Package ‘RSVSim’

April 12,2018
Type Package

Title RSVSim: an R/Bioconductor package for the simulation of
structural variations

Version 1.18.0

Date 2015-05-05

Author Christoph Bartenhagen

Maintainer Christoph Bartenhagen
<christoph.bartenhagen@uni-muenster.de>

Imports methods, [Ranges, ShortRead

Depends R (>= 3.0.0), Biostrings, GenomicRanges

Suggests BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Hsapiens.UCSC.hg19.masked, MASS, rtracklayer

Description RSVSim is a package for the simulation of deletions,
insertions, inversion, tandem-duplications and translocations
of various sizes in any genome available as FASTA-file or
BSgenome data package. SV breakpoints can be placed uniformly
accross the whole genome, with a bias towards repeat regions
and regions of high homology (for hg19) or at user-supplied
coordinates.

License LGPL-3
biocViews Sequencing

NeedsCompilation no

R topics documented:

compareSV L e e e
estimateSVSizes
SEEDUPS . . . L e e e e
simulateSV . . . oL
weightsMechanisms L
weightsRepeats L

Index

2 compareSV

compareSV Compare the simulation with a set of SVs

Description

A typical use case of structural variant (SV) simulation with simulateSV is the evaluation of SV
detection algorithms. The function compareSV looks for breakpoint overlaps between the output
of the simulation (ground truth) and the output of an SV detection program and computes the sen-
sitivity and precision. There is currently no common standard format for SVs. Because the main
information about SVs is their position in the genome and, sometimes, the breakpoint sequence
(depending on the SV detection algorithm), compareSV expects the SV detections in a simple BED-
or BEDPE format.

Usage

compareSV(querySVs, simSVs, tol=200)

Arguments
querySVs The set detected of SVs. Either a filename for a table of SVs on disk or a
data.frame. The table has to be in BED- or BEDPE-format (see details below).
The querySVs may only contain SVs of one type and not a mixture of several
kinds of SVs.
simSVs The set of simulated SVs as returned by the function simulateSV. It can be
either a filename for a table of SVs on disk or a data. frame.
tol The tolerance in bp, when comparing the (approximate) positions in querySVs
with the exact, simulated breakpoints simSVs. Positions in querySVs may only
differ by at most tol base pairs from the simulated breakpoints.
Details

An overlap is defined as the overlap between the breakpoints / breakpoint regions up to the given
tolerance in bp. Overlap does not mean the whole affected region between the start and end of the
SV.

The comparison has to be done for each type of SV separately. It is required to use the returned
tables from simulateSV for the argument simSVs. For querySVs, the tables have to be in BED- or
BEDPE-format, a simple tab-separated table with genome coordinates and an optional column with
the breakpoint sequence (bpSeq):

* Deletions: (1) BED with columns chr, start, end (, bpSeq) for exact breakpoints or (2) BEDPE
with columns chr, startl, endl, chr, start2, end2 (, bpSeq) for approximate breakpoint regions

* Insertions: BEDPE with columns chrA, startA, endA, chrB, startB, endB (, bpSeq). Typically,
a complete insertion is reported in two rows, one for the breakpoint at the 5’ and one at the 3’
end

* Inversions: (1) BED with columns chr, start, end (, bpSeql, bpSeq2) or (2) BEDPE with
columns chr, startl, endl, chr, start2, end2 (, bpSeql, bpSeq2). Inversions, the larger ones,
typically have two breakpoint sequences (one for the 5’ and on for the 3’ end)

e Tandem duplications: (1) BED with columns chr, start, end (, bpSeq) or (2) BEDPE with
columns chr, startl, endl, chr, start2, end2 (, bpSeq)

compareSV 3

* Translocations: BEDPE with columns chrA, startA, endA, chrB, startB, endB (, bpSeql,
bpSeq2)

The BEDPE-format is required for insertions and translocations, since they involve two regions on
the genome. For other SVs, the BEDPE allows to specify approximate regions for each breakpoint.
For example a deletion "chr:start-end" can be given as BED-file with columns chr, start, end or (a
little redundant) as BEDPE-file with columns chr, start, start, chr, end, end or (with some tolerance)
like chr, start-tol, start+tol, chr, end-tol, end+tol. The tolerance can also be regulated by the function
argument tol.

Value

The table of simulated SVs, as given in the function argument querySVs, but with additional
columns for the overlapping region in querySVs and the percentage overlap between the break-
point sequences (if they were provided as a column in querySVs).

