
Package ‘R453Plus1Toolbox’
April 12, 2018

Type Package

Title A package for importing and analyzing data from Roche's Genome
Sequencer System

Version 1.28.1

Date 2017-12-13

Author Hans-Ulrich Klein, Christoph Bartenhagen, Christian Ruckert

Maintainer Hans-Ulrich Klein <h.klein@uni-muenster.de>

Depends R (>= 2.12.0), methods, VariantAnnotation, Biostrings, Biobase

Imports utils, grDevices, graphics, stats, tools, xtable, R2HTML,
TeachingDemos, BiocGenerics, S4Vectors (>= 0.9.25), IRanges,
XVector, GenomicRanges, SummarizedExperiment, biomaRt,
BSgenome, Rsamtools, ShortRead

Suggests rtracklayer, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Scerevisiae.UCSC.sacCer2

Description The R453Plus1 Toolbox comprises useful functions for the
analysis of data generated by Roche's 454 sequencing platform.
It adds functions for quality assurance as well as for
annotation and visualization of detected variants,
complementing the software tools shipped by Roche with their
product. Further, a pipeline for the detection of structural
variants is provided.

License LGPL-3

biocViews Sequencing, Infrastructure, DataImport, DataRepresentation,
Visualization, QualityControl, ReportWriting

NeedsCompilation yes

R topics documented:
alignShortReads . 3
AnnotatedVariants-class . 4
annotateVariants . 5
assayDataAmp . 6
ava2vcf . 7
AVASet . 8
AVASet-class . 10
avaSetExample . 12

1

2 R topics documented:

avaSetFiltered . 13
avaSetFiltered_annot . 13
baseFrequency . 14
baseQualityHist . 15
baseQualityStats . 15
breakpoints . 16
Breakpoints-class . 16
calculateTiTv . 18
captureArray . 19
complexity.dust . 20
complexity.entropy . 21
convertCigar . 22
coverageOnTarget . 22
demultiplexReads . 23
detectBreakpoints . 24
dinucleotideOddsRatio . 27
fDataAmp . 28
featureDataAmp . 28
filterChimericReads . 29
flowgramBarplot . 31
gcContent . 31
gcContentHist . 32
gcPerPosition . 32
genomeSequencerMIDs . 33
getAlignedReads . 34
getAminoAbbr . 35
getVariantPercentages . 35
homopolymerHist . 36
htmlReport . 37
MapperSet . 38
MapperSet-class . 40
mapperSetExample . 41
mergeBreakpoints . 42
mutationInfo . 43
nucleotideCharts . 44
plotAmpliconCoverage . 44
plotChimericReads . 45
plotVariants . 47
plotVariationFrequency . 49
positionQualityBoxplot . 51
qualityReportSFF . 51
readLengthHist . 52
readLengthStats . 53
readSFF . 53
readsOnTarget . 54
referenceSequences . 55
regions . 56
removeLinker . 56
sequenceCaptureLinkers . 57
sequenceQualityHist . 58
setVariantFilter . 59
sff2fastq . 60

alignShortReads 3

SFFContainer-class . 60
SFFRead-class . 63
variants . 65
writeSFF . 65

Index 67

alignShortReads Exact alignment of DNA sequences against a reference

Description

This method aligns given sequences against a given reference genome using the matchPDict method.
Only exact (no errors) and unique matches are returned.

Usage

alignShortReads(object, bsGenome, seqNames, ensemblNotation)

Arguments

object The reads that should be aligned agiven either as a DNAStringSet or a AVASet
instance. In the latter case the reference sequences are extracted and aligned.

bsGenome A bsGenome instance providing the reference sequences.

seqNames The names of the sequences in bsGenome that should be used. If omitted, all
reference sequences are used.

ensemblNotation

If set to TRUE, “chr” is removed from the reference sequences’ names in the
returned alignment. Default value is FALSE.

Details

All reads are aligned against the reference and its reverse complement. If the reads are not in 5’
to 3’ orientation, they should be reversed before. Note that only exact and unique alignments are
reported. Use matchPDict directly for more flexibility.

Value

An object of class AlignedRead or a AVASet instance.

Author(s)

Hans-Ulrich Klein

See Also

matchPDict, DNAStringSet, AlignedRead, AVASet

4 AnnotatedVariants-class

Examples

library("BSgenome.Scerevisiae.UCSC.sacCer2")
reads = DNAStringSet(c(

"CCGTTCAAAGAGCCCTTGGCCCATAATCCACCGGTT",
"ATCCTGCCACAGGAGTCCATGGAGGTTTCGCCA"))

alignShortReads(reads, Scerevisiae, seqNames="chrIII")

AnnotatedVariants-class

Class "AnnotatedVariants"

Description

A class for storing annotation about variants. An object of this class is returned by the method
annotateVariants. The class has not been designed to be created by users directly.

Details

The list encapsulated by this class has one element for each variant. Each element is a nested list
with the elements genes, transcripts, exons and snps. All these elements are data frames listing
genes, transcripts, exons or snps respectively that were affected by the variant. Use the example
below to explore the data frames’ contents.

Objects from the Class

Objects can be created by calls of the form new("AnnotatedVariants"). The method annotateVariants
returns AnnotatedVariants-objects.

Slots

annotatedVariants: Object of class "list" with one entry for each variant.

Methods

annotatedVariants signature(object = "AnnotatedVariants"): Get the list with variants.

annotatedVariants<- signature(object = "AnnotatedVariants", value = "list"): Set a
new list with variants.

names signature(x = "AnnotatedVariants"): Get the names of the with variants.

names<- signature(x = "AnnotatedVariants", value = "character"): Set the names of
the variants.

Author(s)

Hans-Ulrich Klein

See Also

annotateVariants, htmlReport

annotateVariants 5

Examples

variants = data.frame(
start=c(106157528, 106154991,106156184),
end=c(106157528, 106154994,106156185),
chromosome=c("4", "4", "4"),
strand=c("+", "+", "+"),
seqRef=c("A", "ATAG", "---"),
seqMut=c("G", "----", "ATA"),
seqSur=c("TACAGAA", "TTTATAGATA", "AGC---TCC"),
stringsAsFactors=FALSE)

rownames(variants) = c("snp", "del", "ins")
Not run: av = annotateVariants(variants)
Not run: annotatedVariants(av)[["snp"]]

annotateVariants Adds genomic information to variants

Description

This method annotates given genomic variants (mutations). Annotation includes affected genes,
exons and codons. Resulting amino acid changes are returned as well as dbSNP identifiers, if
the mutation is already known. All information is fetched from the Ensembl GRCh37 server via
biomaRt using the datasets hsapiens_gene_ensembl and hsapiens_snp.

Usage

annotateVariants(object, bsGenome)

Arguments

object A data frame storing variants or an instance of AVASet/MapperSet or a data
frame (see details).

bsGenome An object of class BSGenome giving the genome to be used as reference sequence
to calculate amino acid changes. This argument is only applicable when object
is of type MapperSet. Default is ‘BSgenome.Hsapiens.UCSC.hg19’. Note that
the genome should fit to the Ensembl annotation.

Details

If a data frame is given, the following columns must be present:

start genomic start position in the current Ensembl genome
end genomic end position in the current Ensembl genome
chromosome chromosome in ensembl notation (i.e. "1", "2", ..., "Y")
strand "+" or "-" relative to the nucleotide bases given below
seqRef reference sequence
seqMut sequence of the observed variant
seqSur reference sequence extended for 3 bases in both directions

The rownames of the data frame are used as mutations’ names (IDs). See examples for a properly
defined data drame.

6 assayDataAmp

Value

An object of class AnnotatedVariants. Affected genes, transcripts and exon as well as known
SNPs are stored in a list-like structure. See the documentation of class AnnotatedVariants-class
for details.

Author(s)

Hans-Ulrich Klein

See Also

AnnotatedVariants-class, AVASet-class, MapperSet-class, htmlReport

Examples

variants = data.frame(
start=c(106157528, 106154991,106156184),
end=c(106157528, 106154994,106156185),
chromosome=c("4", "4", "4"),
strand=c("+", "+", "+"),
seqRef=c("A", "ATAG", "---"),
seqMut=c("G", "----", "ATA"),
seqSur=c("TACAGAA", "TTTATAGATA", "AGC---TCC"),
stringsAsFactors=FALSE)

rownames(variants) = c("snp", "del", "ins")
Not run: annotateVariants(variants)

assayDataAmp Access the amplicon data of an AVASet.

Description

Similar to assayData of the Biobase ExpressionSet, this function returns the assay data of the
amplicon slot of an instance of the AVASet.

Usage

assayDataAmp(object)

Arguments

object An link{AVASet-class} object.

Value

The assay data of the amplicon slot consists of a list of two data frames with the number of forward
and reverse reads of all amplicons for each sample (see AVASet-class for details).

Author(s)

Christoph Bartenhagen

ava2vcf 7

See Also

fDataAmp, featureDataAmp, AVASet-class

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)

show contents of amplicon assay data
assayDataAmp(avaSetExample)

ava2vcf Convert an AVASet object into a VCF object

Description

Converts all variants in a given AVASet object into a VCF object and writes it to a file in VCF
format if filename is given.

Usage

ava2vcf(object, filename, annot)

Arguments

object An object of class AVASet.

filename The name of the VCF file to write in, if ommitted no file is written.

annot An object of class AnnotatedVariants. Optional, if given variants are anno-
tated with informations from dbSNP.

Value

An object of class VCF-class

Author(s)

Christian Ruckert

See Also

AnnotatedVariants-class, AVASet-class, VCF-class, writeVcf

Examples

data("avaSetFiltered")
vcf <- ava2vcf(avaSetFiltered)

8 AVASet

AVASet Creating an AVASet

Description

This function imports a project of Roche’s Amplicon Variant Analyzer (AVA) Software. It stores
all information into an extended version of the Biobase eSet.

Usage

AVASet(dirname, avaBin, file_sample, file_amp, file_reference, file_variant, file_variantHits)

Arguments

dirname The path of the AVA project.
Without AVA-CLI (AVA version < 2.6): A directory that contains the files and
subdirectories "Amplicons/ProjectDef/ampliconsProject.txt", "Amplicons/Results/Variants/currentVariantDefs.txt",
"Amplicons/Results/Variants", "Amplicons/Results/Align".
Using AVA-CLI (recommended): Path usually ends with directory "project-
folder"

avaBin The directory containing the AVA-CLI binary doAmplicon (usually "bin" in the
AVA installation directory)

file_sample Sample information exported with the AVA-CLI. File has to be in CSV format.

file_amp Amplicons exported with the AVA-CLI. File has to be in CSV format.

file_reference Reference sequences exported with the AVA-CLI. File has to be in CSV format.

file_variant Variant information exported with the AVA-CLI. File has to be in CSV format.
file_variantHits

Report of variant hits exported with the AVA-CLI. File has to be in CSV format.

Details

The five arguments for AVA command line interface (AVA-CLI) exports are optional and useful for
exported projects, when no AVA software is installed. For exporting, start the AVA-CLI with the
command "doAmplicon" and use the commands "open", then "list sample", "list amplicon", "list
reference", "list variant" and "report variantHits". See AVASet-class for more details.
Giving only a project directory and the path to the AVA-CLI binary doAmplicon, AVASet will import
all information by accessing the AVA-CLI from within R.

An AVASet object consists of three slots to store data about
1. variants

variantForwCount/variantRevCount: Data frames that contain the number of reads with the re-
spective variant in forward/reverse direction.

totalForwCount/totalRevCount: Data frames that contain the total coverage for every variant
location in forward/reverse direction.

referenceSeq: Gives the identifier of the reference sequence.

variantBase/referenceBases: The bases changed in each variant.

start/end: The position of the variant on the reference sequence.

AVASet 9

canonicalPattern/name: Short identifiers of a variant including the position and the bases changed.

2. amplicons

forwCount/revCount: Data frames that contain the number of reads for every amplicon and each
sample in forward/reverse direction.

primer1,primer2: The primer sequences for every amplicon.

referenceSeqID: The identifier of the reference sequence.

targetStart/targetEnd: The coordinates of the target region.

3. reference sequences

If additional information has been loaded from Ensembl via alignShortReads, this slot knows about the chromosome, position and the strand of each reference sequence.

The structure of the variant and amplicon data is derived from the Biobase eSet and thus separated
into assayData, phenoData and featureData. All information about the reference sequences is stored
into an object of class AlignedRead.

The phenoData of the variants lists the sample-IDs and name, annotation and group of the read data
for all samples. If available, the pico titer plate(s) (PTP) or MID(s) of each sample are shown as
well (using the AVA-CLI, PTPs and MIDs cannot be importet at the moment).

Value

An instance of the AVASet class.

Note

It is recommended to use the import via AVA-CLI access. Although deprecated, the import for
projects created with older version of the AVA software (< v2.6) is still possible.

Author(s)

Christoph Bartenhagen

See Also

AVASet-class, MapperSet-class, alignShortReads

Examples

Loading a project from AVA version < 2.6:
Load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

Loading exported data, that was exported via AVA-CLI
Load an AVA dataset containing 6 samples, 4 amplicons and 222 variants
by specifying each file exported from the AVA-CLI
projectDir = system.file("extdata", "AVASet_doAmplicon", package="R453Plus1Toolbox")
avaSetExample = AVASet(dirname=projectDir, file_sample="sample.csv", file_amp="amp.csv", file_reference="reference.csv", file_variant="variant.csv", file_variantHits="variantHits.csv")
avaSetExample

10 AVASet-class

In case AVA software is installed:
Saying, for example, the AVA software was installed to the directory "/home/User/AVA",
the easiest way to import a project via AVA-CLI would look like:
avaSetExample = AVASet(dirname="myProjectDir", avaBin="/home/User/AVA/bin")

AVASet-class Class to contain Amplicon Variant Analyzer Output

Description

Container to store data imported from a project of Roche’s Amplicon Variant Analyzer Software. It
stores all information into an extended version of the Biobase ExpressionSet.

Objects from the Class

Objects can be created by calls of the form AVASet(dirname, avaBin). dirname is a character
giving the proejct directory and avaBin is a character giving the path to the AVA software installation
(i.e. the directory containing the doAmplicon binary). The constructor will start the AVA software
command line and import all necessary data.

If the AVA software is not installed on the same machine that runs R, all data must be exported man-
ually using the AVA Command Line Interface (AVA-CLI). After having exported all text files, the
constructor AVASet(dirname, avaBin, file_sample, file_amp, file_reference, file_variant, file_variantHits)
can be used to import them. See the example below.

Finally, old project folders generated by AVA software < 2.6 can be imported using AVASet(dirname).
Where dirname is the path to the project folder (i.e. a directory that contains the files and subdirecto-
ries "Amplicons/ProjectDef/ampliconsProject.txt", "Amplicons/Results/Variants/currentVariantDefs.txt",
"Amplicons/Results/Variants", "Amplicons/Results/Align").

