Package 'EBSeq'

April 11, 2018

Type Package

Title An R package for gene and isoform differential expression analysis of RNA-seq data

Version 1.18.0

Date 2015-12-8

Author Ning Leng, Christina Kendziorski

Maintainer Ning Leng <lengning1@gmail.com>

Depends blockmodeling, gplots, testthat, R (>= 3.0.0)

Description Differential Expression analysis at both gene and isoform level using RNA-seq data

License Artistic-2.0

LazyLoad yes

Collate 'MedianNorm.R' 'GetNg.R' 'beta.mom.R' 'f0.R' 'f1.R' 'Likefun.R' 'LogN.R' 'LogNMulti.R' 'LikefunMulti.R' 'EBTest.R' 'GetPatterns.R' 'EBMultiTest.R' 'GetPP.R' 'PostFC.R' 'GetPPMat.R' 'GetMultiPP.R' 'GetMultiFC.R' 'PlotPostVsRawFC.R' 'crit_fun.R' 'DenNHist.R' 'GetNormalizedMat.R' 'PlotPattern.R' 'PolyFitPlot.R' 'QQP.R' 'QuantileNorm.R' 'RankNorm.R' 'GetDEResults.R'

BuildVignettes yes

biocViews StatisticalMethod, DifferentialExpression, MultipleComparison, RNASeq, Sequencing

NeedsCompilation no

R topics documented:

EBSeq_NingLeng-package	2
beta.mom	3
crit_fun	4
DenNHist	5
EBMultiTest	6
EBTest	8
60	1
f1	
GeneMat	3

	35
RankNorm	34
QuantileNorm	
((- · · · · · · · · · · · · · · · · · ·	32
PostFC	31
PolyFitPlot	29
PlotPostVsRawFC	28
PlotPattern	28
MultiGeneMat	27
MedianNorm	26
LogNMulti	
LogN	24
LikefunMulti	
Likefun	
IsoMultiList	
IsoList	
GetPPMat	
GetPP	
GetPatterns	
e	18
GetNg	
GetMultiPP	
GetMultiFC	
GetDEResults	13

Index

EBSeq_NingLeng-package

EBSeq: RNA-Seq Differential Expression Analysis on both gene and isoform level

Description

In 'EBSeq_NingLeng-package,' a Negative Binomial-beta model was built to analyze the RNASeq data. We used the empirical bayes method and EM algrithom.

Details

Package:	EBSeq_NingLeng
Type:	Package
Version:	1.0
Date:	2011-06-13
License:	What license is it under?
LazyLoad:	yes

Author(s)

Ning Leng, Christina Kendziorski

beta.mom

Maintainer: Ning Leng <nleng@wisc.edu>

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, EBMultiTest

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(1:10,511:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data=GeneMat.small,
Conditions=as.factor(rep(c("C1","C2"), each=5)),
sizeFactors=Sizes, maxround=5)
```

beta.mom

Fit the beta distribution by method of moments

Description

'beta.mom' fits the beta distribution by method of moments.

Usage

beta.mom(qs.in)

Arguments

qs.in A vector contains the numbers that are assumed to follow a beta distribution.

Value

alpha.hat	Returns the estimation of alpha.
beta.hat	Returns the estimation of beta.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

DenNHist, DenNHistTable

Examples

```
#tmp = rbeta(5, 5, 100)
#param = beta.mom(tmp)
```

crit_fun

Calculate the soft threshold for a target FDR

Description

'crit_fun' calculates the soft threshold for a target FDR.

Usage

crit_fun(PPEE, thre)

Arguments

PPEE	The posterior probabilities of being EE.
thre	The target FDR.

Details

Regarding a target FDR alpha, both hard threshold and soft threshold could be used. If the hard threshold is preferred, user could simply take the transcripts with PP(DE) greater than (1-alpha). Using the hard threshold, any DE transcript in the list is with FDR <= alpha.

If the soft threshold is preferred, user could take the transcripts with PP(DE) greater than crit_fun(PPEE, alpha). Using the soft threshold, the list of DE transcripts is with average FDR alpha.

Value

The adjusted FDR threshold of target FDR.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

4

DenNHist

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(1:10, 500:600),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
PP = GetPPMat(EBOut)
DEfound = rownames(PP)[which(PP[,"PPDE"] >= 0.95)]
str(DEfound)
SoftThre = crit_fun(PP[,"PPEE"], 0.05)
DEfound_soft = rownames(PP)[which(PP[,"PPDE"] >= SoftThre)]
```

DenNHist Density plot to compare the empirical q's and the simulated q's from the fitted beta distribution.

Description

'DenNHist' gives the density plot that compares the empirical q's and the simulated q's from the fitted beta distribution.

Usage

DenNHist(EBOut, GeneLevel = F)

Arguments

EBOut	The output of EBTest or EBMultiTest.
GeneLevel	Indicate whether the results are from data at gene level.

