Package 'Uniquorn'

April 12, 2018

Title Identification of cancer cell lines based on their weighted mutational or variational fingerprint

Version 1.6.0

Description Identifies cancer cell lines with their small variant fingerprint. Cancer cell line misidentification and crosscontamination reprents a significant challenge for cancer researchers. The identification is vital and in the frame of this package based on the locations or loci of somatic and germline mutations or variations. The input format is vcf and the files have to contain a single cancer cell line sample. The implemented method is optimized for the Nextgeneration whole exome and whole genome DNA-sequencing technology. RNAseq data is very likely to work as well but hasn't been rigiously tested yet. Panel-seq will require manual adjustment of thresholds. Imports DBI, stringr, RSQLite, R.utils, WriteXLS, stats, BiocParallel **Depends** R (>= 3.4)

License Artistic-2.0 LazyData TRUE Type Package Maintainer 'Raik Otto' <raik.otto@hu-berlin.de> Date 2017-05-12 Author Raik Otto RoxygenNote 6.0.1

NeedsCompilation no

Suggests testthat, knitr, rmarkdown, BiocGenerics, RUnit

biocViews Software, StatisticalMethod, WholeGenome, ExomeSeq

VignetteBuilder knitr

R topics documented:

add_custom_vcf_to_database	2
create_bed_file	3
dentify_vcf_file	4
nitiate_canonical_databases	5
nitiate_db_and_load_data	6
parse_ccle_genotype_data	6

parse_cosmic_genotype_data	. 7
parse_vcf_file	. 7
remove_custom_vcf_from_database	. 8
re_calculate_cl_weights	. 8
show_contained_cls	. 9
show_contained_mutations	. 10
show_contained_mutations_for_cl	. 10
show_which_cls_contain_mutation	. 11
split_add	. 11
write_data_to_db	. 12
	13

Index

 $add_custom_vcf_to_database$

Adds a custom vcf file to the three existing cancer cell line panels

Description

Adds a custom vcf file to the three existing cancer cell line panels

Usage

```
add_custom_vcf_to_database(
  vcf_input_files,
  ref_gen = "GRCH37",
  library = "",
  test_mode = FALSE,
  n_threads = 1)
```

Arguments

vcf_input_files

	Input vcf file.s This may be one or many vcf files
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
library	The name of the library to add the CCLs to. Standard is '_CUSTOM' will automatically be added as suffix.
test_mode	Is this a test? Just for internal use
n_threads	Specifies number of threads to be used

Value

Message if the adding has succeeded

create_bed_file

Examples

```
HT29_vcf_file = system.file("extdata/HT29.vcf.gz", package="Uniquorn");
add_custom_vcf_to_database(
vcf_input_files = HT29_vcf_file,
library = "",
ref_gen = "GRCH37",
test_mode = TRUE,
n_threads = 1)
```

create_bed_file create_bed_file

Description

Creates BED files from the found and not found annotated mutations

Usage

```
create_bed_file(
sim_list,
vcf_fingerprint,
res_table,
output_file,
ref_gen,
manual_identifier
```

)

Arguments

sim_list	R table which contains the mutations from the training database for the cancer cell lines	
vcf_fingerprint	t	
	contains the mutations that are present in the query cancer cell line's vcf file	
res_table	Table containing the identification results	
<pre>output_file</pre>	Path to output file	
ref_gen	Reference genome version	
manual_identifier		
	Manually enter a vector of CL name(s) whose bed files should be created, independently from them passing the detection threshold	

Value

Returns a message which indicates if the BED file creation has succeeded

Description

Identifies a cancer cell lines contained in a vcf file based on the pattern (start & length) of all contained mutations/ variations.

Usage

```
identify_vcf_file(
vcf_file,
output_file = "",
ref_gen = "GRCH37",
minimum_matching_mutations = 0,
mutational_weight_inclusion_threshold = 0.5,
only_first_candidate = FALSE,
write_xls = FALSE,
output_bed_file = FALSE,
manual_identifier_bed_file = "",
verbose = FALSE,
p_value = .05,
q_value = .05,
confidence_score = 10.0,
n_threads = 1)
```