Furthermore, the function prints the sensitivity and precision in the R console.

Author(s)

Christoph Bartenhagen

References
More information about the BED-format can be found on the BEDTools homepage: http://code.
google.com/p/bedtools

See Also

simulateSV

Examples

Toy example: Artificial genome with two chromosomes
genome = DNAStringSet (c("AAAAAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTTTTITT", "GGGGGGGGGGGGGGGGGGGGCCCCCCCCCcccecce
names(genome) = c("chr1”,"chr2")

SR

Example 1: Deletions

Simulation of 5 deletions of 5bp each

sim = simulateSV(output=NA, genome=genome, dels=5, sizeDels=5, bpSeqSize=10, seed=246)
simSVs = metadata(sim)$deletions

An SV detection in BED format may look like this:
Four of five deletions were detected; two with exact and two with an approximate breakpoint
Two additional deletions were detected, which were not part of the simulation
The column with the breakpoint sequence is optional, the column names not important (BED-files have no he
querySVs = data.frame(
chr=c("chr1”,"chr1”,"chr1”,"chr2","chr2”,"chr2"),
start=c(4,12,20,10,21,34),
end=c(8,16,28,14,31,38),
bpSeq=c ("AAAAAAAAAA" | "AAAAAAAAAT" | "AAAATTTTTT", "GGGGGGGGGG", "GGGGGGGCCC", "CCCCcccccc")
)

Compare the SVs with @bp tolerance:
Only the two exact detections have an overlap

http://code.google.com/p/bedtools
http://code.google.com/p/bedtools

4 estimateSVSizes

simSVs_overlap1l = compareSV(querySVs, simSVs, tol=0)
simSVs_overlap1

Increasing the breakpoint tolerance to +/- 3bp :

Now, the overlap also includes the more imprecise detections

And the sensitivity and precision are better

Note that for deletion2, the breakpoint sequence matches only by 50%
simSVs_overlap2 = compareSV(querySVs, simSVs, tol=3)

simSVs_overlap2

i s S

Example 2: Translocations

Simulation of 2 translocations (only one of them is balanced):

sim = simulateSV(output=NA, genome=genome, trans=2, percBalancedTrans=0.5, bpSeqSize=10, seed=246)
simSVs = metadata(sim)$translocations

Detected translocations have to be given in BEDPE-format (i.e. at least six columns with chr,start,end fo
In this example, the breakpoints were approximated up to 1 or 2bp
Optional breakpoint sequences are missing
querySVs = data.frame(

chr=c("chr2", "chr1”, "chr2"),

startl1=c(25,3,9),

end1=c(29,7,12),

chr2=c("chr1”,"chr2","chr1"),

start2=c(22,19,3),

end2=c(25,13,4)
)

simSVs_overlap = compareSV(querySVs, simSVs, tol=0)
simSVs_overlap

estimateSVSizes Draw random structural variation sizes from a beta distribution

Description

RSVSim can implement structural variations (SVs) of specific sizes. estimateSVSizes draws
random values for SV sizes from a beta distribution. It can fit the distribution according to given
SV sizes or default values.

Usage

estimateSVSizes(n, svSizes, minSize, maxSize, default, hist=TRUE)

Arguments
n The number of SVs to simulate
svSizes A numeric vector with SV sizes to calculate the parameters for the beta distri-
bution
minSize The minimum returned SV size
maxSize The maximum returned SV size

hist TRUE or FALSE to show a histogram of the SV sizes (or not)

segDups 5

default Setting this to "deletions", "insertions", "inversions" or "tandemDuplications"
loads default shape parameters for the beta distribution for these SV types (see
details below)

Details

* minSize and maxSize are optional and taken from the given set of svSizes if omitted

* The default shape parameters for deletions, insertions, inversions and tandem duplications
were estimated from sequencing studies in the Database of Genomic Variants release 2012-
03-29. In total, 1.129 deletions, 490 insertions, 202 inversions and 145 tandem duplications
between 500bp and 10kb were used to estimate the shape of the distribution.

Value

A numeric vector with beta distributed values between minSize and maxSize.

Note

* It is intended to run this function separately for every SV type and then provide the output to
the respective size argument of simulateSV

¢ Jtis recommended to use aminSize and maxSize that is consistent with the minimum/maximum
values in svSizes.