Slots

assayData: Object of class AssayData. Contains the number of reads and the total read depth for
every variant and each sample in forward and reverse direction. Its column number equals
nrow(phenoData).

featureData: Object of class AnnotatedDataFrame. Contains information about the type, posi-
tion and reference of each variant.

phenoData: Object of class AnnotatedDataFrame. Contains the sample-IDs and name, annotation
and group of the read data for all samples. If available, the lane, pico titer plate(s) (PTP) or
MID(s) of each sample are shown as well.

assayDataAmp: Object of class AssayData. Contains the number of reads for every amplicon and
each sample in forward/reverse direction. Its column number equals nrow(featureDataAmp).

featureDataAmp: Object of class AnnotatedDataFrame. Contains the primer sequences, refer-
ence sequences and the coordinates of the target regions for every amplicon.

referenceSequences: Object of class AlignedRead. If additional alignment information were
computed via alignShortReads, this slot knows about the chromosome, position and the
strand of each reference sequence.

variantFilterPerc: Object of class numeric. Contains a threshold to display only those variants,
whose coverage (in percent) in forward and reverse direction in at least one sample is higher
than this filter value. See setVariantFilter for details about setting this value.

AVASet-class 11

variantFilter: Object of class character. Contains a vector of variant names whose coverage
(in percent) in forward and reverse direction in at least one sample is higher than the filter
value in variantFilterPerc.

dirs: Object of class character. Based on a directory given at instantiation of the object, it
contains a vector of several directories containing all relevant AVA-project files.

experimentData: Object of class MIAME. Contains details of the experiment.

annotation: Object of class character. Label associated with the annotation package used in the
experiment.

protocolData: Object of class annotatedDataFrame. Contains additional information about the
samples.

.__classVersion__: Object of class Versions. Remembers the R and R453Toolbox version
numbers used to created the AVASet instance.

Extends

Class eSet, directly. Class VersionedBiobase, by class "eSet", distance 2. Class Versioned, by
class "eSet", distance 3.

Methods

object[i,j :] Allows subsetting an AVASet object by features (i) and samples (j).

assayDataAmp(object), assayDataAmp(object)<-value: Similar to assayData of the Biobase
ExpressionSet, this function returns/replaces the amplicon assay data.

fDataAmp(object): Similar to fData of the Biobase ExpressionSet, this function returns the am-
plicon feature data as a data frame.

featureDataAmp(object), featureDataAmp(object)<-value: Similar to featureData of the Biobase
ExpressionSet, this function returns/replaces the amplicon feature data and feature meta.

referenceSequences(object), referenceSequences(object)<-value: Returns/replaces the reference
sequence slot.

alignShortReads(object, bsGenome): Retrieve the chromosomal positions of the amplicon se-
quences.

setVariantFilter(object): Sets the filter to display only those variants, whose coverage (in percent)
in forward and reverse direction in at least one sample is higher than the given value.

getVariantPercentages(object) Computes the coverage for every variant over all reads (forward
and/or reverse) and for each sample.

annotateVariants(object): Annotates given genomic variants. See annotateVariants for details.

htmlReport(object): Exports all (filtered) variant data into a html report. See htmlReport for
details

Author(s)

Christoph Bartenhagen

See Also

MapperSet-class, annotateVariants, alignShortReads, htmlReport, setVariantFilter, getVariantPercentages

12 avaSetExample

Examples

sum up class structure
showClass("AVASet")

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

show contents of assay, feature and pheno data
head(assayData(avaSetExample)$variantForwCount)
head(assayData(avaSetExample)$totalForwCount)
head(assayData(avaSetExample)$variantRevCount)
head(assayData(avaSetExample)$totalRevCount)
head(fData(avaSetExample))
pData(avaSetExample)
assayDataAmp(avaSetExample)
fDataAmp(avaSetExample)
referenceSequences(avaSetExample)

Use these commands to export a project from within the AVA-CLI (doAmplicon):
> list sample -outputFile sample.csv
> list amplicon -outputFile amp.csv
> list reference -outputFile reference.csv
> list variant -outputFile variant.csv
> report variantHits -outputFile variantHits.csv

Load an AVA dataset containing 6 samples, 4 amplicons and 222 variants
by specifying five files, that were exported with the AVA-CLI:
projectDir = system.file("extdata", "AVASet_doAmplicon", package="R453Plus1Toolbox")
avaSetExample = AVASet(dirname=projectDir, file_sample="sample.csv", file_amp="amp.csv", file_reference="reference.csv", file_variant="variant.csv", file_variantHits="variantHits.csv")

avaSetExample Amplicon Variant Analyzer data import

Description

This is an example of an link{AVASet-class} object containing the output of Roche’s Amplicon
Variant Analyzer Software. It consists of 6 samples, 4 amplicons and 259 variants.

Usage

data(avaSetExample)

Format

Formal class ’AVASet’

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8 leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1’ (Kohlmann A
et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

avaSetFiltered 13

Examples

data(avaSetExample)
avaSetExample

avaSetFiltered Amplicon Variant Analyzer data import

Description

This is an example of an link{AVASet-class} object containing the output of Roche’s Amplicon
Variant Analyzer Software. It consists of 6 samples, 4 amplicons and 4 variants. The variants were
previously filtered according to the amplicon coverage (see setVariantFilter for details about
filtering an AVASet object).

Usage

data(avaSetFiltered)

Format

Formal class ’AVASet’

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8 leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1’ (Kohlmann A
et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

Examples

data(avaSetFiltered)
avaSetFiltered

avaSetFiltered_annot AVASet variant annotations

Description

These are example annotations for 4 variants of an AVASet (try data(avaSetFiltered) to retrieve
the corresponding link{AVASet-class} object). The annotations include affected genes, exons
and codons as well as resulting amino acid changes and dbSNP identifiers (if the mutation is already
known).

Usage

data(avaSetFiltered_annot)

Format

Formal class ’AnnotatedVariants’

14 baseFrequency

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS,
and RUNX1’ (Kohlmann A et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

Examples

data(avaSetFiltered_annot)

baseFrequency Absolute And Relative Frequency Of The Four Bases.

Description

This function returns the absolute and the relative frequency of the four bases (A, C, G, T).

Usage

baseFrequency(object)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

Details

This function makes use of the alphabetFrequency function from package Biostrings.

Value

A data.frame with two columns containing the absolute and relative frequencies respectively and
six rows, one for each of the four bases (A, C, G, T), one for other symbols contained in the reads
and one summarizing the five aforementioned rows.

Author(s)

Christian Ruckert

baseQualityHist 15

baseQualityHist Plot A Histogram Of The Base Qualities.

Description

Create a histogram based on the quality of every single base from all sequences.

Usage

baseQualityHist(object, xlab="Quality score", ylab="Number of bases", col="firebrick1", breaks=40,
...)

Arguments

object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

baseQualityStats Statistics Of Base Quality

Description

This function returns mean, minimum, maximum and standard deviation of the base quality scores
over all sequences.

Usage

baseQualityStats(object)

Arguments

object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.

Value

A numeric vector with four slots: mean, min, max, sd.

Author(s)

Christian Ruckert

16 Breakpoints-class

breakpoints Putative breakpoints of chimeric reads

Description

This example holds two consensus (pathogenic and reciproce) breakpoints of 12 chimeric reads
indicating an inversion on chromosome 16. The Breakpoints object gives access to the breakpoint
locations as well as alignment information for each of the 12 reads.

Usage

data(breakpoints)

Format

Formal class ’Breakpoints’

Source

‘Targeted next-generation sequencing detects point mutations, insertions, deletions, and balanced
chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single
procedure’ (Leukemia, submitted)

Examples

data(breakpoints)

Breakpoints-class Class "Breakpoints"

Description

Container to store chimeric reads that were clustered to putative breakpoints indicating structural
variants. Related information like breakpoint position or alignment information about the chimeric
reads is stored as well.

Objects from the Class

Objects can be created by calls of the form new("Breakpoints", ...). Usually, objects will be
created by calling the detectBreakpoints method. It is not intended that users create objects of
this class manually.

All slots of this class can be found twice. One slot name ends with “C1” and the other “C2”. The
slots labeled with “C2” are empty until mergeBreakpoints has been called and contain information
about putativly associated breakpoints detected by mergeBreakpoints.

Breakpoints-class 17

Slots

seqsC1: Object of class "list" with one data frame for each breakpoint. The data frame stores all
chimeric reads covering the first breakpoint together with the alignment information.

seqsC2: Object of class "list" with one data frame for each breakpoint. The data frame stores all
chimeric reads covering the second breakpoint together with the alignment information.

commonBpsC1: Object of class "list" with one data frame for each breakpoint. The data frame
stores the consensus breakpoint sequence as well as the breakpoint coordinates of the first
breakpoint.

commonBpsC2: Object of class "list" with one data frame for each breakpoint. The data frame
stores the consensus breakpoint sequence as well as the breakpoint coordinates of the second
breakpoint.

commonAlignC1: Object of class "list" with one object of class PairwiseAlignmentsSingleSubject-class
for each breakpoint storing the alignments of the chimeric reads against the consensus break-
point sequence for the first breakpoint.

commonAlignC2: Object of class "list" with one object of class PairwiseAlignmentsSingleSubject-class
for each breakpoint storing the alignments of the chimeric reads against the consensus break-
point sequence for the second breakpoint.

alignedReadsC1: Object of class "list" with one object of class AlignedRead-class storing all
chimeric reads covering the first breakpoint and their alignments.

alignedReadsC2: Object of class "list" with one object of class AlignedRead-class storing all
chimeric reads covering the second breakpoint and their alignments.

Methods

alignedReadsC1<- signature(object = "Breakpoints",value = "list"): Setter-method
for the alignedReadsC1 slot.

alignedReadsC1 signature(object = "Breakpoints"): Getter-method for the alignedReadsC1
slot.

alignedReadsC2<- signature(object = "Breakpoints",value = "list"): Setter-method
for the alignedReadsC2 slot.

alignedReadsC2 signature(object = "Breakpoints"): Getter-method for the alignedReadsC2
slot.

commonAlignC1<- signature(object = "Breakpoints",value = "list"): Setter-method
for the commonAlignC1 slot.

commonAlignC1 signature(object = "Breakpoints"): Getter-method for the commonAlignC1
slot.

commonAlignC2<- signature(object = "Breakpoints",value = "list"): Setter-method
for the commonAlignC2 slot.

commonAlignC2 signature(object = "Breakpoints"): Getter-method for the commonAlignC2
slot.

commonBpsC1<- signature(object = "Breakpoints",value = "list"): Setter-method for
the commonBpsC1 slot.

commonBpsC1 signature(object = "Breakpoints"): Getter-method for the commonBpsC1
slot.

commonBpsC2<- signature(object = "Breakpoints",value = "list"): Setter-method for
the commonBpsC2 slot.

18 calculateTiTv

commonBpsC2 signature(object = "Breakpoints"): Getter-method for the commonBpsC2
slot.

seqsC1<- signature(object = "Breakpoints",value = "list"): Setter-method for the se-
qsC1 slot.

seqsC1 signature(object = "Breakpoints"): Getter-method for the seqsC1 slot.

sqsC2<- signature(object = "Breakpoints",value = "list"): Setter-method for the se-
qsC2 slot.

seqsC2 signature(object = "Breakpoints"): Getter-method for the seqsC2 slot.

[signature(x = "Breakpoints", i = "ANY", j = "ANY"): Subsetting a Breakpoints object.

length signature(x = "Breakpoints"): Returns the number of breakpoints stored.

mergeBreakpoints signature(breakpoints = "Breakpoints",maxDist = "missing", mergeBPs = "list"):
Merge presumably related breakpoints.

mergeBreakpoints signature(breakpoints = "Breakpoints",maxDist = "missing", mergeBPs = "missing"):
Merge presumably related breakpoints.

mergeBreakpoints signature(breakpoints = "Breakpoints",maxDist = "numeric", mergeBPs = "missing"):
Merge presumably related breakpoints.

names<- signature(x = "Breakpoints", value = "ANY"): Set the names of the breakpoints.

names signature(x = "Breakpoints"): Get the names of the breakpoints.

plotChimericReads signature(brpData = "Breakpoints"): Plot the structural variant and the
chimeric reads covering its breakpoints.

summary signature(object = "Breakpoints"): Create a data frame summaring information
about all breakpoints.

table signature(... = "Breakpoints"): Create a frequency table of cluster sizes.

Author(s)

Hans-Ulrich Klein, Christoph Bartenhagen

See Also

filterChimericReads, detectBreakpoints, mergeBreakpoints, plotChimericReads

calculateTiTv Calculate transition transversion ratio

Description

When many point mutations are detected, the ration of transitions to transversions can be used as
quality measure to assess the number of false positives.

Usage

S4 method for signature 'AVASet'
calculateTiTv(object)
S4 method for signature 'MapperSet'

calculateTiTv(object)

captureArray 19

Arguments

object An instance of AVASet or MapperSet storing the detected variants.

Details

For more information about the Ti/Tv ratio see http://www.broadinstitute.org/gsa/wiki/index.php/QC_Methods

Value

A list with two elements: A substitution matrix summarizing all observed substitutions and the
transition/transversion ratio.

Author(s)

Hans-Ulrich Klein

Examples

data(avaSetExample)
ava = setVariantFilter(avaSetExample, c(0.03, 0.03))
calculateTiTv(ava)

captureArray Custom capture array design

Description

Design of a custom Roche NimbleGen 385k capture array. The array captures short segments
corresponding to all exon regions of 92 distinct target genes (genome build hg19). In addition,
contiguous genomic regions were represented for three additional genes, i.e. CBFB, MLL, and
RUNX1.

Usage

data(captureArray)

Format

Formal class ’CompressedIRangesList’

Source

‘Targeted next-generation sequencing detects point mutations, insertions, deletions, and balanced
chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single
procedure’ (Leukemia, submitted)

Examples

data(captureArray)

20 complexity.dust

complexity.dust Sequence Complexity Using The DUST Algorithm

Description

This function evaluates the sequence complexity using the DUST algorithm.

Usage

complexity.dust(object, xlab="Complexity score (0=high, 100=low)", ylab="Number of sequences",
xlim=c(0, 100), col="firebrick1", breaks=100, ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

xlim The limits of the X axis.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The complexity score is based on how often different trinucleotides occur and is scaled between
0 and 100. A sequence of homopolymer repeats (e.g. TTTTTTTTTT) has a score of 100, of
dinucleotide repeats (e.g. TATATATATA) has a score around 49, and of trinucleotide repeats (e.g.
TAGTAGTAG) has a score around 32. Scores above seven can be considered low-complexity.

Value

A numeric vector containing the complexity score for each sequence.

Author(s)

Christian Ruckert

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

complexity.entropy 21

complexity.entropy Sequence Complexity Using The Shannon-Wiener Algorithm

Description

This function evaluates the sequence complexity using the Shannon-Wiener Algorithm.

