Package ‘plethy’

April 12,2018
Version 1.16.0
Date 2013-4-26
Title R framework for exploration and analysis of respirometry data

Imports Streamer, IRanges, reshape2, plyr, RColorBrewer,ggplot2,
Biobase

Depends R (>= 3.1.0), methods, DBI (>= 0.5-1), RSQLite (>=1.1),
BiocGenerics, S4Vectors

Suggests RUnit, BiocStyle

Description This package provides the infrastructure and tools to import, query
and perform basic analysis of whole body plethysmography and metabolism
data. Currently support is limited to data derived from Buxco respirometry
instruments as exported by their FinePointe software.

License GPL-3

biocViews Datalmport, biocViews, Infastructure,
DataRepresentation, TimeCourse

Collate BuxcoDB.R RetList.R buxco_db_v2.R dep_parser.R utilities.R
Url https://github.com/dbottomly/plethy
NeedsCompilation no

Author Daniel Bottomly [aut, cre],
Marty Ferris [ctb],
Beth Wilmot [aut],
Shannon McWeeney [aut]

Maintainer Daniel Bottomly <bottomly@ohsu.edu>

R topics documented:

plethy-package
Additional annotation queries oL
BuxcofileParsers
BuxcoDB-class
dblmport
Utility functions

Index

plethy-package

plethy-package

R framework for exploration and analysis of respirometry data

Description

This package provides the infrastructure and tools to import, query and perform basic analysis of
whole body plethysmography and metabolism data. Currently support is limited to data derived
from Buxco respirometry instruments as exported by their FinePointe software.

Details

Package:
Version:
Date:
Imports:
Depends:
Suggests:
License:
biocViews:
Collate:
Packaged:
Built:

Index:

BuxcoDB-class
dbImport
parse.buxco
plethy-package

plethy

0.99.4

2013-4-26

Streamer, DBI, RSQLite, methods, IRanges, reshape2, batch

R (>=3.0.0)

RUnit, BiocGenerics

GPL-3

Datalmport, biocViews, Infastructure, DataRepresentation, TimeCourse
BuxcoDB.R RetList.R buxco_db_v2.R dep_parser.R utilities.R
2013-08-01 21:02:18 UTC; bottomly

R 3.0.1; ; 2013-08-01 21:02:29 UTC; unix

Class '"BuxcoDB"'

Import data into a BuxcoDB database

Functions for parsing Buxco respirometry data
R framework for exploration and analysis of
respirometry data

buxco.sample.data.path Path to a sample Buxco output file

sample.db.path

Path to a sample BuxcoDB database

Further information is available in the following vignettes:

Author(s)

plethy plethy (source, pdf)

Daniel Bottomly, Marty Ferris

Maintainer: Daniel Bottomly <bottomly @ohsu.edu>

References

www.buxco.com

Additional annotation queries 3

Examples

tmp_db <- tempfile()

bux.db <- parse.buxco(file.name=buxco.sample.data.path(), db.name = tmp_db)
head(retrieveData(bux.db))

bux.db <- makeBuxcoDB(tmp_db)

samples(bux.db)
variables(bux.db)

Additional annotation queries
Builtin queries to add additional annotation to a BuxcoDB database

Description

These functions take BuxcoDB objects as input and return an SQL query (in the SQLite dialect)
which results in the creation of a table containing additional annotation that is not parsed from the
Buxco CSV file. These annotations are meant to be categorical labels such as whether a datapoint
was part of an acclimation or experimental run which may not necessarily be encoded directly in
the Buxco CSV file. A user can also specify functions in this form to add custom annotations to
the database. Typically the end user does not need to call these functions directly, instead they are
supplied to the code argument of the addAnnotation method. This method then calls the function
internally in the process of generating the annotation table.

Currently implemented queries are:

day.infer.query: Computes the number of days past the first observed timestamp for a given sam-
ple. This day assignment should be compared to the experimental timepoint potentially recorded in
the "Phase’ element of the Buxco CSV file. This value will exist as the 'Rec_Exp_date’ column of
the data. frame returned by retrieveData.

break. type.query: Labels each datapoint as belonging to one of several categories. Typically
each datapoint would be part of the ’ACC’ or "TEXP’ groups corresponding to acclimation or exper-
imental readings. The assignment of these categories is based on observations regarding the current
breakpoint number relative to the number of breakpoints observed for a given sample and given day.
Typically the acclimation readings are reported first followed by the experimental readings. Addi-
tionally, "UNK’ or ’ERR’ indicate deviations from the expected sample-breakpoint relationships.
Specifically, "UNK’ refers to the case where only one breakpoint was observed for that animal and
day so the category is unknown. The presence of ’ERR’ categories indicate potential issues with
how the data was parsed and should be reported to the package author for investigation. NOTE:
Currently, day . infer. query needs to be run prior to this query as it draws upon the computed date
as opposed to the labeled date.