Arguments

vcf_file	Input vcf file. Only one sample column allowed.
output_file	Path of the output file. If blank, autogenerated as name of input file plus '_uniquorn_ident.tab' suffix.
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
<pre>minimum_matchir</pre>	ng_mutations
	The minimum amount of mutations that has to match between query and training sample for a positive prediction
mutational_weig	<pre>sht_inclusion_threshold</pre>
	Include only mutations with a weight of at least x. Range: 0.0 to 1.0. $1 =$ unique to CL. $\sim 0 =$ found in many CL samples.
only_first_cand	lidate
	Only the CL identifier with highest score is predicted to be present in the sample
write_xls	Create identification results additionally as xls file for easier reading
<pre>output_bed_file</pre>	
	If BED files for IGV visualization should be created for the Cancer Cell lines that pass the threshold
manual_identifi	er_bed_file
	Manually enter a vector of CL name(s) whose bed files should be created, inde- pendently from them passing the detection threshold
verbose	Print additional information

initiate_canonical_databases

p_value	Required p-value for identification
q_value	Required q-value for identification
confidence_scor	re la
	Threshold above which a positive prediction occurs default 10.0
n_threads	Number of threads to be used

Details

identify_vcf_file parses the vcf file and predicts the identity of the sample

Value

R table with a statistic of the identification result

Examples

HT29_vcf_file = system.file("extdata/HT29.vcf.gz", package="Uniquorn");

```
identification = identify_vcf_file( HT29_vcf_file )
```

initiate_canonical_databases

initiate_canonical_databases

Description

Parses data into r list variable

Usage

```
initiate_canonical_databases(
  cosmic_file = "CosmicCLP_MutantExport.tsv",
  ccle_file = "CCLE_hybrid_capture1650_hg19_NoCommonSNPs_CDS_2012.05.07.maf",
  ref_gen = "GRCH37")
```

Arguments

cosmic_file	The path to the cosmic DNA genotype data file. Ensure that the right reference genome is used
ccle_file	The path to the ccle DNA genotype data file. Ensure that the right reference genome is used
ref_gen	Reference genome version

Value

Returns message if parsing process has succeeded

Examples

```
initiate_canonical_databases(
  cosmic_file = "CosmicCLP_MutantExport.tsv",
  ccle_file = "CCLE_hybrid_capture1650_hg19_NoCommonSNPs_CDS_2012.05.07.maf",
  ref_gen = "GRCH37")
```

initiate_db_and_load_data

initiate_db_and_load_data

Description

Intern utility function, loads database and return the sim_list and sim_list_stats variables.

Usage

```
initiate_db_and_load_data(
ref_gen,
request_table,
load_default_db )
```

Arguments

ref_gen	Reference genome version. All training sets are associated with a reference	
	genome version. Default: GRCH37	
request_table	Names of the tables to be extracted from the database	
load_default_db		
	Indicate whether the default db should be used as source for the data	

Value

Returns the sim_list and sim_list_stats variable

```
parse_ccle_genotype_data
```

parse_ccle_genotype_data

Description

Parses ccle genotype data

Usage

```
parse_ccle_genotype_data(ccle_file, sim_list)
```

Arguments

ccle_file	Path to CCLE file on hard disk
sim_list	Variable containing mutations and cell line

Value

The R Table sim_list which contains the CCLE fingerprints

parse_cosmic_genotype_data

parse_cosmic_genotype_data

Description

Parses cosmic genotype data

Usage

parse_cosmic_genotype_data(cosmic_file, sim_list)

Arguments

cosmic_file	Path to cosmic clp file in hard disk
sim_list	Variable containing mutations & cell line

Value

The R Table sim_list which contains the CoSMIC CLP fingerprints

parse_vcr_rife parse_vcj_jue	<pre>parse_vcf_file</pre>	parse_vcf_file		
------------------------------	---------------------------	----------------	--	--

Description

Parses the vcf file and filters all information except for the start and length of variations/ mutations.

Usage

parse_vcf_file(vcf_file_path, n_threads)

Arguments

vcf_file_path	Path to the vcf file on the operating system
n_threads	Specifies number of threads to be used

Value

Loci-based DNA-mutational fingerprint of the cancer cell line as found in the input VCF file

 $\verb|remove_custom_vcf_from_database|$

Removes a cancer cell line training fingerprint (vcf file) from the database. The names of all training sets can be seen by using the function show_contained_cls.

Description

Removes a cancer cell line training fingerprint (vcf file) from the database. The names of all training sets can be seen by using the function show_contained_cls.