Usage

complexity.entropy(object, xlab="Complexity score (0=low, 100=high)", ylab="Number of sequences",
xlim=c(0, 100), col="firebrick1", breaks=100, ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

xlim The limits of the X axis.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The entropy approach evaluates the entropy of trinucleotides in a sequence. The entropy values
are scaled from 0 to 100 and lower entropy values imply lower complexity. A sequence of ho-
mopolymer repeats (e.g. TTTTTTTTTT) has an entropy value of 0, of dinucleotide repeats (e.g.
TATATATATA) has an entropy value around 16, and of trinucleotide repeats (e.g. TAGTAGTAG)
has an entropy value around 26. Scores below 70 can be considered low-complexity.

Value

A numeric vector containing the complexity score for each sequence.

Author(s)

Christian Ruckert

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

22 coverageOnTarget

convertCigar Basic functions for CIGAR strings

Description

These are temporary methods, that are likely to be replaced by methods from the Rsamtools package
in near future.

Usage

extendedCIGARToList(cigars)
listToExtendedCIGAR(cigarList)

Arguments

cigars A character vector with CIGAR strings.

cigarList A list of converted CIGAR strings as produced by extendedCIGARToList

coverageOnTarget Computes the coverage restricted to the target region.

Description

This method computes the approximate coverage of each base in a given region.

Usage

coverageOnTarget(alnReads, targetRegion)

Arguments

alnReads A list as returned by scanBam storing aligned reads.

targetRegion The target region as a GRanges object. The chromosome names must fit to the
chromosome names used in the alignment information of the given reads.

Details

The detailed alignment information given by the CIGAR strings in .bam files are ignored by the
function. Instead, it is assumed that the whole read alignes to the reference without indels. This is
often not true for longer read (e.g. generated with Roche 454 Sequencing), but saves computation
time.

Value

A list of the same length as the alnReads argument. Each list element is an integer vector of the
same length as the target region (in bases) and stores the coverage generated by the reads from the
corresponding list element of alnReads.

demultiplexReads 23

Author(s)

Hans-Ulrich Klein

See Also

scanBam

Examples

library(Rsamtools)
bamFile = system.file("extdata", "SVDetection", "bam", "N01.bam", package="R453Plus1Toolbox")
bam = scanBam(bamFile)
region = GRanges(IRanges(start=118307205, end=118395936), seqnames=11)
cov = coverageOnTarget(bam, region)

demultiplexReads Performs MID/Multiplex filtering

Description

Roche’s Genome Sequencer allows to load two or more samples on one region. To allocate se-
quences to samples, each sample has a unique multiplex sequence. The multiplex sequence should
be the prefix of all sequences from that sample. This method demultiplexes a given set of sequences
according to the given multiplex sequences (MIDs).

Usage

S4 method for signature 'XStringSet,XStringSet,numeric,logical'
demultiplexReads(reads, mids, numMismatches, trim)

Arguments

reads A DNAStringSet instance that contains reads starting with MIDs

mids A DNAStringSet instance that contains the MIDs

numMismatches The maximal number of mismatches allowed, default 2.

trim Whether the MIDs should be cutted-out, default TRUE

Details

All given MIDs must have the same length. The algorithm computes the number of mismachtes
for each MID. The read is assigned to the MID with the lowest number of mismatches. If two or
more MIDs have the same number of mismachtes, or if the number of mismachtes is greater than
the given argument numMismachtes, the read is not assigned to any MID. The default number of
allowed mismatches is 2.

Value

demultiplexReads returns a list with one DNAStringSet instance for each MID.

Author(s)

Hans-Ulrich Klein

24 detectBreakpoints

See Also

genomeSequencerMIDs, DNAStringSet

Examples

library(Biostrings)
mids = genomeSequencerMIDs(c("MID1", "MID2", "MID3"))
reads = DNAStringSet(c(

paste(as.character(mids[["MID1"]]), "A", sep=""),
paste(as.character(mids[["MID1"]]), "AA", sep=""),
paste(as.character(mids[["MID2"]]), "AAA", sep="")))

demultiplexReads(reads, mids)

detectBreakpoints Clustering and consensus breakpoint detection for chimeric reads

Description

Given a set of chimeric reads, this methods computes all putative breakpoints. First, chimeric reads
are clustered such that all reads spanning the same breakpoint form a cluster. Then, a consensus
breakpoint sequence and breakpoint position is computed for each cluster.

Usage

detectBreakpoints(chimericReads, bpDist=100, minClusterSize=4, removeSoftClips=TRUE, bsGenome)

Arguments

chimericReads A list storing chimeric reads as returned by filterChimericReads. The list
must have the format as defined by the scanBam method.

bpDist The maximum distance in base pairs between the breakpoints of two chimeric
reads at which the reads are merge to a cluster.

minClusterSize Cluster whose size is below minClusterSize are be excluded from breakpoint
detection.

removeSoftClips

If true, soft-clipped bases at the beginning or the end of a sequence are removed
(see details below).

bsGenome A bsGenome instance providing the reference sequences. If missing, the library
BSgenome.Hsapiens.UCSC.hg19 is used by default.

Details

This method is usually invoked after calling filterChimericReads and before calling mergeBreakpoints.
It first forms clusters of chimeric reads (reads with exactly two local alignments) that span the same
breakpoint and than computes a consensus breakpoint sequence for each cluster.

To carry out a hierarchical clustering, a measure for the distance between two chimeric reads must
be defined. If reads span different chromosomes, their distance is set to infinity. The strand in-
formation of the local alignments may also indicate that two chimeric reads do not span the same
breakpoint even if they span the same chromosomes. For example, the first reads has two local
alignments on the positive strand whereas the second read has one local alignment on the positive

detectBreakpoints 25

strand and the other on the negative strand. In this case, the distance is set to inifinty, too. Finally, the
distance measure distinguishes between the two breakpoints (sometimes called the pathogenic and
the reciproce breakpoint) that originate from the same structual variant. The distance between a read
from the pathogenic and a read from the reciproce breakpoint is infinity so that two different clus-
ters will emerge. These two related breakpoints can be merge later using the mergeBreakpoints
method. We observed that the breakpoints of these two cases often differ by a few ten or even a few
hundred basepairs.

If the chromosome and strand information between two reads x and y are coherent, the Euclidian
distance is used:

d(x, y) = (bp(x,ChrA)− bp(y, ChrA))2 + (bp(x,ChrB)− bp(y, ChrB))2

where bp gives the coordinates of the breakpoint for the given read and chromosome. Hierarchical
clustering is applied with complete linkage and the dendrogram is cutted at a height of bpDist
to obtain the final clusters. The bpDist argument does usually not influence the result, because
we observed that reads spanning the same breakpoint have very little variation (only a few base
pairs) in their local alignments due to sequencing errors or due to ambiguity caused by same/similar
sequence of both chromosome near the breakpoint.

Although the given set of reads may belong to the same chimeric DNA, their individual breakpoints
may differ in a few base pairs. Furthermore, a single read may have more than one possible break-
point if a (small) part of the read was aligned to both parts.
The following step determines a consensus breakpoint for each cluster. It uses the supplied bsGenome
to construct a chimeric reference sequence for all possible breakpoints over all reads within each
cluster. After the reads were realigned to the chimeric reference sequences, the one that yields the
highest alignment score is taken to represent best the chimeric DNA and its breakpoints.

As a preprocessing step, detectBreakpoints offers to remove soft clips occuring after the align-
ment:
Some reads may contain soft-clipped bases (e.g. linker sequences) at the beginning of the first part
of the read or at the end of the second part. By default, detectBreakpoints removes these un-
aligned subsequences and adjusts the cigar string, the sequence, the sequence width (qwidth) and
the local start/end coordinates.

Value

detectBreakpoints returns an object of class breakpoints, which is a list of breakpoint clusters,
which gives access to all alignments and consensus breakpoints:

seqs This IRanges DataFrame is mainly a rearranged version of the alignment input
in chimericReads. In addition, it shows the corresponding breakpoints and
local alignment coordinates.

commonBps A dataframe listing the breakpoints for both parts of the chimeric reference,
the associated chromosome, strand and the reference sequence itself, including
positions "localStart"/"localEnd" indicating which part of the reference belongs
to which breakpoint.

commonAlign An object of class PairwiseAlignmentsSingleSubject of the Biostrings pack-
age that contains the alignment to the (best) consensus reference sequence.

alignedReads On the basis of commonAlign and commonBps, alignedReads is an instance
of class AlignedRead containing all aligned reads including their associated
chromosomes, strands, and positions. Since the reference is a chimeric sequence
each read has two chromosome and two strand entries.

26 detectBreakpoints

Author(s)

Hans-Ulrich Klein, Christoph Bartenhagen

See Also

filterChimericReads mergeBreakpoints plotChimericReads

Examples

Construct a small example with three chimeric reads
(=6 local alignments) in bam format as given by
aligners such as BWA-SW.
The first two reads originate from the same case but
from different strands. The third read originate from
the reciprocal breakpoint.
library("BSgenome.Scerevisiae.UCSC.sacCer2")
bamReads = list()
bamReads[[1]] = list(

qname=c("seq1", "seq1", "seq2", "seq2", "seq3", "seq3"),
flag = as.integer(c(0, 0, 16, 16, 0, 0)),
rname = factor(c("II", "III", "III", "II", "III", "II")),
strand = factor(c("+", "+", "-", "-", "+", "+")),
pos = as.integer(c(99951, 200000, 200000, 99951, 199950, 100001)),
qwidth = as.integer(c(100, 100, 100, 100, 100, 100)),
cigar = c("50M50S","50S50M","50S50M","50M50S","50M50S", "50S50M"),
seq = DNAStringSet(c(

paste(substr(Scerevisiae$chrII, start=99951, stop=100000),
substr(Scerevisiae$chrIII, start=200000, stop=200049),
sep=""),

paste(substr(Scerevisiae$chrII, start=99951, stop=100000),
substr(Scerevisiae$chrIII, start=200000, stop=200049),
sep=""),

paste(substr(Scerevisiae$chrIII, start=200000, stop=200049),
substr(Scerevisiae$chrII, start=99951, stop=100000),
sep=""),

paste(substr(Scerevisiae$chrIII, start=200000, stop=200049),
substr(Scerevisiae$chrII, start=99951, stop=100000),
sep=""),

paste(substr(Scerevisiae$chrIII, start=199950, stop=199999),
substr(Scerevisiae$chrII, start=100001, stop=100050),
sep=""),

paste(substr(Scerevisiae$chrIII, start=199950, stop=199999),
substr(Scerevisiae$chrII, start=100001, stop=100050),
sep="")))

)

bps = detectBreakpoints(bamReads, minClusterSize=1, bsGenome=Scerevisiae)
summary(bps)
table(bps)

mergeBreakpoints(bps)

dinucleotideOddsRatio 27

dinucleotideOddsRatio Dinucleotide Odds Ratio

Description

This function calculates the dinucleotide odds ratio for each of the sixtheen possible dinucleotides.

Usage

dinucleotideOddsRatio(object, xlab="Under-/over-representation of dinucleotides",
col="firebrick1", ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

xlab The X axis label.

col The plotting color.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The dinucleotide odds ratio assigns a value between 0 and 2 to each of the sixtheen possible din-
ucleotides (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT). For values
below 1 the dinucleotide is under-represented compared to the randomly expected frequency of this
dinucleotide in a sequence of the given length and with the given frequencies of the four nucleotides
(A, C, G, T). For values above 1 this dinucleotide is over-represented.

Value

A matrix with sixtheen columns, one for each dinucleotide, containing the dinucleotide odds ratio
values for each sequence in a seperate row.

Author(s)

Christian Ruckert

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

28 featureDataAmp

fDataAmp Access the amplicon data of an AVASet.

Description

Similar to fData of the Biobase ExpressionSet, this function returns the feature data of the amplicon
slot of an instance of the AVASet.

Usage

fDataAmp(object)

Arguments

object An link{AVASet-class} object.

Value

The feature data of the amplicon slot contains the names, primers, start/end positions and reference
sequences of all amplicons (seeAVASet-class for details). It returns a data frame.

Author(s)

Christoph Bartenhagen

See Also

featureDataAmp, assayDataAmp,AVASet-class

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

show contents amplicon feature data
fDataAmp(avaSetExample)

featureDataAmp Access the amplicon data of an AVASet

Description

Similar to featureData of the Biobase ExpressionSet, this function returns the feature data and
feature meta of the amplicon slot of an instance of the AVASet.

Usage

featureDataAmp(object)

filterChimericReads 29

Arguments

object An link{AVASet-class} object.

Value

The feature data of the amplicon slot contains the names, primers, start/end positions and refer-
ence sequences of all amplicons (see AVASet-class for details). The returned object is of class
AnnotatedDataFrame.

Author(s)

Christoph Bartenhagen

See Also

fDataAmp, assayDataAmp, AVASet-class,

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

show contents amplicon feature data
featureDataAmp(avaSetExample)

filterChimericReads Extract chimeric reads and apply filtering steps to remove artificial
chimeric reads.

Description

Chimeric reads may be caused by sequencing a chromosomal aberration or by technical issues
during sample preparation. This method implements several filter steps to remove false chimeric
reads.

Usage

S4 method for signature 'list,RangesList,DNAString,numeric,numeric'
filterChimericReads(alnReads, targetRegion, linkerSeq, minDist, dupReadDist)

Arguments

alnReads A list storing the aligned reads as produced by the function scanBam.

targetRegion A object of class IRangesList containing the target region of e.g. a used cap-
ture array. The parameter may be omitted in case of a non targeted sequencing
approach.

linkerSeq A linker sequence that was used during sample preparation. It may be omitted.

minDist The minimum distance between two local alignments (see details), default 1000

dupReadDist The maximum distance between the 5 prime start position of two duplicated
reads (see details), default 1.

30 filterChimericReads

Details

The following filter steps are performed:

1. All chimeric reads with exactly two local alignments are extracted. Reads with more than two
local alignments are discarded.

2. If the targetRegion argument is given, chimeric reads must have one local alignment at least
overlapping the the target region. If both local alignments are outside the target region, the read is
discarded.

3. If the linkerSeq argument is given, all chimeric reads that have the linker sequence between their
local alignments are removed. When searching the linker sequence, 4 mismatches or indels are
allowed and the linker sequence must not start or end within the first or last ten bases of the read.
The function searches for the linkerSeq and for it’s reverse complement.

4. Two local alignment of a read must have minDist reads between the alignments (if both alignment
are on the same chromosome). Otherwise, the read seems to span a deletion and not a chromosomal
aberration and is discarded.

5. Duplicated reads are removed. Two reads are duplicated, if the lie on the same strand and have
the same 5 prime start position. Due to sequencing and alignment errors, the start position may vary
for a maximum of dupReadDist bases. In case of duplicated reads, only the longest read is kept.

Reads passing all filtering steps are returned in the list structure as given by the alnReads argu-
ment (as derived from the scanBam method). A data frame with information about the number of
reads that passed each filter is added to the list.

Value

A list containing only filtered chimeric reads. The list has the same structure like the given
argument alnReads. Additionally, one element “log” with logging information of each filtering
step is added.