* When using default shape parameters for the beta distribution, it works best to simulate SVs
that do not differ too much in size (aroung 500bp-10kb).
Author(s)

Christoph Bartenhagen

References

Database of Genomic Variants: http://dgvbeta.tcag.ca/dgv/app/home?ref=NCBI36/hg18

Examples

estimate sizes for 20 SVs from a given set of values:
svSizes = c(10,20,30,40,60,80,100,150,200,250,300,400,500,750,1000)
estimateSVSizes(n=20, svSizes=svSizes, hist=FALSE)

when using the default shape parameters for deletions:
estimateSVSizes(n=20, minSize=500, maxSize=10000, hist=FALSE, default="deletions")

segDups Segmental duplications

Description

A list with coordinates of segmental duplications detected by RepeatMasker. It is loaded automati-
cally when the repeat bias feature has been turned on (repeatBias=TRUE in function simulateSV).
(But this dataset is intended for internal use; no need to handle it manually.)

http://dgvbeta.tcag.ca/dgv/app/home?ref=NCBI36/hg18

6 simulateSV

Usage

data("segmentalDuplications™)

Format

Formal class ’GRanges’

Source

Downloaded from the UCSC Browser’s RepeatMasker track. Meyer et al., The UCSC Genome
Browser database: extensions and updates 2013, 2013, Nucleic Acids Res, 41(Database issue),
64-69. Smit et al., RepeatMasker Open-3.0., 1996-2010, <http://www.repeatmasker.org>.

Examples

data("segmentalDuplications”)
segDups

simulateSV Structural Variant Simulation

Description

A tool for simulating deletions, insertions, inversions, tandem duplications and translocations in
any genome available as FASTA-file or BSgenome data package. Structural variations (SVs) are
placed within the given genome, or only a subset of it, in a random, non-overlapping manner or
at given genomic coordinates. SV breakpoints can be positioned uniformly or with a bias towards
repeat regions and regions of high homology.

Usage
simulateSV(output=".", genome, chrs, dels=0, ins=0, invs=0, dups=0, trans=0, size, sizeDels=10, si
Arguments
output Output directory for the rearranged genome and SV lists; turn this off by passing
NA (default: current directory)
genome The genome as DNAStringSet or as filename pointing to a FASTA-file contain-
ing the genome sequence
chrs Restrict simulation to certain chromosomes only (default: all chromosomes
available)
dels Number of deletions
ins Number of insertions
invs Number of inversions
dups Number of tandem duplications
trans Number of translocations
size Size of SVs in bp (a single numeric value); a quick way to set a size, which is

applied to all simulated SVs

simulateSV 7

sizeDels Size of deletions: Either a single number for all deletions or a vector with a
length for every single deletion

sizelns Size of insertions: Either a single number for all insertions or a vector with a
length for every single insertion

sizelnvs Size of inversions: Either a single number for all inversions or a vector with a
length for every single inversion

sizeDups Size of tandem duplications: Either a single number for all tandem duplications
or a vector with a length for every single tandem duplication

regionsDels GRanges object with regions within the genome where to place the deletions

regionsIns GRanges object with regions within the genome where to place the Insertions

regionsInvs GRanges object with regions within the genome where to place the inversions

regionsDups GRanges object with regions within the genome where to place the tandem du-
plications

regionsTrans GRanges object with regions within the genome where to place the translocations

maxDups Maximum number of repeats for tandem duplications

percCopiedIns Percentage of copy-and-paste-like insertions (default: O, i.e. no inserted se-
quences are duplicated)

percBalancedTrans
Percentage of balanced translocations (default: 1, i.e. all translocations are bal-
anced)

bpFlankSize Size of the each breakpoint’s flanking regions, which may contain additional
SNPs and/or indels

percSNPs Percentage of SNPs within a breakpoint’s flanking region

indelProb Probability for an indel within a breakpoint’s flanking region

maxIndelSize Maximum size of an indel

repeatBias If TRUE, the breakpoint positioning is biased towards repeat regions instead of
a uniform distribution; turned off by default (see details below)

weightsMechanisms

Weights for SV formation mechanisms (see details and examples below)

weightsRepeats Weights for repeat regions (see details and examples below)

repeatMaskerFile

bpSeqSize

random

seed

verbose

Details

Filename of a RepeatMasker output file
Length of the breakpoint sequences in the output

If TRUE, the SVs will be placed randomly within the genome or the given re-
gions; otherwise, the given regions will be used as SV coordinates (random can
also be a vector of five elements with TRUE/FALSE for every SV in the follow-
ing order: deletions, insertions, inversions, duplications, translocations)

Fixed seed for generation of random SV positions

If TRUE, some messages about the progress of the simulation will be printed
into the R console

About the supported SV types:

* Deletions: A segment is cut out from the genome.

simulateSV

* Insertions: A segment is cut or copied (see parameter percCopiedIns) from one chromosome
A and inserted into another chromosome B.

