2 columns
(single-end reads) or 3 columns (paired-end reads) that gives the sample names
(first column) and FastQ file names (column 2 and if applicable 3). The file is
assumed to have column headers, although these are not used.

transcript_index

character string giving the path to the Salmon index to be used for the feature
abundance quantification.

single_end logical, are single-end reads used, or paired-end reads?

output_prefix character string giving the prefix for the output folder that will contain the
Salmon results. The default is "output" and the sample name (column 1 of
targets_file) is appended (preceded by an underscore).

lib_type scalar, indicating RNA-seq library type. See Salmon documentation for details.
Default is "A", for automatic detection.

n_processes integer giving the number of processes to use for parallel Salmon jobs across
samples. The package parallel is used. Default is 2 concurrent processes.

n_thread_per_process

integer giving the number of threads for Salmon to use per process (to parallelize
Salmon for a given sample). Default is 4.

n_bootstrap_samples

integer giving the number of bootstrap samples that Salmon should use (default
is 0). With bootstrap samples, uncertainty in abundance can be quantified.

seqBias logical, should Salmon’s option be used to model and correct abundances for
sequence specific bias? Default is TRUE.
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gcBias logical, should Salmon’s option be used to model and correct abundances for
GC content bias? Requires Salmon version 0.7.2 or higher. Default is TRUE.

posBias logical, should Salmon’s option be used to model and correct abundances for
positional biases? Requires Salmon version 0.7.3 or higher. Default is FALSE.

allowOrphans logical, Consider orphaned reads as valid hits when performing lightweight-
alignment. This option will increase sensitivity (allow more reads to map and
more transcripts to be detected), but may decrease specificity as orphaned align-
ments are more likely to be spurious. For more details see Salmon documenta-
tion.

advanced_opts character scalar supplying list of advanced option arguments to apply to each
Salmon call. For details see Salmon documentation or type salmon quant --help-reads
at the command line.

dry_run logical, if TRUE then a list containing the Salmon commands that would be run
and the output directories is returned. Can be used to read in results if Salmon
is run outside an R session or to produce a script to run outside of an R session.

salmon_cmd (optional) string giving full command to use to call Salmon, if simply typing
"salmon" at the command line does not give the required version of Salmon or
does not work. Default is simply "salmon". If used, this argument should give
the full path to the desired Salmon binary.

Details

The directory is expected to contain results for just a single sample. Putting more than one sample’s
results in the directory will result in unpredictable behaviour with this function. The function looks
for the files (with the default names given by Salmon) ’quant.sf’, ’stats.tsv’, ’libFormatCounts.txt’
and the sub-directories ’logs’ (which contains a log file) and ’libParams’ (which contains a file
detailing the fragment length distribution). If these files are missing, or if results files have different
names, then this function will not find them.

This function will work for Salmon v0.7.x and greater, as the name of one of the default output
directories was changed from "aux" to "aux_info" in Salmon v0.7.

This function expects to find only one set of Salmon abundance results per directory; multiple
adundance results in a given directory will be problematic.

A Salmon transcript index can be built from a FASTA file: salmon index [arguments] FASTA-file.
See the Salmon documentation for further details. This simple wrapper does not give access to all
nuances of Salmon usage. For finer-grained usage of Salmon please run it at the command line -
results can still be read into R with readSalmonResults.

Value

A list with two elements: (1) a data.frame abundance with columns for ’target_id’ (feature, tran-
script, gene etc), ’length’ (feature length), ’est_counts’ (estimated feature counts), ’tpm’ (transcripts
per million); (2) a list, run_info, with metadata about the Salmon run that generated the results,
including number of reads processed, mapping percentage, the library type used for the RNA-
sequencing, including details about number of reads that did not match the given or inferred library
type, details about the Salmon command used to generate the results, and so on.

an SingleCellExperiment object

A list containing three elements for each sample for which feature abundance has been quantified:
(1) salmon_call, the call used for Salmon, (2) salmon_log the log generated by Salmon, and (3)
output_dir the directory in which the Salmon results can be found.
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Examples

## Not run:
# If Salmon results are in the directory "output", then call:
readSalmonResultsOneSample("output")

## End(Not run)
## Not run:
## Define output directories in a vector called here "Salmon_dirs"
## and sample names as "Salmon_samples"
sceset <- readSalmonResults(samples = Salmon_samples,
directories = Salmon_dirs)

## End(Not run)

## Not run:
## If in Salmon's 'test' directory, then try these calls:
## Generate 'targets.txt' file:
write.table(data.frame(Sample="sample1", File1="reads_1.fastq.gz", File2="reads_1.fastq.gz"),
file="targets.txt", quote=FALSE, row.names=FALSE, sep="\t")

Salmon_log <- runSalmon("targets.txt", "transcripts.idx", single_end=FALSE,
output_prefix="output", verbose=TRUE, n_bootstrap_samples=10,
dry_run = FALSE)

## End(Not run)

scater_gui scater GUI function

Description

scater shiny app GUI for workflow for less programmatically inclined users or those who would
like a quick and easy way to view multiple plots.

Usage

scater_gui(object)

Arguments

object SinglCellExperiment object after running calculateQCMetrics on it

Value

Opens a browser window with an interactive shiny app and visualize all possible plots included in
the scater

Author(s)

Davis McCarthy and Vladimir Kiselev
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Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
example_sce <- normalize(example_sce)
drop_genes <- apply(exprs(example_sce), 1, function(x) {var(x) == 0})
example_sce <- example_sce[!drop_genes, ]
example_sce <- calculateQCMetrics(example_sce,
feature_controls = list(set1 = 1:40))
## Not run:
scater_gui(example_sce)

## End(Not run)

SCESet The "Single Cell Expression Set" (SCESet) class

Description

S4 class and the main class used by scater to hold single cell expression data. SCESet extends the
basic Bioconductor ExpressionSet class.