Author(s)

Hans-Ulrich Klein

See Also

detectBreakpoints, mergeBreakpoints, Breakpoints-class, scanBam, sequenceCaptureLinkers

Examples

library(Rsamtools)
bamFile = system.file("extdata", "SVDetection", "bam", "N01.bam", package="R453Plus1Toolbox")
bam = scanBam(bamFile)
data(captureArray)
linker = sequenceCaptureLinkers("gSel3")[[1]]
filterReads = filterChimericReads(bam, targetRegion=captureArray, linkerSeq=linker)

flowgramBarplot 31

flowgramBarplot Create A Barplot Of The Flow Intensities

Description

This function creates a barplot of the flow intensities with one bar for each nucleotide in the flow.
With the height giving the measured intensity.

Usage

flowgramBarplot(x, range=c(0, length(flowgram(x))), xlab="Flow sequence",
ylab="Flow intensity", col=c(A="black", C="red", G="blue", T="green"), ...)

Arguments

x An object of class SFFRead.

range Two positions between which the flows should be plotted.

xlab The X axis label.

ylab The Y axis label.

col The colors in which the four nucleotids should be plotted.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

gcContent Calculate The Overall GC-Content

Description

This function calculates the GC-content summarized over all sequences.

Usage

gcContent(object)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

Details

The GC-content is calculated as follows:
(#G + #C / #G + #C + #A + #T) * 100
Where #G is the number of base G in all sequences.

32 gcPerPosition

Value

A numeric vector of length one containing the overall GC-content.

Author(s)

Christian Ruckert

gcContentHist GC-Content Histogram

Description

This function creates a histogram of the relative GC-content per sequence.

Usage

gcContentHist(object, xlab="GC content", ylab="Number of sequences", col="firebrick1",
breaks=50, ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

gcPerPosition GC-Content Per Position

Description

This function plots the GC-content frequency per base position.

Usage

gcPerPosition(object, range=0.95, type="l", col="blue", xlab="Position", ylab="Frequency", ...)

genomeSequencerMIDs 33

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

range An integer vector of length one or two. If length one only bases up to the percent
quantile of read lengths defined by the given value are shown. A vector of length
two gives the start and end base between which the GC-content is plotted.

type The type of the plot (see ‘plot’).

col The plotting color.

xlab The X axis label.

ylab The Y axis label.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

genomeSequencerMIDs Retrieve GS multiplex sequences

Description

This method returns the standard multiplex sequences used by the Genome Sequence MID library
kits.

Usage

S4 method for signature 'missing'
genomeSequencerMIDs()

S4 method for signature 'character'
genomeSequencerMIDs(mid)

Arguments

mid Character vector with multiplex sequences’ IDs (MIDs)

Details

If the argument mid is omitted, all 14 available multiplex sequences are returned.

Value

genomeSequencerMIDs returns a DNAStringSet with the requested multiplex sequences.

Author(s)

Hans-Ulrich Klein

See Also

demultiplexReads

34 getAlignedReads

Examples

genomeSequencerMIDs()
genomeSequencerMIDs(c("MID1", "MID3"))

getAlignedReads Import reads from an Amplicon Variant Analyzer project

Description

For a given AVASet, this function imports all aligned reads belonging to all (or some selected)
amplicons of all samples.

Usage

getAlignedReads(object, amplicons, dir)

Arguments

object An instance of the link{AVASet-class}.
amplicons An (optional) character vector of amplicon names as mentioned in the amplicon

feature data (see fDataAmp).
dir Usually, the method tries to retrieve the path to the AVA project from the given

link{AVASet} object. However, if it fails to find the directory, dir can be used
to set the root directory of the AVA project.

Details

This function reports all reads for all samples together. If you want to get the reads for some samples
individually, try subsetting your AVASet as in the examples below.

Value

One DNAStringSet that contains all aligned reads for all samples (eventually restricted to some
given amplicons).

Author(s)

Christoph Bartenhagen

See Also

AVASet-class, fDataAmp

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)

import all reads for amplicon "TET2_E11.04" of the first sample
avaProjectDir = system.file("extdata", "AVASet", package = "R453Plus1Toolbox")
alnReads = getAlignedReads(avaSetExample[, 1], dir=avaProjectDir, amplicons="TET2_E11.04")
show(alnReads)

getAminoAbbr 35

getAminoAbbr Get amino acid abbreviations

Description

This function returns a table with amino acid names as first column and the according abbreviations
as row names.

Usage

getAminoAbbr()

getVariantPercentages Variant coverage

Description

This function computes the coverage for each variant (in forward and/or reverse direction) for all
samples. The coverage is defined as the percentual amount of reads that cover a variant.

Usage

getVariantPercentages(object, direction="both")

Arguments

object An instance of class AVASet-class or MapperSet-class.

direction A character indicating the direction ("forward", "reverse" or "both").

Details

If the direction was set to "both", the percentages are computed over the sum of both directions.
Otherwise it is computed only over the occurences in one direction (forward or reverse). The oc-
curences can be accesses via assayData.

Value

getVariantPercentages returns a data frame with all percentages/frequencies for all samples.

Author(s)

Christoph Bartenhagen

See Also

setVariantFilter.

36 homopolymerHist

Examples

load a (filtered) AVA dataset containing 6 samples, 4 amplicons and 4 variants
data(avaSetFiltered)
avaSetFiltered

both directions
getVariantPercentages(avaSetFiltered, direction="both")
this is equivalent to
(assayData(avaSetFiltered)[[1]] + assayData(avaSetFiltered)[[3]]) / (assayData(avaSetFiltered)[[2]] + assayData(avaSetFiltered)[[4]])

forward direction only
getVariantPercentages(avaSetFiltered, direction="forward")
this is equivalent to
assayData(avaSetFiltered)[[1]] / assayData(avaSetFiltered)[[2]]

reverse direction only
getVariantPercentages(avaSetFiltered, direction="reverse")
this is equivalent to
assayData(avaSetFiltered)[[3]] / assayData(avaSetFiltered)[[4]]

homopolymerHist Create A Histogram Of The Homopolymer Stretches

Description

This function creates a histogram for the different lengths of the homopolymer stretches with one
bar for each nucleotide in the flow. With the height giving the number of this homopolymer stretch
in the flowgram.

Usage

homopolymerHist(x, range=c(0, length(flowgram(x))), xlab="Homopolymer length",
ylab="Number of homopolymers", col=c(A="black", C="red", G="blue", T="green"), ...)

Arguments

x An object of class SFFRead.

range Two positions between which the flows should be plotted.

xlab The X axis label.

ylab The Y axis label.

col The colors in which the four nucleotids should be plotted.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

htmlReport 37

htmlReport HTML-Report Builder for the AVASet and MapperSet

Description

This function creates a HTML variant and quality report for a given AVASet or MapperSet instance.

Usage

htmlReport(object, annot, blocks=c(), transcripts=c(), sampleCols, minMut=3, dir="HTMLReport", title="Summary")

Arguments

object An AVASet-class or MapperSet-class instance.
annot An instance of class AnnotatedVariants you get by calling annotateVariants.

If no such argument is supplied the data will be read from the Ensembl database
automatically for all variants.

blocks Character vector of block names for each variant. The variants will then be
structured into several blocks. If no such list is supplied, the report consists of
just one (big) table for all variants.

transcripts Character vector containing Ensembl transcript-IDs that order the according en-
tries on the transcript pages. Transcripts given in this argument will appear on
top of the transcript page.

sampleCols Character vector of column names of the sample data (phenoData) of the AVASet/MapperSet
object to filter the sample output on the transcript pages. All columns will be
listed if no such argument is given.

minMut If the value of minMut is greater than zero, the report lists only variants, whose
coverage for at least one sample is higher than minMut (percentage between 0
and 100).

dir Character with the desired output directory. By defaultm the directory "HTML-
Report" will be created in the current directory.

title Heading for the first page with the variant information.

Details

The report is structured into two (MapperSet) or three (AVASet) parts containing variant and quality
information:

• The main page sums up given variant information like the name, type, reference gene, position
(see fData, annotateVariants).
Using the argument blocks, the main page can be individually structured by assigning a block
name to each variant.
The main page can be further structured by samples. For a given AVASet object, every sample
links to another short quality report showing only the amplicon coverage for this sample.

• Every variant on the main page links to a page with further details about the affected genes
and transcripts (e.g. Ensembl gene-IDs, transcript-IDs, codon sequences, changes of amino
acids (if coding)).

• Only in case of AVASet object: A quality report shows the coverage of every amplicon in
forward and/or reverse direction. Further plots display the coverage by MID and PTP (if this
information is given in the pheno data of the object).

38 MapperSet

Author(s)

Christoph Bartenhagen, Hans-Ulrich Klein, Christian Ruckert

See Also

annotateVariants.

Examples

note: all examples save the report to the directory "htmlReportExample" in your current R working directory

load a filtered AVA dataset containing 6 samples, 4 amplicons and 4 variants
and its variant annotations
data("avaSetFiltered")
data("avaSetFiltered_annot")

create a full report showing all (unfiltered) information
htmlReport(avaSetFiltered, avaSetFiltered_annot, dir="htmlReportExample", title="htmlReport Example", minMut=0)
create a report that emphasizes on samples with variants covered by at least 50% of the reads
htmlReport(avaSetFiltered, avaSetFiltered_annot, dir="htmlReportExample", title="htmlReport Example", minMut=50)

create a report that is structured by the reference genes
library("ShortRead")
refs = sapply(fData(avaSetFiltered)$referenceSeq, function(x)

subset(pData(alignData(referenceSequences(avaSetFiltered))), pData(alignData(referenceSequences(avaSetFiltered)))$refSeqID == x)$name)
htmlReport(avaSetFiltered, avaSetFiltered_annot, dir="htmlReportExample", title="htmlReport Example", minMut=0, blocks=refs)

create a report whose sample information only lists the sample ids
pData(avaSetFiltered)
sampleCols = "SampleID"
htmlReport(avaSetFiltered, avaSetFiltered_annot, dir="htmlReportExample", title="htmlReport Example", minMut=0, sampleCols=sampleCols)

MapperSet Creating a MapperSet

Description

This function imports a project of Roche’s GS Reference Mapper Software. It stores all information
into an instance of the Biobase ExpressionSet.

Usage

MapperSet(dirs, samplenames)

Arguments

dirs A character vector containing all sample directories (i.e. directories that contain
the files "mapping/454HCDiffs.txt" (required), "mapping/454ReadStatus.txt" (op-
tional), "mapping/454NewblerMetrics.txt"(optional)).

samplenames A character vector containing samplenames. The order and number of sample-
names must be consistent with the filenames to ensure the correctness of the
MapperSet. If no samplenames are given, the filenames are used for naming.

MapperSet 39

Details

An instance of the MapperSet is derived from the Biobase eSet and thus structured into

1. assayData

variantForwCount/variantRevCount: Contain the number of reads with the respective difference
in forward/reverse direction.

totalForwCount/totalRevCount: Contain the total coverage for every variant in forward/reverse
direction.

2. featureData

chromosome, start/end: Give the location of each variant.

referenceBases/variantBase: Show the bases changed in each variant.

regName: The name of the region (gene) where the variant is located.

knownSNP: Lists Ensembl variant-ids for known SNPs (if any).

3. phenoData

By default, the phenoData contains the accession number of every sample.

Value

An instance of the MapperSet.

Author(s)

Christoph Bartenhagen

See Also

AVASet-class

Examples

load a GS Mapper dataset containing 3 samples and 111 variants
data(mapperSetExample)
mapperSetExample

40 MapperSet-class

MapperSet-class Class to Contain GS Reference Mapper Output

Description

Container to store data imported from a project of Roche’s GS Reference Mapper Software. It
stores all information into a Biobase ExpressionSet.

Objects from the Class

Objects can be created by calls of the form MapperSet(filename). While filename is a vector
containing all sample directories (i.e. directories that contain the files "mapping/454HCDiffs.txt"
and "mapping/454NewblerMetrics.txt").

Slots

assayData: Object of class AssayData. Contains the number of reads with the respective differ-
ence and the total coverage for every variant in forward and reverse direction.

featureData: Object of class AnnotatedDataFrame. Contains information about the type, loca-
tion and reference of each variant. If available, it shows further Ensembl variant-ids for known
SNPs.

phenoData: Object of class AnnotatedDataFrame. By default, the phenoData contains the acces-
sion number of every sample.

variantFilterPerc: Object of class numeric. Contains a threshold to display only those variants,
whose coverage (in percent) in forward and reverse direction in at least one sample is higher
than this filter value. See setVariantFilter for details about setting this value.

variantFilter: Object of class character. Contains a vector of variant names whose coverage
(in percent) in forward and reverse direction in at least one sample is higher than the filter
value(s) in variantFilterPerc.

dirs: Object of class character. Based on a directory given at instantiation of the object, it
contains a vector of several directories containing all relevant GS Mapper project files.

experimentData: Object of class MIAME. Contains details of the experiment.

annotation: Object of class character Label associated with the annotation package used in the
experiment.

protocolData: Object of class AnnotatedDataFrame. Contains additional information about the
samples.

.__classVersion__: Object of class Versions. Remembers the R and R453Toolbox version
numbers used to created the MapperSet instance.

Extends

Class eSet, directly. Class VersionedBiobase, by class "eSet", distance 2. Class Versioned, by
class "eSet", distance 3.

mapperSetExample 41

Methods

setVariantFilter(object): Sets the filter to display only those variants, whose coverage (in percent)
in forward and reverse direction in at least one sample is higher than the given value.

getVariantPercentages(object) Computes the coverage for every variant over all reads (forward
and/or reverse) and for each sample.

annotateVariants(object): Annotates given genomic variants. See annotateVariants for details.

htmlReport(object): Exports all (filtered) variant data into a html report. See htmlReport for
details

getReadStatus(object): Reads the file "454ReadStatus.txt" in the GSM project directory which
contains information about the alignment of each read (chr, pos, strand, etc.)and returns its
content in a dataframe.

Author(s)

Christoph Bartenhagen

See Also

AVASet, annotateVariants, htmlReport, setVariantFilter, getVariantPercentages

Examples

sum up class structure
showClass("MapperSet")

load a GS Mapper dataset containing 3 samples and 111 variants
data(mapperSetExample)
mapperSetExample

show contents of assay, feature and pheno data
assayData(mapperSetExample)
fData(mapperSetExample)
pData(mapperSetExample)

mapperSetExample GS Reference Mapper data import

Description

This is an example of an link{MapperSet-class} object containing the output of Roche’s GS
Reference Mapper Software. It consists of 3 samples and 111 variants.

Usage

data(mapperSetExample)

Format

Formal class ’MapperSet’

42 mergeBreakpoints

Source

‘Targeted next-generation sequencing detects point mutations, insertions, deletions, and balanced
chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single
procedure’ (Leukemia, submitted)

Examples

data(mapperSetExample)
mapperSetExample

mergeBreakpoints Identify and merge related breakpoints caused by the same variant.