Usage

break. type.query(obj)
day.infer.query(obj)

Arguments

obj A BuxcoDB object.

Value

A character string representing an SQL query.

Author(s)

Daniel Bottomly

References

http://www.sqlite.org/

See Also

BuxcoDB

Examples

Buxco file Parsers

samp.file <- sample.db.path()
new.file <- file.path(tempdir(), basename(samp.file))

stopifnot(file.copy(samp.file, new.file, overwrite=TRUE))
bux.db <- makeBuxcoDB(new.file)
head(retrieveData(bux.db))

#query used to compute experiment day relative to the initial timepoint.
day.infer.query(bux.db)

addAnnotation(bux.db, query=day.infer.query)

head(retrieveData(bux.db))

Buxco file Parsers Functions for parsing Buxco respirometry data

Description

A typical Buxco respirometry experiment involves collecting repeated measures on both acclima-
tion and experimental data related to metabolism and respiration. The parse.buxco function cre-
ates a local database representation of a given file to facilitate fast retrieval and ultimately analysis.
The user should only use parse.buxco with parse.buxco.basic mainly used for testing purposes.

Buxco file Parsers 5

Usage

parse.buxco(file.name = NULL, table.delim = "Table"”, burn.in.lines = c("Measurement”, "Create meas
chunk.size = 500, db.name = "bux_test.db"”, max.run.time.minutes = 60, overwrite = TRUE, verbose="

parse.buxco.basic(file.name=NULL, table.delim="Table"”, burn.in.lines=c("Measurement"”, "Create me:
Arguments
file.name A path to the Buxco CSV file. See vignette for further description of the required
file format.
table.delim A character vector of length one containing the pattern used to divide the Buxco

file into tables.

burn.in.lines A character vector containing the patterns used to divided each Buxco table into
readings for different animals.

chunk.size The number of lines that should be read in at a given time, more lines results in
more memory consumption and quicker parsing speed.

db.name The file name of the local database to create.

max.run.time.minutes
The maximum time in minutes that a acclimation or experimental run should
take. A warning will be given if this is exceeded and the data will be treated as
if there were seperate runs.

overwrite A logical value specifying whether the local database specified in db.name
should be overwritten if exists.

verbose A logical value specifying if additional information should be printed as parsing
progresses.

make . package A logical value indicating whether a package should be created in db.name in-
stead of a database file.

author If make.package == T, a string value indicating who the package author should
be.

author.email If make.package == T, a string value indicating what the package author’s email
address should be.

Details

The parse.buxco function reads in the specified file in chunks. It uses the lines specified in
burn.in.lines to determine whether a "break’ has been reached. Each break signifies that a series
of readings for several animals has been completed and so only upon reaching a break is measure-
ment data written to the database for the completed measurement sets. Because of this, there will
always be some memory overhead in proportion to the number of readings in each series irrespective
of chunk.size. To access the database in R, use the convienience method retrieveData.

Value
The parse.buxco function returns a BuxcoDB object. The parse.buxco.basic function returns a
data.frame.

Note

parse.buxco.basic should not be used directly as it is extremely memory intensive as it parses
the entire file at once and returns a data. frame result.

6 BuxcoDB-class

Author(s)

Daniel Bottomly

References

http://www.buxco.com/

See Also

BuxcoDB, retrieveData

Examples

bux.db <- parse.buxco(file.name=buxco.sample.data.path(), db.name =tempfile())

head(retrieveData(bux.db))

BuxcoDB-class Class "BuxcoDB"

Description

This is the main class of the plethy package. Each object of this class simply holds the name of the
database as well as the name(s) of any additional tables added through addAnnotation.

Objects from the Class

Objects should be created by calls of the form makeBuxcoDb(db.name=NULL, annotation.table="Additional_label

Slots

db.name: Object of class "character” Stores the path to the database.

annotation.table: Object of class "character” Stores the name of the additional annotation
table in the database to be created if addAnnotation is called.