Details

This class is initialized from a matrix of expression values.

Methods that operate on SCESet objects constitute the basic scater workflow.

Slots

logExprsOffset: Scalar of class "numeric", providing an offset applied to expression data in the
‘exprs‘ slot when undergoing log2-transformation to avoid trying to take logs of zero.

lowerDetectionLimit: Scalar of class "numeric", giving the lower limit for an expression value
to be classified as "expressed".

cellPairwiseDistances: Matrix of class "numeric", containing pairwise distances between cells.
featurePairwiseDistances: Matrix of class "numeric", containing pairwise distances between

features.
reducedDimension: Matrix of class "numeric", containing reduced-dimension coordinates for

cells (generated, for example, by PCA).
bootstraps: Array of class "numeric" that can contain bootstrap estimates of the expression or

count values.
sc3: List containing results from consensus clustering from the SC3 package.
featureControlInfo: Data frame of class "AnnotatedDataFrame" that can contain informa-

tion/metadata about sets of control features defined for the SCESet object. bootstrap estimates
of the expression or count values.

References

Thanks to the Monocle package (github.com/cole-trapnell-lab/monocle-release/) for their CellDataSet
class, which provided the inspiration and template for SCESet.
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sc_example_cell_info Cell information for the small example single-cell counts dataset to
demonstrate capabilities of scater

Description

This data.frame contains cell metadata information for the 40 cells included in the example counts
dataset included in the package.

Usage

sc_example_cell_info

Format

a data.frame instance, 1 row per cell.

Value

NULL, but makes aavailable a data frame with cell metadata

Author(s)

Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

sc_example_counts A small example of single-cell counts dataset to demonstrate capabil-
ities of scater

Description

This data set contains counts for 2000 genes for 40 cells. They are from a real experiment, but
details have been anonymised.

Usage

sc_example_counts

Format

a matrix instance, 1 row per gene.

Value

NULL, but makes aavailable a matrix of count data
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Author(s)

Davis McCarthy, 2015-03-05

Source

Wellcome Trust Centre for Human Genetics, Oxford

summariseExprsAcrossFeatures

Summarise expression values across feature

Description

Create a new SingleCellExperiment with counts summarised at a different feature level. A typical
use would be to summarise transcript-level counts at gene level.

Usage

summariseExprsAcrossFeatures(object, exprs_values = "tpm",
summarise_by = "feature_id", scaled_tpm_counts = TRUE, lib_size = NULL)

Arguments

object an SingleCellExperiment object.

exprs_values character string indicating which slot of the assayData from the SingleCellExperiment
object should be used as expression values. Valid options are 'counts' the
counts slot, 'tpm' the transcripts-per-million slot or 'fpkm' the FPKM slot.

summarise_by character string giving the column of rowData(object) that will be used as the
features for which summarised expression levels are to be produced. Default is
'feature_id'.

scaled_tpm_counts

logical, should feature-summarised counts be computed from summed TPM val-
ues scaled by total library size? This approach is recommended (see https:
//f1000research.com/articles/4-1521/v2), so the default is TRUE and it is
applied if TPM values are available in the object.

lib_size optional vector of numeric values of same length as the number of columns in
the SingleCellExperiment object providing the total library size (e.g. "count
of mapped reads") for each cell/sample.

Details

Only transcripts-per-million (TPM) and fragments per kilobase of exon per million reads mapped
(FPKM) expression values should be aggregated across features. Since counts are not scaled by
the length of the feature, expression in counts units are not comparable within a sample without
adjusting for feature length. Thus, we cannot sum counts over a set of features to get the expression
of that set (for example, we cannot sum counts over transcripts to get accurate expression estimates
for a gene). See the following link for a discussion of RNA-seq expression units by Harold Pimentel:
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/.
For more details about the effects of summarising transcript expression values at the gene level see
Sonesen et al, 2016 (https://f1000research.com/articles/4-1521/v2).

https://f1000research.com/articles/4-1521/v2
https://f1000research.com/articles/4-1521/v2
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://f1000research.com/articles/4-1521/v2
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Value

an SingleCellExperiment object

Examples

data("sc_example_counts")
data("sc_example_cell_info")
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts), colData = sc_example_cell_info)
rd <- data.frame(gene_id = rownames(example_sce),
feature_id = paste("feature", rep(1:500, each = 4), sep = "_"))
rownames(rd) <- rownames(example_sce)
rowData(example_sce) <- rd
effective_length <- rep(c(1000, 2000), times = 1000)
tpm(example_sce) <- calculateTPM(example_sce, effective_length, calc_from = "counts")

example_sceset_summarised <-
summariseExprsAcrossFeatures(example_sce, exprs_values = "tpm")
example_sceset_summarised <-
summariseExprsAcrossFeatures(example_sce, exprs_values = "counts")

updateSCESet Convert an SCESet object to a SingleCellExperiment object

Description

Convert an SCESet object produced with an older version of the package to a SingleCellExperiment
object compatible with the current version.

Usage

updateSCESet(object)

toSingleCellExperiment(object)

Arguments

object an SCESet object to be updated

Value

a SingleCellExperiment object

Examples

## Not run:
updateSCESet(example_sceset)

## End(Not run)
## Not run:
toSingleCellExperiment(example_sceset)

## End(Not run)
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