Description

Structural variation like transversions or inversion cause two breakpoints. In the context of fu-
sion genes, these are called the pathogenic breakpoint and the reciproce breakpoint. The method
detectBreakpoints processes each breakpoint individually and does explicitly not put reads from
the pathogenic and reciproce breakpoint into the same cluster. Hence, it is usually sensible to call
this methods afterward to search for related pairs of breakpoints to gain more confidence about the
existence of a structural variation.

Usage

mergeBreakpoints(breakpoints, maxDist, mergeBPs)

Arguments

breakpoints An object of class Breakpoints storing the breakpoints that will (potentially)
be merged.

maxDist The maximal distance in basepairs at which two breakpoints will be merged.
Default value is 1000.

mergeBPs An optional list of vectors of length two giving the breakpoints that should be
merged. If this argument is given, the method will not search for related break-
points.

Details

If the maxDist argument is given, the method compares each pair of breakpoints and checks,
whether the two breakpoints may belong to the same structural variation. In addition to the spanned
chromosomes, the orientation and the strand information of the reads spanning the breakpoints
are also compared for this purpose. If chrosmosome, orientation and strand information of two
breakpoints go well together, they will be merged, if the absolute distance of the breakpoints on
chromosome A plus the absolute distance on chromosome B is smaller or equal to maxDist. If one
breakpoint has more than one potential mate breakpoint for merging, it will be merged with the first
candidate and a warning message is printed. The default value of maxDist is 1000.\

If the mergeBPs argument is given, the method will not search for related breakpoints but simply
merge the given breakpoints. mergeBPs must be a list with vectors of length two that either
contain the names of the indices of the breakpoints that should be merged.\

The arguments maxDist and mergeBPs cannot be given together. The given Breakpoints object
must not contain breakpoints that have been merged before.

mutationInfo 43

Value

An object of class Breakpoints storing merged and unmerged breakpoints.

Author(s)

Hans-Ulrich Klein

See Also

detectBreakpoints, Breakpoints-class, plotChimericReads

Examples

Load bam file and filter chimeric reads
library(Rsamtools)
bamFile = system.file("extdata", "SVDetection", "bam", "N01.bam", package="R453Plus1Toolbox")
bam = scanBam(bamFile)
data(captureArray)
linker = sequenceCaptureLinkers("gSel3")[[1]]
filterReads = filterChimericReads(bam, targetRegion=captureArray, linkerSeq=linker)

detect breakpoints of size >= 3
breakpoints = detectBreakpoints(filterReads, minClusterSize=3)
table(breakpoints)
summary(breakpoints)

merge breakpoints
breakpoints = mergeBreakpoints(breakpoints)
summary(breakpoints)

mutationInfo Example data for plotVariants

Description

This data.frame is part of the vignette example of the plotVariants function. It contains annota-
tions for the different mutations occurring in the example data. It has columns "mutation", "legend"
and "color".

Usage

data(plotVariantsExample)

Format

data.frame

Examples

data(plotVariantsExample)
mutationInfo

44 plotAmpliconCoverage

nucleotideCharts Nucleotide Charts

Description

This function plots the relative frequency of the four bases for each position in the sequences.

Usage

nucleotideCharts(object, range=0.95, linetypes=c(A="l", C="l", G="l", T="l", N="l"),
linecols=c(A="black", C="red", G="blue", T="green", N="grey70"), xlab="Position",
ylab="Frequency", ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

range An integer vector of length one or two. If length one only bases up to the percent
quantile of read lengths defined by the given value are shown. A vector of length
two gives the start and end base between which the nucleotide frequencies are
plotted.

linetypes The line types used for the four nucleotids + N, see (see ‘par’)

linecols The colors in which the four nucleotids + N should be plotted.

xlab The X axis label.

ylab The Y axis label.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

plotAmpliconCoverage Creates a plot visualizing the number of reads per amplicon

Description

A function for visualizing the number of reads per amplicon or per MID / pico titer plate.

Usage

S4 method for signature 'AVASet,character,logical'
plotAmpliconCoverage(avaSet, type="amplicon", bothDirections=TRUE, cex.names=0.8, cex.axis=0.8, las=3, col=c(rgb(217/255, 214/255, 209/255), rgb(173/255, 38/255, 36/255)), ...)

plotChimericReads 45

Arguments

avaSet An instance of AVASet.

type A character vector specifying the type of plot.

bothDirections A logical value determining whether the plot sums forward and reverse reads or
shows them separately.

cex.names Font size of the amplicon name labels.

cex.axis Font size of axes’ labels.

las Orientation of amplicon name labels.

col Colors used in the plot.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

If the argumnet type is “amplicon”, the number of reads for each amplicon are visualized. In case
of a AVASet with one sample, a barplot with one bar for each amplicon is created. In case of more
than one sample, a boxplot with one box for each amplicon is plotted. If type is “mid”, a boxplot
with one box for each MID is created. If type is “ptp”, a boxplot with one box for each pico titer
plate is created.

Author(s)

Hans-Ulrich Klein

See Also

AVASet

Examples

Not run: data(avaSetExample)
plotAmpliconCoverage(avaSetExample)
plotAmpliconCoverage(avaSetExample[,1])
End(Not run)

plotChimericReads Plots chimeric reads

Description

This function plots a given set of aligned chimeric reads along a reference sequence. It plots the
breakpoints of translations or inversions and marks deletions, insertions and mismatches. Option-
ally, it displays all base pairs in a given region around the breakpoint.

Usage

plotChimericReads(brpData, geneSymbols=FALSE, plotMut=TRUE, plotBasePairs=FALSE, maxBasePairs=50, legend=FALSE, title="",
col=c("red", "green", "black", "orange"))

46 plotChimericReads

Arguments

brpData A Breakpoints object containing the consensus breakpoint of all reads and the
consensus reference sequence as returned by the methods detectBreakpoints
and mergeBreakpoints. Since only one plot is made, the function will only
work for objects of class Breakpoints having length one.

geneSymbols Boolean value whether to automatically load and plot the gene symbols from the
Ensembl database. Additionally, geneSymbols can be a vector of two strings for
an own annotation.

plotMut Boolean value whether to mark deletions, insertions and mismatches.

plotBasePairs Optionally, plotChimericReads displays all base pairs in a given region around
the breakpoint (see maxBasePairs).

maxBasePairs The maximum number of base pairs to be plotted. Only used in conjunction
with plotBasePairs=TRUE.

legend A logical value (TRUE/FALSE) whether to plot a legend that explains the coloura-
tion of the insertions, deletions, mismatches and breakpoints.

title A title for the plot.

col A vector of four colours to draw insertions, deletions, mismatches and break-
points. In this order, the default colours are "red", "green", "black" and "orange"
(use colours() to see a list of possible values).

Details

This method is intended to be run after the pipeline for structural variant detection. Therefore,
see the methods filterChimericReads, detectBreakpoints and mergeBreakpoints to correctly
preprocess your alignment before running plotChimericReads.

Note

It is recommended to first create and resize the output device (e.g. the plotting window or a pdf
file) before plotting. For example, on Unix systems you may try X11(width=w, height=h) or
pdf(file="plotChimericReads.pdf", width=w, height=h) for some window width w (e.g.
w=12) and window height h (e.g. h=6).

Author(s)

Christoph Bartenhagen

See Also

Breakpoints-class, detectBreakpoints, mergeBreakpoints

Examples

load breakpoint data containing twelve chimeric reads describing an inversion in chromosome 16
data("breakpoints")
breakpoints

standard plot
(only arrangement of reads plotted; breakpoints in orange, deletions
in red, insertions in green and mismatches in black by default)
plotChimericReads(breakpoints)

plotVariants 47

plot base pairs in the breakpoint region (+/- 32bp)
Not run: plotChimericReads(breakpoints, plotBasePairs=TRUE, maxBasePairs=32)

use custom colours and display a legend:
deletions="brown", insertions="blue", mismatches="yellow", breakpoints="gray"
plotChimericReads(breakpoints, col=c("brown", "blue", "yellow", "gray"), legend=TRUE)

plotVariants Plots variant positions

Description

This function illustrates the positions and types of mutations within a given gene and transcript. The
plot shows only coding regions (thus, units are amino acids / codons). The coding region is further
divided into exons labeled with their rank in the transcript. Transcript annotation is obtained from
the ensembl GRCh37 server.

Usage

plotVariants(data, gene, transcript, regions, mutationInfo, groupBy, horiz=FALSE, cex=1, title="", legend=TRUE)

Arguments

data This can be either a data.frame or an instance of class annotatedVariants you
get by calling annotateVariants. A data frame requires the columns "label",
"pos" "mutation" and "color" specifying an annotation for each mutation, its
position (a single numeric value), the mutation type and (optionally) the color
of the mutation (e.g. depicting a certain group identity independent from the
mutation type). The position needs to be given as amino acids / codons.

gene A string containing the Ensembl id of the gene of interest (required).

transcript A string containing an Ensembl transcript id (optional, but recommended). If
no Ensembl transcript-id is passed, it is chosen automatically and the function
will return an appropriate data frame with all annotated transcripts for the given
gene.

regions A data frame having columns "name", "start", "end" and "color". The plot will
highlight these regions with the given colors and print their name in the legend.

mutationInfo A data frame with annotations for the different mutations occurring in the data
(optional but recommended). It requires the columns "mutation", "legend" and
"color". The first column must list the exact mutation names that occur in the
data column "mutation". The column "legend" allows for a more detailed name
of the mutation that will appear in the legend. The color of each mutation type
is optional and can also be assigned automatically.

groupBy By default, the mutations will be grouped by their position (i.e. the column
"pos"). If necessary, one might give the name of an other column in the data
here; for example the mutation labels. Please see the details below for more
information.

horiz In more comprehensive datasets, more than one mutation may be listed for a
single position. If horiz=FALSE, these overlapping mutations will be aligned
vertically. If horiz=TRUE they will be aligned horizontally in groups allowing a
label for every single mutation.

48 plotVariants

cex A numeric value > 0 giving the factor by which the labels are magnified relative
to the default text size. If the width of the device is too small for all mutation
labels, their size will be scaled automatically until it fits.

title A title for the plot (optional).

legend A logical value (TRUE/FALSE) whether to plot a legend for the mutations types
(see mutationInfo) and the highlighted regions (if any).

Details

The plot will show the coding part of the gene and its exons as x-axis at the bottom. Mutations will
be marked and ordered above according to their genomic position. The axis units are amino acids /
codons (hence, all given genomic positions should be divided by three if necessary).
Passing a data frame to this function allows a much more individual and detailed annotation of the
mutations like labels, colors and user defined mutation types.
Passing an instance of class annotatedVariants is useful for integration into the R453Plus1Toolbox
pipeline and for compatibility to older versions of the plot. Then, it will only distinguish deletions
and missense, nonsense and silent mutations.
By default, the plot will group mutations (horizontally or vertically) by their position. It is possible
to group by an other column in the data (see parameter groupBy), but in the current version this
makes only sense if the mutations in one group are locally clustered, i.e. have the same or a similar
position. The parameter groupBy is mainly useful to modify or even disable the automatic grouping
of different mutations at the same position.

Value

The function will return a data frame containing all Ensembl transcript information for the given
gene ("ensembl_transcript_id", "rank", "cds_start", "cds_end" and "cds_length"). This data frame
may prove useful for retrieving a Ensembl transcript id for future plots.

Note

Depending on the amount of mutations and the size of the gene, the plot may not fit into the device
or the text may become too small. It is recommended to carefully select the right size of your device
before starting this function to ensure a well scaled and beautiful plot.
This function requires the package TeachingDemos to work, which can be found at CRAN.

Author(s)

Christoph Bartenhagen

See Also

annotateVariants.

Examples

EXAMPLE 1: Working with intances of class annotatedVariants

one missense, one nonsense point mutation and one deletion
variants = data.frame(

row.names=c("missense", "deletion", "nonsense"),
start=c(106157528, 106157635, 106193892),
end=c(106157528, 106157635, 106193892),

plotVariationFrequency 49

chromosome=c("4", "4", "4"),
strand=c("+", "+", "+"),
seqRef=c("A", "G", "C"),
seqMut=c("G", "-", "T"),
seqSur=c("TACAGAA", "TAAGCAG", "CGGCGAA"),
stringsAsFactors=FALSE)

annotate variants with affected genes, exons and codons (may take a minute to finish)
Not run: varAnnot = annotateVariants(variants)

plot variants for gene TET2 having the Ensembl id "ENSG00000168769"
when passing no transcript, the largest transcript annotated in the Ensembl database for this gene will be selected automatically
Not run: plotVariants(data=varAnnot, gene="ENSG00000168769", title="plotVariants Example", legend=TRUE)

EXAMPLE 2: Working with a data frame

two missense at one position, one nonsense point mutation and one deletion
it is possible to assign a color to every single mutation independently from its type
variants = data.frame(

label=c("A>G","A>G(2)","delG","C>T"),
pos=c(831,831,867,1437),
mutation=c("M","M","D","N"),
color=c("black", "black", "green", "red"),
stringsAsFactors=FALSE

)

more detailed names for mutation abbreviations can be passed as mutationInfo
this is useful for the legend, but can also be generated automatically
mutationInfo = data.frame(

mutation=c("M","D","S","N"),
legend=c("Missense","Nonsense","Silent","Deletion"),
stringsAsFactors=FALSE

)

regions of interest can be highlighted using the regions parameter
regions = data.frame(

name = c("region1", "region2"),
start = c(700, 1400),
end = c(1000, 1900),
color = c("red", "blue")

)

using the horiz parameter, multiple mutations occurring at the same place can be either aligned ...
... vertically
Not run: plotVariants(data=variants, gene="ENSG00000168769", transcript="ENST00000513237", regions=regions, mutationInfo=mutationInfo, horiz=FALSE, title="'plotVariants' Example", legend=TRUE)

... or horizontally in groups
Not run: plotVariants(data=variants, gene="ENSG00000168769", transcript="ENST00000513237", regions=regions, mutationInfo=mutationInfo, horiz=TRUE, title="'plotVariants' Example", legend=TRUE)

group mutations by their label and not by their position (which is the default)
Not run: plotVariants(data=variants, gene="ENSG00000168769", transcript="ENST00000513237", regions=regions, mutationInfo=mutationInfo, groupBy="label", horiz=TRUE, title="'plotVariants' Example", legend=TRUE)

plotVariationFrequency

Create an AVA style variation frequency plot

50 plotVariationFrequency

Description

This method creates a plot similar to the variation frequency plot in Roche’s GS Amplicon Variant
Analyzer. The plot shows the reference sequence along the x-axis and indicates variants as bars at
the appropriate positions. The height of the bars corresponds to the percentage of reads carrying the
variant. A second y-axis indicates the absolute number of reads covering the variant.

Usage

plotVariationFrequency(object, plotRange, ...)

Arguments

object A character pointing to an Amplicon Variant Analyser Global Alignmnet export
file.

plotRange A two dimensional numeric vector giving the start and end base of the reference
sequence that should be plotted.

... Arguments passed to other plotting methods. Especially, argument col: Op-
tional character vector of length 7 specifying the bars’ colors indicating differ-
ent base substitutions or deletions. See details. And argument sequenceCex:
Optional numeric value specifying the size of the reference sequence’s bases.