Methods

addAnnotation signature(obj = "BuxcoDB"): Carry out an additional query to populate columns
in a new or existing table. Each query should be specified by a function taking a BuxcoDB
object as an argument and returning valid SQL. Additionally if the index argument is set to
TRUE, indexes will be placed on the columns in the table. See the vignette for an example of
how this function should be used in practice.

annoTable signature(obj = "BuxcoDB"): Retrieve the name of the table where the additional
annotation is to be stored. This table will not exist until the addAnnotation method is called
first.

annoCols signature(obj = "BuxcoDB"): Returns a vector of the column names in the additional

annotation table.

BuxcoDB-class 7

annoLevels signature(obj = "BuxcoDB"): Returns a list of the same length as the number of
annotation columns in the additional annotation table with each element containing the unique
values for each column.

dbName signature(obj = "BuxcoDB"): Retrieve the path to the plethy database

retrieveData signature(obj = "BuxcoDB"): With no arguments, this method will retrieve all
available data in the database as a data. frame. Specifying single or a vector of values to one
or more of samples, variables, tables, phase or one of the addtional annotation names
specified using addAnnotation will retrieve a subset of Buxco data. Note that the valid vari-
able (column) names for the annotation table can be found through the annoCols method and
the valid variables for each variable name can be found through annolLevels.

retrieveMatrix signature{obj = "BuxcoDB"}: This method first uses 'retrieveData’ to retrieve
the specified subset of data and then summarizes it into a matrix or array by first applying the
specified ’summary.func’. The default form of the array is Samples x Timepoint x Variable
though this can be changed by supplying a different formula.

samples signature(obj = "BuxcoDB"): Returns a vector of the unique samples in the database
tables signature(obj = "BuxcoDB"): Returns a vector of the unique tables in the database
variables signature(obj = "BuxcoDB"): Returns a vector of the unique Buxco measurement

variables in the database

tsplot signature(obj = "BuxcoDB"): Produces a line plot of the subset of the subset of the data
as specified in ’retrieveData’ after summarizing each sample for each timepoint by the function
specified in ’summary.func’. Colors and a legend can be added for a single experimental
variable specified in ’exp.factor’. The x,y and legend labels can be modified using the ’xlab’,
’ylab’ and ’legend.name’ arguments respecitively.

mvtsplot signature(obj = "BuxcoDB"): Produces a multivariate timeseries plot adapted from
the function in the 'mvtsplot’” CRAN package. By default it will produce a plot containing
a heatmap like image for each sample centered and scaled by row along with a boxplot de-
picting the overall distribution of the variable specified in "plot.value’. At the bottom of the
plot, a line plot shows the median trend over time. The data can also optionally be grouped
as either an ’inner.group’ or an ’outer.group’. The ’inner.group.name’ defaults at the sample
name though it can be used to specify a group in its own right. The ’outer.group.name’ sub-
divides the plot visualy and the medians are computed over each group seperately. Colors
of the *outer.group’ can be changed by supplying a color vector to ’outer.col’ named by the
levels of ’outer.group.name’. The colors used in the heatmap image can be influenced by sup-
plying a different palette from RColorBrewer to ’colorbrewer.pal’. Note that the data is first
summarized by sample and day using the function supplied to ’summary.func’.

summaryMeasures signature(obj = "BuxcoDB"), summary.type=c("time.to.max.response”, "max.respons
Returns a data.frame containing a summaries of the variables for each sample with respect to
the main time element specified in ’day.summary.column’ after first summarizing each vari-
able and timepoint for each sample by ’sample.summary.func’. The data can be subsetted
ahead of time using the samples, variables, tables and Break_type_label arguments. Note this
assumes that break. type. query was previously run using addAnnotation.

Author(s)

Daniel Bottomly

See Also

parse.buxco

8 dbImport

Examples

samp.file <- sample.db.path()
new.file <- file.path(tempdir(), basename(samp.file))

stopifnot(file.copy(samp.file, new.file, overwrite=TRUE))
bux.db <- makeBuxcoDB(new.file)

show(bux.db)

head(retrieveData(bux.db))

annoCols(bux.db)

annolLevels(bux.db)

dbName (bux. db)

samples(bux.db)

tables(bux.db)

variables(bux.db)

addAnnotation(bux.db, query=day.infer.query, index=FALSE)

annoCols(bux.db)
annoLevels(bux.db)

addAnnotation(bux.db, query=break.type.query, index=TRUE)

annoCols(bux.db)
annolLevels(bux.db)

head(retrieveData(bux.db))

retrieveMatrix(bux.db)[1:5,1,1:5]

dbImport Import data into a BuxcoDB database

Description

The main purpose of this function is to add data originally retrieved from the retrieveData method
into a new or existing BuxcoDB database. This will most frequently be useful in the context of
a merging procedure, however it also can facilitate data sharing and/or communication between
seperate DBMS systems.