* Inversions: A segment is cut out from one chromosome and its reverse complement is inserted
at the same place without loss or a shift of sequence.

» Tandem duplication: A segment is duplicated one after the other at most maxDups times.

* Translocation: A segment from the 5’ or 3’ end of one chromosome A is exchanged with the 5’
or 3’ end of another chromosome B. If it is not balanced (see parameter percBalancedTrans),
the segment from chromosome B will be lost, what results in a duplicated sequence from
chromosome A. Segments translocated between two different ends (5°<->3’ or 3’<->5’) are
always inverted.

About SV sizes and predefined regions:

* The region arguments (regionsDels,regionsIns, regionsInvs,regionsDups,regionsTrans)
can be used in two ways: 1. as subsets of the genome where to place the SVs randomly or
2. as coordinates of SVs that shall be implemented at these exact positions. The latter can be
useful to implement a predefined set of previously detected or known SVs. Set the parameter
random to FALSE accordingly. In this case, the rownames of the region arguments will be
used to name the SVs in the output.

* In case of insertions and translocations, where two genomic regions are involved, add columns
"chrB" and "startB" for insertions and "chrB", "startB", "endB" for translocations to the
GRanges objects in regionsTrans and regionsIns, respectively.

* It is recommended to set the size of an SV individually for every deletion, insertion, inversion
or tandem duplication. See the function estimateSVSizes to estimate beta-distributed sizes
from a training set of SVs (defaults for deletions, insertions, inversions and tandem duplica-
tions are available). Using the argument size to set the size for all SVs overrides all other size
arguments.

 There is no size argument for translocations. After random generation of the breakpoint, the
translocation spans the chromosome until the closest of both chromosome ends.

About biases towards SV formation mechanisms and repeat regions:

* When using the default genome hg19 and setting repeatBias=TRUE, RSVSim simulates a
bias of breakpoint positioning towards certain kinds of repeat regions and regions of high ho-
mology. If repeatBias=FALSE (the default), the breakpoints will be placed uniformly across
the whole genome.

* This is done in two steps: 1. Weighting SV formation mechanisms (here: NAHR, NHR,
VNTR, TEI, Other) for each SV type. 2. Weighting each SV formation mechanism for each
kind of repeat (supported: LINE/L1, LINE/L2, SINE/Alu, SINE/MIR, segmental duplications
(SD), tandem repeats (TR), Random). The default weights were chosen from studies with SVs
>1.000bp by Mills et al., Pang et al., Ou et al. and Hu et al. It is possible to change these
weights by using the arguments weightsMechanisms and weightsRepeats, which need to have
a certain data.frame structure (see vignette and examples below for details).

* For the mechanism NAHR, both breakpoints will lie within a repeat region, while for NHR,
VNTR, TEI and Other, the repeat must make up for at least 75% of the SV region.

* This feature requires the coordinates of repeat regions for hgl9. This can be handled in two
ways: 1. When using this feature the first time, RSVSim downloads the coordinates once auto-
matically from the UCSC Browser’s RepeatMasker track (which may take up to 45 Minutes!)
2. The user may specify the filename of a RepeatMasker output file downloaded from their
homepage: http://www.repeatmasker.org/species/homSap.html (e.g. hgl9.fa.out.gz). In both
cases, RSVSim saves the coordinates as RData object to the RSVSim installation directory for
a faster access in the future.

simulateSV 9

* This feature is turned off automatically, when the user specifies his own genome. Then, break-
points will be placed uniformly across the genome.

About additional breakpoint mutations:
* RSVSim allows to randomly generate additional SNPs and indels within the flanking regions
of each breakpoint.

* By default, this feature is turned off. It is recommended to set the four arguments bpFlankSize,
percSNPs, indelProb and maxIndelSize to use this feature.

» Each flanking region may only contain one indel, while insertions and deletions are equally
likely. SNPs can affect 0-100% of the region.
Misc:

* By default, the human genome (hg19) will be used, which requires the package BSgenome.Hsapiens.UCSC.hg19.