Details

The text file used as imput must have the format generated by the AVA export function. Such a
file can be generated using the export button in the Global Alignment view of the AVA software.
The col argument specifies the colours used for different bases and deletions. The following listing
gives the meaning of the i-th position of the col vector (default values in braces):

1. A (green)

2. C (blue)

3. G (black)

4. T (red)

5. N (purple)

6. deletion (gray)

Author(s)

Hans-Ulrich Klein

Examples

Not run:
file = system.file("extdata", "AVAVarFreqExport", "AVAVarFreqExport.xls", package="R453Plus1Toolbox")
plotVariationFrequency(file, plotRange=c(50, 150))
End(Not run)

positionQualityBoxplot 51

positionQualityBoxplot

Boxplot Of The Quality For Each Position

Description

Creates a boxplot of the quality scores over all sequences at each position.

Usage

positionQualityBoxplot(object, range, binsize=10,
xlab=paste("Read position in bp (Bin size: ", binsize, "bp)", sep=""), ylab="Quality score",
col="firebrick1", ...)

Arguments

object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.

range A numeric vector of length one or two. If length one only bases from the first
until this position are plotted. If two all bases between these two positions are
plotted.

binsize Number of positions to summarize in one box in the plot.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

qualityReportSFF Function To Create A Quality Report In PDF Format

Description

This function takes a character vector consisting of filenames pointing to files in Roche’s SFF format
as input and creates a quality report in PDF format as output.

Usage

qualityReportSFF(sfffiles, outfile)

Arguments

sfffiles A character vector of the SFF files to read in.

outfile The name of the PDF report file created. Defaults to ‘qcreport.pdf’ in the current
directory.

52 readLengthHist

Details

The function uses the qualityReport.Rnw file from the extdata directory of the package and Sweave
to create a .tex file which is afterwards converted to .pdf format. In the .Rnw file the follow-
ing quality control functions are used: readLengthStats, readLengthHist, baseQualityStats,
baseQualityHist, sequenceQualityHist, positionQualityBoxplot, baseFrequency, nucleotideCharts,
gcContent, gcPerPosition, gcContentHist, complexity.dust, complexity.entropy, dinucleotideOddsRatio.

Author(s)

Christian Ruckert

Examples

Not run:
file <- system.file("extdata", "SFF", "example.sff", package="R453Plus1Toolbox")
qualityReportSFF(file, "QualityReport.pdf")

End(Not run)

readLengthHist Histogram Of The Read Lengths

Description

This function plots a histogram of the read lengths.

Usage

readLengthHist(object, cutoff=0.99, xlab="Read length", ylab="Number of sequences",
col="firebrick1", breaks=100, ...)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

cutoff Reads longer than the cutoff-percent quantile are omitted from the plot.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

readLengthStats 53

readLengthStats Statistics For The Read Lengths

Description

This function returns the mean, median, minimum, maximum and standard deviation of the read
lengths over a set of sequences.

Usage

readLengthStats(object)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

Value

A vector with five entries: mean, median, min, max and sd.

Author(s)

Christian Ruckert

readSFF Function To Read In Roche’s .sff Files

Description

This function reads in files in Roche’s Standard Flowgram Format (SFF) and store the contents in
an SFFContainer-class object.

Usage

readSFF(files)

Arguments

files The name of the .sff file to read in or a character vector of multiple file names or
the name of a directory containing .sff files.

Value

An object or a list of objects of class SFFContainer storing all the information from the .sff file(s).

Author(s)

Christian Ruckert

54 readsOnTarget

See Also

writeSFF, SFFContainer.

Examples

file <- system.file("extdata", "SFF", "example.sff", package="R453Plus1Toolbox")
sffContainer <- readSFF(file)
sffContainer

readsOnTarget Check for each read whether it aligns within the given region.

Description

This methods checks (approximately) whether the given reads align within a given region.

Usage

readsOnTarget(alnReads, targetRegion)

Arguments

alnReads A list as returned by scanBam storing aligned reads.

targetRegion The target region as a GRanges object. The chromosome names must fit to the
chromosome names used in the alignment information of the given reads.

Details

The detailed alignment information given by the CIGAR strings in .bam files are ignored by the
function. Instead, it is assumed that the whole read alignes to the reference without indels. This is
often not true for longer read (e.g. generated with Roche 454 Sequencing), but saves computation
time. Hence, this method is useful to approximate the number of reads that align in the target region
of a targeted sequencing experiment.

Value

A list with one logical vector for each list entry in alnReads. The logical vector indicates for each
read whether it overlaps with at least one base from any target region or not.

Author(s)

Hans-Ulrich Klein

See Also

scanBam

referenceSequences 55

Examples

library(Rsamtools)
bamFile = system.file("extdata", "SVDetection", "bam", "N01.bam", package="R453Plus1Toolbox")
bam = scanBam(bamFile)
region = GRanges(IRanges(start=118307205, end=118395936), seqnames=11)
targetReads = readsOnTarget(bam, region)
sum(targetReads[[1]])

referenceSequences Access the reference sequences of an AVASet

Description

This function give access to a slot of an instance of the AVASet storing information about all refer-
ence sequences of the amplicons.

Usage

referenceSequences(object)

Arguments

object An link{AVASet-class} object.

Value

The data is stored in an object of class AlignedRead and thus gives information about all reference
sequences and their position on a chromosome (if alignShortReads has been called before).

Author(s)

Christoph Bartenhagen

See Also

alignShortReads

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)

referenceSequences(avaSetExample)

56 removeLinker

regions Example data for plotVariants

Description

This data.frame is part of the vignette example of the plotVariants function. It has the columns
"name", "start", "end" and "color". The plot will highlight these regions with the given colors and
print their name in the legend.

Usage

data(plotVariantsExample)

Format

data.frame

Examples

data(plotVariantsExample)
regions

removeLinker Remove linker sequences located at the start of short reads

Description

If linkers are attached during sample preparation, it may be useful to remove the linkers’ sequences
after sequencing. This method finds and removes linker sequences that are located at the start of the
given reads.

Usage

S4 method for signature 'XStringSet,DNAString,logical,numeric,numeric'
removeLinker(reads, linker, removeReadsWithoutLinker, minOverlap, penalty)

Arguments

reads A DNAStringSet instance that contains reads possibly having linkers at their
start site

linker A DNAString instance with the linker’s sequence
removeReadsWithoutLinker

Whether reads without linkers should be removed. Default is FALSE

minOverlap The minimal score that must be achived when aligning the linker. Default is
length(linker)/2

penalty The penalty for substitutions or indels. Default is 2

sequenceCaptureLinkers 57

Details

The best alignment of the linker within the start (length of linker + 5) of each given sequence is
computed. The followong scoring schema is used: Each matching bases scores +1. Each substitu-
tion or indel scores the given penalty argument (default: penalty=2). There are no penalties for gaps
and the end of the linker (overlap). An alignment is considered as match, if the scores is larger of
equal to minOverlap (default: minOverlap=round(length(linker)/2)). In cases of a successful match,
the subsequence from position 1 until the end of the linker’s alignment is removed.

Value

removeLinker returns a DNAStringSet with trimmed reads.

Author(s)

Hans-Ulrich Klein

See Also

sequenceCaptureLinkers, DNAStringSet, pairwiseAlignment

Examples

linker = sequenceCaptureLinkers()[[1]]
reads = DNAStringSet(c(

"CTCGAGAATTCTGGATCCTCAAA",
"GAATTCTGGATCCTCAAA",

"CTCGAGAAAAAAAAATCCTCAAA"))
removeLinker(reads, linker)

sequenceCaptureLinkers

Retrieve NimbleGen’s sequence capture linkers

Description

This method returns the NimbleGen’s linker sequences used with their sequence capture arrays. See
pp.29-30 in the NimbleGen Arrays User’s Guide.

Usage

S4 method for signature 'character'
sequenceCaptureLinkers(name)

S4 method for signature 'missing'
sequenceCaptureLinkers()

Arguments

name Character vector with linker sequences’ names

Details

If the argument name is omitted, both linker sequences are returned.

58 sequenceQualityHist

Value

sequenceCaptureLinkers returns a DNAStringSet with the requested linker sequences.

Author(s)

Hans-Ulrich Klein

See Also

removeLinker

Examples

sequenceCaptureLinkers()

sequenceQualityHist A Histogram Of The Sequence Qualities

Description

This function creates a histogram of the mean qualities of the sequences.

Usage

sequenceQualityHist(object, xlab="Mean of quality scores per sequence",
ylab="Number of sequences", col="firebrick1", ...)

Arguments

object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

... Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

setVariantFilter 59

setVariantFilter Filters output of variant information

Description

This functions sets the filter to display only those variants, whose amplicon coverage (in percent)
in forward and reverse direction in at least one sample is higher than a given value. The coverage is
defined as the percentual amount of reads that cover a variant.

Usage

setVariantFilter(object, filter=0)

Arguments

object An instance of an link{AVASet-class} or MapperSet-class.

filter A filter value between 0 and 1. If two values are given in a vector, the variants
are filterd according to the forward (first value) and reverse direction (second
value) separately. In this case, a variant has to meet both requirements.

Details

Setting the filter affects the assayData and the featureData of the variant slot. See also getVariantPercentages
for further details.

Value

setVariantFilter returns the given link{AVASet-class}/link{MapperSet-class} instance with
an updated filter value.

Author(s)

Christoph Bartenhagen

See Also

link{AVASet-class}, link{MapperSet-class}, getVariantPercentages.

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

use only those variants that are covered by at least 10% of all reads in one sample in both directions together (259 -> 4 variants)
avaSetExample = setVariantFilter(avaSetExample, filter=0.1)
avaSetExample

use only those variants that are covered by at least 0.1% of all reads in one sample in forward direction
and by at least 0% in reverse direction (259 -> 6 variants)
avaSetExample = setVariantFilter(avaSetExample, filter=c(0.1, 0))
avaSetExample

60 SFFContainer-class

reset filter values to zero
avaSetExample = setVariantFilter(avaSetExample, filter=0)
or simply
avaSetExample = setVariantFilter(avaSetExample)

sff2fastq Write A SFFContainer Object To A FASTQ File

Description

This function takes a SFFContainer object and writes it to a file in FASTQ format.

Usage

sff2fastq(x, outdir, fname)

Arguments

x An object of class SFFContainer.

outdir The directory where the file should be stored, defaults to the current working
directory.

fname The name of the file to write. Defaults to the filename slot of the SFFContainer,
with .sff substituted with .fastq.

Author(s)

Christian Ruckert

SFFContainer-class Class "SFFContainer"

Description

This class is a container for data from files in Roche’s Standard Flowgram Format (SFF).

Objects from the Class

Objects can be created by calls of the form new("SFFContainer", ...). Usually, objects will be
created by calling the readSFF method on a file in SFF format.

SFFContainer-class 61

Slots

name: Object of class "character" containing the name of the file this SFFContainer was created
from.

flowgramFormat: Object of class "numeric" representing the format used to encode each of the
flowgram values for each read. Currently, only one flowgram format has been adopted and is
coded by the value 1.

flowChars: Object of class "character" containing the array of nucleotide bases (’A’, ’C’, ’G’,
’T’) that correspond to the nucleotides used for each flow of each read.

keySequence: Object of class "character" representing the nucleotide bases of the key sequence
used for these reads.

clipQualityLeft: Object of class "numeric" representing the position of the first base after the
clipping point for an attached quality sequence for each read. If only a combined (qual-
ity+adapter) clipping position is computed it should be stored in clipQualityLeft. If no clip-
ping value is computed the field is set to 0. The position values use 1-based indexing.

clipQualityRight: Object of class "numeric" representing the position of the last base before
the clipping point for an attached quality sequence for each read. If only a combined (qual-
ity+adapter) clipping position is computed it should be stored in clipQualityRight. If no clip-
ping value is computed the field is set to 0. The position values use 1-based indexing.

clipAdapterLeft: Object of class "numeric" representing the position of the first base after the
clipping point for an attached adapter sequence for each read. If only a combined (qual-
ity+adapter) clipping position is computed it should be stored in clipQualityLeft. If no clip-
ping value is computed the field is set to 0. The position values use 1-based indexing.

clipAdapterRight: Object of class "numeric" representing the position of the last base before
the clipping point for an attached adapter sequence for each read. If only a combined (qual-
ity+adapter) clipping position is computed it should be stored in clipQualityRight. If no clip-
ping value is computed the field is set to 0. The position values use 1-based indexing.

flowgrams: Object of class "list" containing the homopolymer stretch estimates for each flow
using one list item for each read.

flowIndexes: Object of class "list" containing the flow positions for each base in the called
sequence, i.e. for each base, the position in the flowgram whose estimate resulted in that base
being called. Each read has its own list item.

reads: Object of class "QualityScaledDNAStringSet" containing the basecalled nucleotide se-
quences of each read together with the quality scores for each of the bases in the sequence
using the standard -log10 probability scale.

Methods

addRead signature(object = "SFFContainer", read = "SFFRead"): Adds an object of
class SFFRead to the SFFContainer

getRead signature(object = "SFFContainer", readname = "character"): Returns the
read with the given name as an object of class SFFRead.

clipAdapterLeft<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the clipAdapterLeft slot.

clipAdapterLeft signature(object = "SFFContainer"): Getter-method for the clipAdapter-
Left slot.

clipAdapterRight<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the clipAdapterRight slot.

62 SFFContainer-class

clipAdapterRight signature(object = "SFFContainer"): Getter-method for the clipAdapter-
Right slot.

clipQualityLeft<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the clipQualityLeft slot.

clipQualityLeft signature(object = "SFFContainer"): Getter-method for the clipQualityLeft
slot.

clipQualityRight<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the clipQualityRight slot.

clipQualityRight signature(object = "SFFContainer"): Getter-method for the clipQuali-
tyRight slot.

name<- signature(object = "SFFContainer", value = "character"): Setter-method for
the name slot.

name signature(object = "SFFContainer"): Getter-method for the name slot.

flowChars<- signature(object = "SFFContainer", value = "character"): Setter-method
for the flowChars slot.

flowChars signature(object = "SFFContainer"): Getter-method for the flowChars slot.

flowgramFormat<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the flowgramFormat slot.

flowgramFormat signature(object = "SFFContainer"): Getter-method for the flowgramFor-
mat slot.

flowgrams<- signature(object = "SFFContainer", value = "list"): Setter-method for
the flowgrams slot.

flowgrams signature(object = "SFFContainer"): Getter-method for the flowgrams slot.

flowIndexes<- signature(object = "SFFContainer", value = "list"): Setter-method for
the flowIndexes slot.

flowIndexes signature(object = "SFFContainer"): Getter-method for the flowIndexes slot.

keySequence<- signature(object = "SFFContainer", value = "character"): Setter-
method for the keySequence slot.

keySequence signature(object = "SFFContainer"): Getter-method for the keySequence slot.

reads<- signature(object = "SFFContainer", value = "QualityScaledDNAStringSet"):
Setter-method for the reads slot.

reads signature(object = "SFFContainer"): Getter-method for the reads slot.