Usage
dbImport(bux.db = NULL, bux.dta, db.name = "merge_test_1.db", debug = FALSE)

dbImport

Arguments

bux.db
bux.dta

db.name

debug

Details

Either NULL or a BuxcoDB object

A data. frame consistent with the database structure of the BuxcoDB database,
most easily created from a call to retrieveData.

Path to the new SQLite database to create.

Logical value indicating whether the function should be more verbose.

If only bux.dta is supplied and not bux.db, then a new database will be created and populated at
db.name from its contents. If both db.name and bux.dta are supplied then the data. frame will be
loaded into the existing database.

Value

A BuxcoDB object pointing to the newly created database.

Author(s)

Daniel Bottomly

See Also

BuxcoDB, retrieveData

Examples

bux.db <- makeBuxcoDB(sample.db.path())

samp.1 <- retrieveData(bux.db, samples="8034x13140_5")

test.db <- "test_db.db"

if (file.exists(test.db))

{

file.remove(test.db)

}

#create a new database from the output
db.1 <- dbImport(bux.db=NULL, bux.dta=samp.1, db.name=test.db)

samples(db.1)

test.db.2 <- "test_db_2.db"

if (file.exists(test.db.2))

{

file.remove(test.db.2)

}

samp.2 <- retrieveData(bux.db, samples="8034x13140_11")

db.2 <- dbImport(bux.db=db.1, bux.dta=samp.2, db.name=test.db.2)

10 Utility functions

samples(db.2)

file.remove(test.db.2)
file.remove(test.db)

Utility functions Utility functions to assist with QA/QC and analysis of plethysmogra-
phy data

Description

After creation of a database, often additional data needs to be added or modified. These functions
assist with the common tasks that occur when working with Buxco whole body plethysmography
data such as adding labels based on the sample IDs in the case of add. labels.by.sample or mod-
ifying labels that have previously been added in the case of adjust.labels. The get.err.breaks
function produces a summary of the samples and timepoints that have the specified value for the
’Break_type_label” column (such as ’ERR’ or "UNK’) and whether they are close to the expected
value for either and experimental or acclimation run. This can occur if there was only an experi-
mental run for some samples or if other anomalies occured. The user can then inspect these new
labels wihtin the data.frame, modify them manually if necessary and use the data.frame as input
to the adjust.labels function which replaces the original labels and moves the original labels to
another column for future reference.

Usage

add.labels.by.sample(bux.db, sample.labels)

get.err.breaks(bux.db, max.exp.count=150, max.acc.count=900, vary.perc=.1, label.val="ERR")
adjust.labels(bux.db, err.breaks.dta)

proc.sanity(bux.db, max.exp.time=300, max.acc.time=1800, max.exp.count=150, max.acc.count=900)

Arguments

bux.db An object of class BuxcoDB

sample.labels A data.frame with a column named ’samples’ and optionally a column named
"phase’ with values corresponding to the sample names and Phase values (e.g.
recorded experimental timepoint) in the database. The other columns will be
add to the annotation table and any sample not included in the data.frame will
have their labels set to NULL.

err.breaks.dta A data.frame produced by get.err.breaks function.
max.exp.time The maximum time a given experimental run should take in seconds
max.acc.time The maximum time a given acclimation run should take in seconds
max.exp.count The maximum number of records expected for the experimental run.
max.acc.count The maximum value of records expected for the acclimation run.

vary.perc The size of a percent decrease relative to the maximum experimental or accli-
mation run tolerated and still allow assignment to that category. Needs to be a
value between 0 and 1.

label.val A single character string observed in the Break_type_labels column of the an-
notation table (cannot be *ACC’ or ’EXP’).

Utility functions 11

Value

add.labels.by.sample and adjust.labels modify tables in the SQLite database pointed to in
the BuxcoDB object so nothing is returned. get.err.breaks returns a data.frame summarizing the
samples and timepoints with a given label . var.