* SVs will not be placed within unannotated regions or assembly gaps denoted by the letter "N".
These regions are detected and filtered automatically.

Value

The rerranged genome as a DNAStringSet. Its metadata slot contains a named list of data. frames
with information about the simulated SVs:

deletions The coordinates of the implemented deletions and the breakpoint sequence

insertions The coordinates of the origin (chrA) and destination (chrB) of the inserted se-
quence and the breakpoints sequences at both ends (5’ and 3’). If the sequence
is cut out from the original chromosome A, the sequence of this breakpoint is
given as well.

inversions The coordinates of the implemented inversions and the breakpoint sequences at
both ends (5’ and 3°)
tandemDuplications

The coordinates of the duplicated sequence and the breakpoint sequence

translocations The coordinates of the translocated sequences and the two breakpoint sequences
(if balanced)

The coordinates in the tables refer to the "normal" reference genome.
All the list items can also be written to the specified output directory (which is the current directory
by default). The genome will be saved in FASTA format and the SVs data. frames as CSV tables.

Author(s)

Christoph Bartenhagen

References

Chen W. et al., Mapping translocation breakpoints by next-generation sequencing, 2008, Genome
Res, 18(7), 1143-1149. Lam H.Y. et al., Nucleotide-resolution analysis of structural variants using
BreakSeq and a breakpoint library, 2010, Nat Biotechnol, 28(1), 47-55. Mills R.E. et al., Mapping
copy number variation by population-scale genome sequencing, 2011, Nature, 470(7332), 59-65 Ou
Z. et al., Observation and prediction of recurrent human translocations mediated by NAHR between
nonhomologous chromosomes, 2011, Genome Res, 21(1), 33-46. Pang A.W. et al., Mechanisms of
Formation of Structural Variation in a Fully Sequenced Human Genome, 2013, Hum Mutat, 34(2),
345-354. Smit et al., RepeatMasker Open-3.0., 1996-2010, <http://www.repeatmasker.org>

10 simulateSV

See Also

estimateSVSizes

Examples

Toy example: Artificial genome with two chromosomes
genome = DNAStringSet (c("AAAAAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTITTITTT”, "GGGGGGGGGGGGGGGGGGGGCCCCCCCCCCCCCCCeCC
names(genome) = c("chr1”,"chr2")

Three deletions of sizes 10@bp each

sim = simulateSV(output=NA, genome=genome, dels=3, sizeDels=10, bpSeqSize=10)
sim

metadata(sim)

Three insertions of 5bp each; all cut-and-paste-like (default)

sim = simulateSV(output=NA, genome=genome, ins=3, sizelns=5, bpSeqSize=10)

sim

metadata(sim)

Three insertions of 5bp each; all copy-and-paste-like (note the parameter \code{percCopiedIns})
sim = simulateSV(output=NA, genome=genome, ins=3, sizelns=5, percCopiedIns=1, bpSeqSize=10)

sim

metadata(sim)

Three inversions of sizes 2bp, 4bp and 6bp

sim = simulateSV(output=NA, genome=genome, invs=3, sizelnvs=c(2,4,6), bpSeqSize=10)
sim

metadata(sim)

A tandem duplication of 4bp with at most ten duplications

The duplication shall be placed somewhere within chr4:18-40

library(GenomicRanges)

region = GRanges(IRanges(10,30),seqnames="chr1")

sim = simulateSV(output=NA, genome=genome, dups=1, sizeDups=4, regionsDups=region, maxDups=10, bpSeqSize=10)
sim

metadata(sim)

A balanced translocation (default)

sim = simulateSV(output=NA, genome=genome,trans=1, bpSeqSize=6, seed=246)

sim

metadata(sim)

Another translocation, but unbalanced (note the parameter \code{percBalancedTrans})
sim = simulateSV(output=NA, genome=genome, trans=1, percBalancedTrans=0, bpSeqSize=6)
sim

metadata(sim)

Simulate all four SV types at once:

2 deletions (5bp), 2 insertions (5bp),2 inversions (3bp), 1 tandem duplication (4bp), 1 translocations

sim = simulateSV(output=NA, genome=genome, dels=2, ins=2, invs=2, dups=1, trans=1, sizeDels=5, sizelns=5, si:
sim

metadata(sim)

Avoid random generation of coordinates and implement a given deletion of 1@bp on chr2:16-25
knownDeletion = GRanges(IRanges(16,25), segnames="chr2")

names (knownDeletion) = "myDeletion”

knownDeletion

weightsMechanisms 11

sim = simulateSV(output=NA, genome=genome, regionsDels=knownDeletion, bpSeqSize=10, random=FALSE)
sim
metadata(sim)