[signature(x = "SFFContainer", i = "ANY", j = "ANY"): Subsetting a SFFContainer
object.

Author(s)

Christian Ruckert

See Also

readSFF, SFFRead

Examples

showClass("SFFContainer")

SFFRead-class 63

SFFRead-class Class "SFFRead"

Description

This class is a container for a single read from files in Roche’s Standard Flowgram Format (SFF).

Objects from the Class

Objects can be created by calls of the form new("SFFRead", ...). Usually, objects will be created
by calling the getRead method on an object of class SFFContainer.

Slots

name: Object of class "character" representing the name of the read.

read: Object of class "DNAString" containing the basecalled nucleotide sequence of the read.

flowgramFormat: Object of class "numeric" representing the format used to encode each of the
flowgram values for each read. Currently, only one flowgram format has been adopted and is
coded by the value 1.

flowChars: Object of class "character" containing the array of nucleotide bases (’A’, ’C’, ’G’,
’T’) that correspond to the nucleotides used for each flow of each read.

keySequence: Object of class "character" representing the nucleotide bases of the key sequence
used for these reads.

clipQualityLeft: Object of class "numeric" representing the position of the first base after the
clipping point for an attached quality sequence. If only a combined (quality+adapter) clipping
position is computed it should be stored in clipQualityLeft. If no clipping value is computed
the field is set to 0. The position values use 1-based indexing.

clipQualityRight: Object of class "numeric" representing the position of the last base before
the clipping point for an attached quality sequence. If only a combined (quality+adapter)
clipping position is computed it should be stored in clipQualityRight. If no clipping value is
computed the field is set to 0. The position values use 1-based indexing.

clipAdapterLeft: Object of class "numeric" representing the position of the first base after the
clipping point for an attached adapter sequence. If only a combined (quality+adapter) clipping
position is computed it should be stored in clipQualityLeft. If no clipping value is computed
the field is set to 0. The position values use 1-based indexing.

clipAdapterRight: Object of class "numeric" representing the position of the last base before
the clipping point for an attached adapter sequence. If only a combined (quality+adapter)
clipping position is computed it should be stored in clipQualityRight. If no clipping value is
computed the field is set to 0. The position values use 1-based indexing.

flowgram: Object of class "numeric" containing the homopolymer stretch estimates for each flow.

flowIndexes: Object of class "numeric" containing the flow positions for each base in the called
sequence, i.e. for each base, the position in the flowgram whose estimate resulted in that base
being called.

quality: Object of class "BString" containing the quality scores for each of the bases in the
sequence, where the values use the standard -log10 probability scale.

64 SFFRead-class

Methods

read<- signature(object = "SFFRead", value = "DNAString"): Setter-method for the read
slot.

read signature(object = "SFFRead"): Getter-method for the read slot.

flowChars<- signature(object = "SFFContainer", value = "character"): Setter-method
for the flowChars slot.

flowChars signature(object = "SFFContainer"): Getter-method for the flowChars slot.

flowgramFormat<- signature(object = "SFFContainer", value = "numeric"): Setter-
method for the flowgramFormat slot.

flowgramFormat signature(object = "SFFContainer"): Getter-method for the flowgramFor-
mat slot.

keySequence<- signature(object = "SFFContainer", value = "character"): Setter-
method for the keySequence slot.

keySequence signature(object = "SFFContainer"): Getter-method for the keySequence slot.

clipAdapterLeft<- signature(object = "SFFRead", value = "numeric"): Setter-method
for the clipAdapterLeft slot.

clipAdapterLeft signature(object = "SFFRead"): Getter-method for the clipAdapterLeft slot.

clipAdapterRight<- signature(object = "SFFRead", value = "numeric"): Setter-method
for the clipAdapterRight slot.

clipAdapterRight signature(object = "SFFRead"): Getter-method for the clipAdapterRight
slot.

clipQualityLeft<- signature(object = "SFFRead", value = "numeric"): Setter-method for
the clipQualityLeft slot.

clipQualityLeft signature(object = "SFFRead"): Getter-method for the clipQualityLeft slot.

clipQualityRight<- signature(object = "SFFRead", value = "numeric"): Setter-method
for the clipQualityRight slot.

clipQualityRight signature(object = "SFFRead"): Getter-method for the clipQualityRight
slot.

flowgram<- signature(object = "SFFRead", value = "numeric"): Setter-method for the
flowgram slot.

flowgram signature(object = "SFFRead"): Getter-method for the flowgram slot.

flowIndexes<- signature(object = "SFFRead", value = "numeric"): Setter-method for the
flowIndexes slot.

flowIndexes signature(object = "SFFRead"): Getter-method for the flowIndexes slot.

name<- signature(object = "SFFRead", value = "character"): Setter-method for the
name slot.

name signature(object = "SFFRead"): Getter-method for the name slot.

quality<- signature(object = "SFFRead", value = "BString"): Setter-method for the
quality slot.

quality signature(object = "SFFRead"): Getter-method for the quality slot.

Author(s)

Christian Ruckert

variants 65

See Also

readSFF, SFFContainer

Examples

showClass("SFFRead")

variants Example data for plotVariants

Description

This data.frame is part of the vignette example of the plotVariants function. It has the columns
"label", "pos" "mutation" and "color" specifying an annotation for each mutation, its position, the
mutation type and an individual color. The position is given as amino acids / codons.

Usage

data(plotVariantsExample)

Format

data.frame

Examples

data(plotVariantsExample)
variants

writeSFF Function To Write Files In Roche’s .sff Format

Description

This function takes an object of class SFFContainer-class and writes its contents into a file in
Roche’s Standard Flowgram Format (SFF) with the given filename.

Usage

writeSFF(sffContainer, filename)

Arguments

sffContainer An SFFContainer-class object.

filename The name of the file to write into.

Author(s)

Christian Ruckert

66 writeSFF

See Also

readSFF, SFFContainer.

Examples

file <- system.file("extdata", "SFF", "example.sff", package="R453Plus1Toolbox")
sffContainer <- readSFF(file)
sffContainer2 <- sffContainer[1:5]
Not run: writeSFF(sffContainer2, "output.sff")

Index

∗Topic TiTv,Transition,Transversion
calculateTiTv, 18

∗Topic Variation Frequency Coverage
plotVariationFrequency, 50

∗Topic alignShortReads
alignShortReads, 3

∗Topic amplicon coverage
plotAmpliconCoverage, 44

∗Topic annotateVariants
annotateVariants, 5

∗Topic classes
AnnotatedVariants-class, 4
AVASet-class, 10
Breakpoints-class, 16
MapperSet-class, 40
SFFContainer-class, 60
SFFRead-class, 63

∗Topic datasets
avaSetExample, 12
avaSetFiltered, 13
avaSetFiltered_annot, 13
breakpoints, 16
captureArray, 19
mapperSetExample, 41
mutationInfo, 43
regions, 56
variants, 65

∗Topic demultiplex
demultiplexReads, 23
genomeSequencerMIDs, 33

∗Topic filterChimericReads
filterChimericReads, 29

∗Topic linker
sequenceCaptureLinkers, 57

∗Topic methods
ava2vcf, 7
baseFrequency, 14
baseQualityHist, 15
baseQualityStats, 15
complexity.dust, 20
complexity.entropy, 21
dinucleotideOddsRatio, 27
flowgramBarplot, 31

gcContent, 31
gcContentHist, 32
gcPerPosition, 32
homopolymerHist, 36
nucleotideCharts, 44
positionQualityBoxplot, 51
readLengthHist, 52
readLengthStats, 53
sequenceQualityHist, 58
sff2fastq, 60

∗Topic plotChimericReads,
detectBreakpoints,
mergeBreakpoints,
Breakpoints

plotChimericReads, 45
∗Topic readsOnTarget

readsOnTarget, 54
∗Topic removeLinker

removeLinker, 56
[,AVASet,ANY,ANY,ANY-method

(AVASet-class), 10
[,AVASet,ANY,ANY-method (AVASet-class),

10
[,Breakpoints,ANY,ANY,ANY-method

(Breakpoints-class), 16
[,Breakpoints,ANY,ANY-method

(Breakpoints-class), 16
[,SFFContainer,ANY,ANY,ANY-method

(SFFContainer-class), 60
[,SFFContainer,ANY,ANY-method

(SFFContainer-class), 60

addRead (SFFContainer-class), 60
addRead,SFFContainer,SFFRead-method

(SFFContainer-class), 60
AlignedRead, 3, 25
alignedReadsC1 (Breakpoints-class), 16
alignedReadsC1,Breakpoints-method

(Breakpoints-class), 16
alignedReadsC1<- (Breakpoints-class), 16
alignedReadsC1<-,Breakpoints,list-method

(Breakpoints-class), 16
alignedReadsC2 (Breakpoints-class), 16

67

68 INDEX

alignedReadsC2,Breakpoints-method
(Breakpoints-class), 16

alignedReadsC2<- (Breakpoints-class), 16
alignedReadsC2<-,Breakpoints,list-method

(Breakpoints-class), 16
alignShortReads, 3, 9, 11, 55
alignShortReads,AVASet,BSgenome,character,logical-method

(alignShortReads), 3
alignShortReads,AVASet,BSgenome,character,missing-method

(alignShortReads), 3
alignShortReads,AVASet,BSgenome,missing,logical-method

(alignShortReads), 3
alignShortReads,AVASet,BSgenome,missing,missing-method

(alignShortReads), 3
alignShortReads,AVASet,DNAStringSet,character-method

(AVASet-class), 10
alignShortReads,DNAStringSet,BSgenome,character,logical-method

(alignShortReads), 3
alignShortReads,DNAStringSet,BSgenome,character,missing-method

(alignShortReads), 3
alignShortReads,DNAStringSet,BSgenome,missing,logical-method

(alignShortReads), 3
alignShortReads,DNAStringSet,BSgenome,missing,missing-method

(alignShortReads), 3
alphabetFrequency, 14
AnnotatedDataFrame, 29
annotatedVariants, 48
annotatedVariants

(AnnotatedVariants-class), 4
annotatedVariants,AnnotatedVariants-method

(AnnotatedVariants-class), 4
AnnotatedVariants-class, 4
annotatedVariants<-,AnnotatedVariants,list-method

(AnnotatedVariants-class), 4
annotateVariants, 4, 5, 11, 37, 38, 41, 47, 48
annotateVariants,AVASet,missing-method

(annotateVariants), 5
annotateVariants,AVASet-method

(AVASet-class), 10
annotateVariants,data.frame,missing-method

(annotateVariants), 5
annotateVariants,MapperSet,BSgenome-method

(annotateVariants), 5
annotateVariants,MapperSet,missing-method

(annotateVariants), 5
annotateVariants,MapperSet-method

(MapperSet-class), 40
assayDataAmp, 6, 28, 29
assayDataAmp,AVASet-method

(AVASet-class), 10
assayDataAmp<- (AVASet-class), 10
assayDataAmp<-,AVASet,AssayData-method

(AVASet-class), 10
ava2vcf, 7
ava2vcf,AVASet-method (ava2vcf), 7
AVASet, 3, 7, 8, 41, 45
AVASet,character,character,missing,missing,missing,missing,missing-method

(AVASet), 8
AVASet,character,missing,character,character,character,character,character-method

(AVASet), 8
AVASet,character,missing,character,character,character,missing,missing-method

(AVASet), 8
AVASet,character,missing,missing,missing,missing,missing,missing-method

(AVASet), 8
AVASet-class, 10
avaSetExample, 12
avaSetFiltered, 13
avaSetFiltered_annot, 13

baseFrequency, 14, 52
baseFrequency,DNAStringSet-method

(baseFrequency), 14
baseFrequency,SFFContainer-method

(baseFrequency), 14
baseFrequency,ShortRead-method

(baseFrequency), 14
baseQualityHist, 15, 52
baseQualityHist,QualityScaledDNAStringSet-method

(baseQualityHist), 15
baseQualityHist,SFFContainer-method

(baseQualityHist), 15
baseQualityHist,ShortReadQ-method

(baseQualityHist), 15
baseQualityStats, 15, 52
baseQualityStats,QualityScaledDNAStringSet-method

(baseQualityStats), 15
baseQualityStats,SFFContainer-method

(baseQualityStats), 15
baseQualityStats,ShortReadQ-method

(baseQualityStats), 15
breakpoints, 16
Breakpoints-class, 16

calculateTiTv, 18
calculateTiTv,AVASet-method

(calculateTiTv), 18
calculateTiTv,MapperSet-method

(calculateTiTv), 18
captureArray, 19
clipAdapterLeft (SFFContainer-class), 60
clipAdapterLeft,SFFContainer-method

(SFFContainer-class), 60
clipAdapterLeft,SFFRead-method

(SFFRead-class), 63

INDEX 69

clipAdapterLeft<- (SFFContainer-class),
60

clipAdapterLeft<-,SFFContainer,numeric-method
(SFFContainer-class), 60

clipAdapterLeft<-,SFFRead,numeric-method
(SFFRead-class), 63

clipAdapterRight (SFFContainer-class),
60

clipAdapterRight,SFFContainer-method
(SFFContainer-class), 60

clipAdapterRight,SFFRead-method
(SFFRead-class), 63

clipAdapterRight<-
(SFFContainer-class), 60

clipAdapterRight<-,SFFContainer,numeric-method
(SFFContainer-class), 60

clipAdapterRight<-,SFFRead,numeric-method
(SFFRead-class), 63

clipQualityLeft (SFFContainer-class), 60
clipQualityLeft,SFFContainer-method

(SFFContainer-class), 60
clipQualityLeft,SFFRead-method

(SFFRead-class), 63
clipQualityLeft<- (SFFContainer-class),

60
clipQualityLeft<-,SFFContainer,numeric-method

(SFFContainer-class), 60
clipQualityLeft<-,SFFRead,numeric-method

(SFFRead-class), 63
clipQualityRight (SFFContainer-class),

60
clipQualityRight,SFFContainer-method

(SFFContainer-class), 60
clipQualityRight,SFFRead-method

(SFFRead-class), 63
clipQualityRight<-

(SFFContainer-class), 60
clipQualityRight<-,SFFContainer,numeric-method

(SFFContainer-class), 60
clipQualityRight<-,SFFRead,numeric-method

(SFFRead-class), 63
commonAlignC1 (Breakpoints-class), 16
commonAlignC1,Breakpoints-method

(Breakpoints-class), 16
commonAlignC1<- (Breakpoints-class), 16
commonAlignC1<-,Breakpoints,list-method

(Breakpoints-class), 16
commonAlignC2 (Breakpoints-class), 16
commonAlignC2,Breakpoints-method

(Breakpoints-class), 16
commonAlignC2<- (Breakpoints-class), 16
commonAlignC2<-,Breakpoints,list-method

(Breakpoints-class), 16
commonBpsC1 (Breakpoints-class), 16
commonBpsC1,Breakpoints-method

(Breakpoints-class), 16
commonBpsC1<- (Breakpoints-class), 16
commonBpsC1<-,Breakpoints,list-method