Author(s)

Daniel Bottomly

See Also

parse.buxco,BuxcoDB

Examples

#i#set up a test dataset using internal functions

##should label sample_1 as ACC and EXP and samples 2 and 3 as UNK
##sample_3 should be too divergent from the expected 150 rows, so
##the inferred labels should remain 'UNK'

samples=c(NA, "sample_1", NA, "sample_1", "sample_2", "sample_3")
count = c(NA,900, NA,150, 150, 110)

measure_break = c(FALSE, FALSE, TRUE, FALSE, FALSE,FALSE)
table_break = c(TRUE, rep(FALSE, length(samples)-1))

phase = rep("D1", length(samples))

err.dta <- data.frame(samples=samples, count=count, measure_break=measure_break, table_break=table_break, p!
sim.bux.lines <- plethy:::generate.sample.buxco(err.dta)
temp.file <- tempfile()

temp.db.file <- tempfile()

write(sim.bux.lines, file=temp.file)

test.bux.db <- parse.buxco(file.name=temp.file, db.name=temp.db.file, chunk.size=10000)
addAnnotation(test.bux.db, query=day.infer.query, index=FALSE)
addAnnotation(test.bux.db, query=break.type.query, index=TRUE)
##quick test of data

test <- proc.sanity(test.bux.db)

head(test$count)

test$time

#i#tget a summary of this

unk.summary <- get.err.breaks(test.bux.db, label.val="UNK")
table(unk.summary$Sample_Name, unk.summary$inferred_labs)

##use the summary to change the Break_type_label column in the annotation table
head(retrieveData(test.bux.db))

adjust.labels(test.bux.db, unk.summary)

12

Utility functions

head(retrieveData(test.bux.db))

##additional annotations can be added to the database based on sample ID

sample.labels <- data.frame(samples=c("sample_1","sample_3"), response_type=c("high”, "low"),stringsAsFacto
add. labels.by.sample(test.bux.db, sample.labels)

final.dta <- retrieveData(test.bux.db)

head(final.dta)

#i#should be 'high' for sample_1 and 'low' for sample_3 with NAs for sample_2

table(final.dta$Sample_Name, final.dta$response_type, useNA="ifany")

Index

xTopic Utilities
Utility functions, 10
*Topic classes
BuxcoDB-class, 6
+Topic package
plethy-package, 2
xTopic utilities
Additional annotation queries, 3
Buxco file Parsers, 4
dbImport, 8

add.labels.by.sample (Utility
functions), 10
addAnnotation (BuxcoDB-class), 6
addAnnotation,BuxcoDB-method
(BuxcoDB-class), 6
Additional annotation queries, 3
adjust.labels (Utility functions), 10
annoCols (BuxcoDB-class), 6
annoCols,BuxcoDB-method
(BuxcoDB-class), 6
annoLevels (BuxcoDB-class), 6
annoLevels,BuxcoDB-method
(BuxcoDB-class), 6
annoTable (BuxcoDB-class), 6
annoTable,BuxcoDB-method
(BuxcoDB-class), 6

break.type.query (Additional
annotation queries), 3

Buxco file Parsers, 4

buxco.sample.data.path
(plethy-package), 2

BuxcoDB, 4, 6, 9, 11

BuxcoDB (BuxcoDB-class), 6

BuxcoDB-class, 6

day.infer.query (Additional annotation

queries), 3
dbImport, 8
dbName (BuxcoDB-class), 6

makeBuxcoDB (BuxcoDB-class), 6

mvtsplot (BuxcoDB-class), 6

mvtsplot,BuxcoDB-method
(BuxcoDB-class), 6

parse.buxco, 7, 11

parse.buxco (Buxco file Parsers), 4
plethy (plethy-package), 2
plethy-package, 2

proc.sanity (Utility functions), 10

retrieveData, 6, 9

retrieveData (BuxcoDB-class), 6

retrieveData,BuxcoDB-method
(BuxcoDB-class), 6

retrieveMatrix (BuxcoDB-class), 6

retrieveMatrix,BuxcoDB-method
(BuxcoDB-class), 6

sample.db.path (plethy-package), 2

samples (BuxcoDB-class), 6

samples,BuxcoDB-method (BuxcoDB-class),
6

summaryMeasures (BuxcoDB-class), 6

summaryMeasures,BuxcoDB-method
(BuxcoDB-class), 6

tables (BuxcoDB-class), 6
tables,BuxcoDB-method (BuxcoDB-class), 6
tsplot (BuxcoDB-class), 6
tsplot,BuxcoDB-method (BuxcoDB-class), 6

Utility functions, 10

variables (BuxcoDB-class), 6
variables,BuxcoDB-method
(BuxcoDB-class), 6

dbName , BuxcoDB-method (BuxcoDB-class), 6

get.err.breaks (Utility functions), 10

13

	plethy-package
	Additional annotation queries
	Buxco file Parsers
	BuxcoDB-class
	dbImport
	Utility functions
	Index