Usage

```
remove_custom_vcf_from_database(
name_cl,
ref_gen = "GRCH37",
test_mode = FALSE)
```

Arguments

name_cl	name of the cancer cell line training fingerprintt
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
test_mode	Is this a test? Just for internal use

Value

Message that indicates if the removal was succesful

Examples

```
remove_custom_vcf_from_database(
name_cl = "HT29_CELLMINER",
ref_gen = "GRCH37",
test_mode = TRUE )
```

re_calculate_cl_weights

Re-calculate sim_list_weights

Description

This function re-calculates the weights of mutation after a change of the training set

Usage

```
re_calculate_cl_weights(sim_list, ref_gen)
```

Arguments

sim_list	R Table which contains a mapping from mutations/ variations to their containing CLs
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37

Value

A list containing both the sim_list at pos 1 and sim_list_stats at pos 2 data frames.

show_contained_cls show_contained_cls

Description

Show all cancer cell line identifier present in the database for a selected reference genome: This function shows the names, amount of mutations/ variations, overall weight of the mutations of all contained training CLs for a chosen reference genome.

Usage

show_contained_cls(
ref_gen)

Arguments

ref_gen Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37

Value

R table which contains the identifier of all cancer cell line samples with the specific reference genome and the weight of all mutations

Examples

contained_cls = show_contained_cls(
ref_gen = "GRCH37")

show_contained_mutations

show_contained_mutations

Description

Show all mutations present in the database for a selected reference Genome: This function shows all training-set mutations for a selected reference genome, i.e. the mutations that are being used for identification of query cancer cell lines.

Usage

```
show_contained_mutations(
ref_gen )
```

Arguments

ref_gen Reference genome version

Value

R Table which contains all mutations associated with a particular cancer cell line for a specified reference genome

Examples

```
contained_cls = show_contained_mutations( ref_gen = "GRCH37" )
```

```
show_contained_mutations_for_cl
```

show_contained_mutations_for_cl

Description

Show all mutations present in the database for a selected cancer cell line and reference Genome

Usage

```
show_contained_mutations_for_cl(
name_cl,
ref_gen)
```

Arguments

name_cl	Name of the cancer cell line sample stored in the database
ref_gen	Reference genome version

Value

R table which contains all mutations associated with the defined cancer cell line and reference genome

Examples

```
SK_OV_3_CELLMINER_mutations = show_contained_mutations_for_cl(
name_cl = "SK_OV_3_CELLMINER_mutations",
ref_gen = "GRCH37")
```

show_which_cls_contain_mutation

show_which_cls_contain_mutation

Description

Show all cancer cell lines in the database which contained the specified mutation and reference Genome. Closed interval coordinates. Format mutation: CHR_START_STOP, e.g. 1_123_123

Usage

```
show_which_cls_contain_mutation(
mutation_name,
ref_gen)
```

Arguments

mutation_name	Name of the mutation in the format CHROMOSOME_START_STOP, e.g. '11_244501_244510'
ref_gen	Reference genome version

Value

R table which contains all cancer cell line samples which contain the specified mutation with respect to the specified reference genome version

Examples

```
Cls_containing_mutations = show_which_cls_contain_mutation(
mutation_name = "10_103354427_103354427",
ref_gen = "GRCH37")
```

split_add split_add

Description

split_add

Usage

split_add(vcf_matrix_row)

Arguments

vcf_matrix_row row of the vcf file

Value

Transformed entry of vcf file, reduced to start and length

Description

Intern utility function, writes to database the sim_list and sim_list_stats variables

Usage

```
write_data_to_db(
  content_table,
  table_name,
  ref_gen,
  overwrite,
  test_mode )
```

Arguments

content_table	Tables to be written in db
table_name	Name of the table to be written into the DB
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
overwrite	Overwrite the potentially existing table
test_mode	Is this a test? Just for internal use

Value

the sim_list and sim_list_stats variable

Index

add_custom_vcf_to_database, 2

 $\texttt{create_bed_file, 3}$

identify_vcf_file, 4
initiate_canonical_databases, 5
initiate_db_and_load_data, 6

parse_ccle_genotype_data, 6
parse_cosmic_genotype_data, 7
parse_vcf_file, 7

re_calculate_cl_weights, 8
remove_custom_vcf_from_database, 8

show_contained_cls, 9
show_contained_mutations, 10
show_contained_mutations_for_cl, 10
show_which_cls_contain_mutation, 11
split_add, 11

 $\texttt{write_data_to_db, 12}$