(Breakpoints-class), 16
commonBpsC2 (Breakpoints-class), 16
commonBpsC2,Breakpoints-method

(Breakpoints-class), 16
commonBpsC2<- (Breakpoints-class), 16
commonBpsC2<-,Breakpoints,list-method

(Breakpoints-class), 16
complexity.dust, 20, 52
complexity.dust,DNAStringSet-method

(complexity.dust), 20
complexity.dust,SFFContainer-method

(complexity.dust), 20
complexity.dust,ShortRead-method

(complexity.dust), 20
complexity.entropy, 21, 52
complexity.entropy,DNAStringSet-method

(complexity.entropy), 21
complexity.entropy,SFFContainer-method

(complexity.entropy), 21
complexity.entropy,ShortRead-method

(complexity.entropy), 21
convertCigar, 22
coverageOnTarget, 22
coverageOnTarget,list,GRanges-method

(coverageOnTarget), 22

data, 47
data.frame, 14
demultiplexReads, 23, 33
demultiplexReads,XStringSet,XStringSet,missing,logical-method

(demultiplexReads), 23
demultiplexReads,XStringSet,XStringSet,missing,missing-method

(demultiplexReads), 23
demultiplexReads,XStringSet,XStringSet,numeric,logical-method

(demultiplexReads), 23
demultiplexReads,XStringSet,XStringSet,numeric,missing-method

(demultiplexReads), 23
detectBreakpoints, 16, 18, 24, 30, 42, 43, 46
detectBreakpoints,list-method

(detectBreakpoints), 24
dinucleotideOddsRatio, 27, 52
dinucleotideOddsRatio,DNAStringSet-method

(dinucleotideOddsRatio), 27
dinucleotideOddsRatio,SFFContainer-method

(dinucleotideOddsRatio), 27
dinucleotideOddsRatio,ShortRead-method

(dinucleotideOddsRatio), 27

70 INDEX

DNAStringSet, 3, 14, 20, 21, 24, 27, 31–34,
44, 52, 53, 57

eSet, 11, 40
extendedCIGARToList, 22
extendedCIGARToList (convertCigar), 22

fData, 37
fDataAmp, 7, 28, 29, 34
fDataAmp,AVASet-method (AVASet-class),

10
featureDataAmp, 7, 28, 28
featureDataAmp,AVASet-method

(AVASet-class), 10
featureDataAmp<- (AVASet-class), 10
featureDataAmp<-,AVASet,AnnotatedDataFrame-method

(AVASet-class), 10
filterChimericReads, 18, 24, 26, 29, 46
filterChimericReads,list,missing,DNAString,missing,missing-method

(filterChimericReads), 29
filterChimericReads,list,missing,DNAString,numeric,numeric-method

(filterChimericReads), 29
filterChimericReads,list,missing,missing,missing,missing-method

(filterChimericReads), 29
filterChimericReads,list,missing,missing,numeric,numeric-method

(filterChimericReads), 29
filterChimericReads,list,RangesList,DNAString,missing,missing-method

(filterChimericReads), 29
filterChimericReads,list,RangesList,DNAString,numeric,numeric-method

(filterChimericReads), 29
filterChimericReads,list,RangesList,missing,missing,missing-method

(filterChimericReads), 29
filterChimericReads,list,RangesList,missing,numeric,numeric-method

(filterChimericReads), 29
flowChars (SFFContainer-class), 60
flowChars,SFFContainer-method

(SFFContainer-class), 60
flowChars,SFFRead-method

(SFFRead-class), 63
flowChars<- (SFFContainer-class), 60
flowChars<-,SFFContainer,character-method

(SFFContainer-class), 60
flowChars<-,SFFRead,character-method

(SFFRead-class), 63
flowgram (SFFRead-class), 63
flowgram,SFFRead-method

(SFFRead-class), 63
flowgram<- (SFFRead-class), 63
flowgram<-,SFFRead,numeric-method

(SFFRead-class), 63
flowgramBarplot, 31
flowgramBarplot,SFFRead-method

(flowgramBarplot), 31

flowgramFormat (SFFContainer-class), 60
flowgramFormat,SFFContainer-method

(SFFContainer-class), 60
flowgramFormat,SFFRead-method

(SFFRead-class), 63
flowgramFormat<- (SFFContainer-class),

60
flowgramFormat<-,SFFContainer,numeric-method

(SFFContainer-class), 60
flowgramFormat<-,SFFRead,numeric-method

(SFFRead-class), 63
flowgrams (SFFContainer-class), 60
flowgrams,SFFContainer-method

(SFFContainer-class), 60
flowgrams<- (SFFContainer-class), 60
flowgrams<-,SFFContainer,list-method

(SFFContainer-class), 60
flowIndexes (SFFContainer-class), 60
flowIndexes,SFFContainer-method

(SFFContainer-class), 60
flowIndexes,SFFRead-method

(SFFRead-class), 63
flowIndexes<- (SFFContainer-class), 60
flowIndexes<-,SFFContainer,list-method

(SFFContainer-class), 60
flowIndexes<-,SFFRead,numeric-method

(SFFRead-class), 63

gcContent, 31, 52
gcContent,DNAStringSet-method

(gcContent), 31
gcContent,SFFContainer-method

(gcContent), 31
gcContent,ShortRead-method (gcContent),

31
gcContentHist, 32, 52
gcContentHist,DNAStringSet-method

(gcContentHist), 32
gcContentHist,SFFContainer-method

(gcContentHist), 32
gcContentHist,ShortRead-method

(gcContentHist), 32
gcPerPosition, 32, 52
gcPerPosition,DNAStringSet-method

(gcPerPosition), 32
gcPerPosition,SFFContainer-method

(gcPerPosition), 32
gcPerPosition,ShortRead-method

(gcPerPosition), 32
genomeSequencerMIDs, 24, 33
genomeSequencerMIDs,character-method

(genomeSequencerMIDs), 33

INDEX 71

genomeSequencerMIDs,missing-method
(genomeSequencerMIDs), 33

getAlignedReads, 34
getAlignedReads,AVASet-method

(getAlignedReads), 34
getAminoAbbr, 35
getRead, 63
getRead (SFFContainer-class), 60
getRead,SFFContainer,character-method

(SFFContainer-class), 60
getReadStatus (MapperSet-class), 40
getReadStatus,MapperSet-method

(MapperSet-class), 40
getVariantPercentages, 11, 35, 41, 59
getVariantPercentages,AVASet-method

(AVASet-class), 10
getVariantPercentages,MapperSet-method

(MapperSet-class), 40

homopolymerHist, 36
homopolymerHist,SFFRead-method

(homopolymerHist), 36
htmlReport, 4, 6, 11, 37, 41
htmlReport,AVASet-method

(AVASet-class), 10
htmlReport,MapperSet-method

(MapperSet-class), 40

IRanges, 25

keySequence (SFFContainer-class), 60
keySequence,SFFContainer-method

(SFFContainer-class), 60
keySequence,SFFRead-method

(SFFRead-class), 63
keySequence<- (SFFContainer-class), 60
keySequence<-,SFFContainer,character-method

(SFFContainer-class), 60
keySequence<-,SFFRead,character-method

(SFFRead-class), 63

length,Breakpoints-method
(Breakpoints-class), 16

listToExtendedCIGAR (convertCigar), 22

MapperSet, 5, 38
MapperSet,character-method (MapperSet),

38
MapperSet-class, 40
mapperSetExample, 41
matchPDict, 3
mergeBreakpoints, 16, 18, 24–26, 30, 42, 46
mergeBreakpoints,Breakpoints,missing,list-method

(Breakpoints-class), 16

mergeBreakpoints,Breakpoints,missing,missing-method
(Breakpoints-class), 16

mergeBreakpoints,Breakpoints,numeric,missing-method
(Breakpoints-class), 16

mutationInfo, 43

name (SFFContainer-class), 60
name,SFFContainer-method

(SFFContainer-class), 60
name,SFFRead-method (SFFRead-class), 63
name<- (SFFContainer-class), 60
name<-,SFFContainer,character-method

(SFFContainer-class), 60
name<-,SFFRead,character-method

(SFFRead-class), 63
names,AnnotatedVariants-method

(AnnotatedVariants-class), 4
names,Breakpoints-method

(Breakpoints-class), 16
names<-,AnnotatedVariants,character-method

(AnnotatedVariants-class), 4
names<-,Breakpoints,ANY-method

(Breakpoints-class), 16
nucleotideCharts, 44, 52
nucleotideCharts,DNAStringSet-method

(nucleotideCharts), 44
nucleotideCharts,SFFContainer-method

(nucleotideCharts), 44
nucleotideCharts,ShortRead-method

(nucleotideCharts), 44

pairwiseAlignment, 57
PairwiseAlignmentsSingleSubject, 25
plotAmpliconCoverage, 44
plotAmpliconCoverage,AVASet,character,logical-method

(plotAmpliconCoverage), 44
plotAmpliconCoverage,AVASet,character,missing-method

(plotAmpliconCoverage), 44
plotAmpliconCoverage,AVASet,missing,logical-method

(plotAmpliconCoverage), 44
plotAmpliconCoverage,AVASet,missing,missing-method

(plotAmpliconCoverage), 44
plotChimericReads, 18, 26, 43, 45
plotChimericReads,Breakpoints-method

(Breakpoints-class), 16
plotVariants, 43, 47, 56, 65
plotVariants,AnnotatedVariants,character-method

(plotVariants), 47
plotVariants,data.frame,character-method

(plotVariants), 47
plotVariationFrequency, 49
plotVariationFrequency,character,numeric-method

(plotVariationFrequency), 50

72 INDEX

positionQualityBoxplot, 51, 52
positionQualityBoxplot,QualityScaledDNAStringSet-method

(positionQualityBoxplot), 51
positionQualityBoxplot,SFFContainer-method

(positionQualityBoxplot), 51
positionQualityBoxplot,ShortReadQ-method

(positionQualityBoxplot), 51

quality,SFFRead-method (SFFRead-class),
63

quality<- (SFFRead-class), 63
quality<-,SFFRead,BString-method

(SFFRead-class), 63
qualityReportSFF, 51
QualityScaledDNAStringSet, 15, 51, 58

read (SFFRead-class), 63
read,SFFRead-method (SFFRead-class), 63
read<- (SFFRead-class), 63
read<-,SFFRead,QualityScaledDNAStringSet-method

(SFFRead-class), 63
readLengthHist, 52, 52
readLengthHist,DNAStringSet-method

(readLengthHist), 52
readLengthHist,SFFContainer-method

(readLengthHist), 52
readLengthHist,ShortRead-method

(readLengthHist), 52
readLengthStats, 52, 53
readLengthStats,DNAStringSet-method

(readLengthStats), 53
readLengthStats,SFFContainer-method

(readLengthStats), 53
readLengthStats,ShortRead-method

(readLengthStats), 53
reads (SFFContainer-class), 60
reads,SFFContainer-method

(SFFContainer-class), 60
reads<- (SFFContainer-class), 60
reads<-,SFFContainer,QualityScaledDNAStringSet-method

(SFFContainer-class), 60
readSFF, 53, 60, 62, 65, 66
readsOnTarget, 54
readsOnTarget,list,GRanges-method

(readsOnTarget), 54
referenceSequences, 55
referenceSequences,AVASet-method

(AVASet-class), 10
referenceSequences<- (AVASet-class), 10
referenceSequences<-,AVASet,AlignedRead-method

(AVASet-class), 10
regions, 56
removeLinker, 56, 58

removeLinker,XStringSet,DNAString,logical,numeric,numeric-method
(removeLinker), 56

removeLinker,XStringSet,DNAString,missing,missing,missing-method
(removeLinker), 56

scanBam, 23, 24, 29, 30, 54
seqsC1 (Breakpoints-class), 16
seqsC1,Breakpoints-method

(Breakpoints-class), 16
seqsC1<- (Breakpoints-class), 16
seqsC1<-,Breakpoints,list-method

(Breakpoints-class), 16
seqsC2 (Breakpoints-class), 16
seqsC2,Breakpoints-method

(Breakpoints-class), 16
seqsC2<- (Breakpoints-class), 16
seqsC2<-,Breakpoints,list-method

(Breakpoints-class), 16
sequenceCaptureLinkers, 30, 57, 57
sequenceCaptureLinkers,character-method

(sequenceCaptureLinkers), 57
sequenceCaptureLinkers,missing-method

(sequenceCaptureLinkers), 57
sequenceQualityHist, 52, 58
sequenceQualityHist,QualityScaledDNAStringSet-method

(sequenceQualityHist), 58
sequenceQualityHist,SFFContainer-method

(sequenceQualityHist), 58
sequenceQualityHist,ShortReadQ-method

(sequenceQualityHist), 58
setVariantFilter, 10, 11, 13, 35, 40, 41, 59
setVariantFilter,AVASet-method

(AVASet-class), 10
setVariantFilter,MapperSet-method

(MapperSet-class), 40
sff2fastq, 60
sff2fastq,SFFContainer-method

(sff2fastq), 60
SFFContainer, 14, 15, 20, 21, 27, 31–33, 44,

51–54, 58, 60, 61, 63, 65, 66
SFFContainer (SFFContainer-class), 60
SFFContainer-class, 60
SFFRead, 31, 36, 61, 62
SFFRead (SFFRead-class), 63
SFFRead-class, 63
ShortRead, 14, 20, 21, 27, 31–33, 44, 52, 53
ShortReadQ, 15, 51, 58

variants, 65
vector, 53
Versioned, 11, 40
VersionedBiobase, 11, 40

INDEX 73

writeSFF, 54, 65
writeVcf, 7

	alignShortReads
	AnnotatedVariants-class
	annotateVariants
	assayDataAmp
	ava2vcf
	AVASet
	AVASet-class
	avaSetExample
	avaSetFiltered
	avaSetFiltered_annot
	baseFrequency
	baseQualityHist
	baseQualityStats
	breakpoints
	Breakpoints-class
	calculateTiTv
	captureArray
	complexity.dust
	complexity.entropy
	convertCigar
	coverageOnTarget
	demultiplexReads
	detectBreakpoints
	dinucleotideOddsRatio
	fDataAmp
	featureDataAmp
	filterChimericReads
	flowgramBarplot
	gcContent
	gcContentHist
	gcPerPosition
	genomeSequencerMIDs
	getAlignedReads
	getAminoAbbr
	getVariantPercentages
	homopolymerHist
	htmlReport
	MapperSet
	MapperSet-class
	mapperSetExample
	mergeBreakpoints
	mutationInfo
	nucleotideCharts
	plotAmpliconCoverage
	plotChimericReads
	plotVariants
	plotVariationFrequency
	positionQualityBoxplot
	qualityReportSFF
	readLengthHist
	readLengthStats
	readSFF
	readsOnTarget
	referenceSequences
	regions
	removeLinker
	sequenceCaptureLinkers
	sequenceQualityHist
	setVariantFilter
	sff2fastq
	SFFContainer-class
	SFFRead-class
	variants
	writeSFF
	Index