Avoid random generation of coordinates and implement a given insertion from chr1:16:25 at chr2:26
knownInsertion = GRanges(IRanges(16,25), segnames="chr1"”, chrB="chr2", startB=26)

names(knownInsertion) = "myInsertion”

knownInsertion

sim = simulateSV(output=NA, genome=genome, regionsIns=knownInsertion, bpSeqSize=10, random=FALSE)
sim

metadata(sim)

This example simulates a translocation t(9;22) leading to the BCR-ABL fusion gene.

It uses simple breakpoints within 9g34.1 and 22q11.2 for demonstration

Take care to add coordinates of both chromosomes to the GRanges object:

trans_BCR_ABL = GRanges(IRanges(133000000,141213431), segnames="chr9", chrB="chr22", startB=23000000, endB=:
names(trans_BCR_ABL) = "BCR_ABL"

trans_BCR_ABL

This example requires the \pkg{BSgenome.Hsapiens.UCSC.hg19} which is used by default (hence, no genome arg
Not run: sim = simulateSV(output=NA, chrs=c("chr9”, "chr22"), regionsTrans=trans_BCR_ABL, bpSeqSize=30, r:

Add additional SNPs and indels at the flanking regions of each SV breakpoint:

One deletion and 10% SNPs, 100% indel probability within 1@bp up-/downstream of the breakpoint

sim = simulateSV(output=NA, genome=genome, dels=1, sizeDels=5, bpFlankSize=10, percSNPs=0.25, indelProb=1, m
sim

metadata(sim)

Setting the weights for SV formation mechanism and repeat biases demands a given data.frame structure

The following weights are the default settings

Please make sure your data.frames have the same row and column names, when setting your own weights
data(weightsMechanisms, package="RSVSim")

weightsMechanisms

data(weightsRepeats, package="RSVSim")

weightsRepeats

The weights take effect, when no genome argument has been specified (i.e. the default genome hgl19 will be u
Not run: sim = simulateSV(output=NA, dels=10, invs=10, ins=10, dups=10, trans=10, repeatBias = TRUE, weigh
If weightsMechanisms and weightsRepeats were omitted, RSVSim loads the default weights automatically (see
Not run: sim = simulateSV(output=NA, dels=10, invs=10, ins=10, dups=10, trans=10, repeatBias = TRUE)

weightsMechanisms Weights for SV formation mechanisms

Description

The default weights of all supported SV formation mechanisms for all SVs. It is loaded automati-
cally when the repeat bias feature has been turned on (repeatBias=TRUE in function simulateSV).
(But this dataset is intended for internal use; no need to handle it manually.)

Usage

data("weightsMechanisms")

12 weightsRepeats

Format

Formal class ’data.frame’

Examples

data("weightsMechanisms")
weightsMechanisms

weightsRepeats Weights for repeat region bias

Description

The default weights of all supported repeat regions for all supported SV formation mechanisms.

It is loaded automatically when the repeat bias feature has been turned on (repeatBias=TRUE in

function simulateSV). (But this dataset is intended for internal use; no need to handle it manually.)
Usage

data("weightsRepeats")

Format

Formal class ’data.frame’

Examples

data("weightsRepeats”)
weightsRepeats

Index

xTopic datagen
simulateSV, 6

xTopic datasets
segDups, 5
weightsMechanisms, 11
weightsRepeats, 12

compareSV, 2

compareSV, character,character-method
(comparesV), 2

compareSV,character,data. frame-method
(compareSV), 2

compareSV,data. frame,data. frame-method
(compareSV), 2

estimateSVSizes, 4, 10

estimateSVSizes,numeric,missing,ANY,ANY, character-method
(estimateSVSizes), 4

estimateSVSizes,numeric,missing,ANY,ANY, missing-method
(estimateSVSizes), 4

estimateSVSizes,numeric,numeric, ANY,ANY,missing-method
(estimateSVSizes), 4

segDups, 5

simulateSV, 2, 3, 5,6

simulateSV,ANY (simulateSV), 6
simulateSV,ANY-method (simulateSV), 6

weightsMechanisms, 11
weightsRepeats, 12

13

	compareSV
	estimateSVSizes
	segDups
	simulateSV
	weightsMechanisms
	weightsRepeats
	Index