Value

For data with n1 conditions and n2 uncertainty groups, n1*n2 plots will be generated. Each plot represents a subset of the data. The empirical estimation of q's will be represented as blue histograms and the density of the fitted beta distribution will be represented as the green line.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

beta.mom, QQP, EBTest, EBMultiTest

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(500:1000),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
par(mfrow = c(2,2))
DenNHist(EBOut)
```

EBMultiTest

Using EM algorithm to calculate the posterior probabilities of interested patterns in a multiple condition study

Description

'EBMultiTest' is built based on the assumption of NB-Beta Empirical Bayes model. It utilizes the EM algorithm to give the posterior probability of the interested patterns.

Usage

```
EBMultiTest(Data, NgVector = NULL, Conditions, AllParti = NULL,
sizeFactors, maxround, Pool = F, NumBin = 1000,
ApproxVal=10^-10, PoolLower=.25, PoolUpper = .75, Print=T,Qtrm=1,QtrmCut=0)
```

Arguments

Data	A data matrix contains expression values for each transcript (gene or isoform level). In which rows should be transcripts and columns should be samples.
NgVector	A vector indicates the uncertainty group assignment of each isoform. e.g. if we use number of isoforms in the host gene to define the uncertainty groups, suppose the isoform is in a gene with 2 isoforms, Ng of this isoform should be 2. The length of this vector should be the same as the number of rows in Data. If it's gene level data, Ngvector could be left as NULL.
Conditions	A vector indicates the condition in which each sample belongs to.
AllParti	A matrix indicates the interested patterns. Columns shoule be conditions and rows should be patterns. The matrix could be obtained by the GetPatterns function. If AllParti=NULL, all possible patterns will be used.
sizeFactors	The normalization factors. It should be a vector with lane specific numbers (the length of the vector should be the same as the number of samples, with the same order as the columns of Data).
maxround	Number of iterations. The default value is 5. Users should always check the convergency by looking at the Alpha and Beta in output. If the hyper-parameter estimations are not converged in 5 iterations, larger number is suggested.
Pool	While working without replicates, user could define the Pool = TRUE in the EBTest function to enable pooling.
NumBin	By defining NumBin = 1000, EBSeq will group the genes with similar means together into 1,000 bins.

6

PoolLower, Poo	lUpper
	With the assumption that only subset of the genes are DE in the data set, we take genes whose FC are in the PoolLower - PoolUpper quantile of the FC's as the candidate genes (default is 25%-75%).
	For each bin, the bin-wise variance estimation is defined as the median of the cross condition variance estimations of the candidate genes within that bin.
	We use the cross condition variance estimations for the candidate genes and the bin-wise variance estimations of the host bin for the non-candidate genes.
ApproxVal	The variances of the transcripts with mean < var will be approximated as mean/(1-ApproxVal).
Print	Whether print the elapsed-time while running the test.
Qtrm, QtrmCut	Transcripts with Qtrm th quantile < = QtrmCut will be removed before testing. The default value is Qtrm = 1 and QtrmCut=0. By default setting, transcripts with all 0's won't be tested.

Value

Alpha	Fitted parameter alpha of the prior beta distribution. Rows are the values for each iteration.
Beta	Fitted parameter beta of the prior beta distribution. Rows are the values for each iteration.
P, PFromZ	The bayes estimator of following each pattern of interest. Rows are the values for each iteration.
Z, PoissonZ	The Posterior Probability of following each pattern of interest for each tran- script. (Maybe not in the same order of input).
RList	The fitted values of r for each transcript.
MeanList	The mean of each transcript. (across conditions).
VarList	The variance of each transcript. (across conditions).
QList	The fitted q values of each transcript within each condition.
SPMean	The mean of each transcript within each condition (adjusted by the normaliza- tion factors).
SPEstVar	The estimated variance of each transcript within each condition (adjusted by the normalization factors).
PoolVar	The variance of each transcript (The pooled value of within condition EstVar).
DataList	A List of data that grouped with Ng and bias.
PPpattern	The Posterior Probability of following each pattern (columns) for each transcript (rows). Transcripts with expression 0 for all samples are not shown in this matrix.
f	The likelihood of likelihood of prior predictive distribution of being each pattern for each transcript.
AllParti	The matrix describe the patterns.
PPpatternWith0	The Posterior Probability of following each pattern (columns) for each transcript (rows). Transcripts with expression 0 for all samples are shown in this matrix with PP(any_pattrn)=NA.
ConditionOrder	The condition assignment for C1Mean, C2Mean, etc.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, GetMultiPP, GetMultiFC

Examples

```
data(MultiGeneMat)
MultiGeneMat.small = MultiGeneMat[201:210,]
Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)
Parti = PosParti[-3,]
MultiSize = MedianNorm(MultiGeneMat.small)
MultiOut = EBMultiTest(MultiGeneMat.small, NgVector = NULL,
Conditions = Conditions, AllParti = Parti,
sizeFactors = MultiSize, maxround = 5)
MultiPP = GetMultiPP(MultiOut)
```

EBTest	Using EM algorithm to calculate the posterior probabilities of being
	DE

Description

Base on the assumption of NB-Beta Empirical Bayes model, the EM algorithm is used to get the posterior probability of being DE.

Usage

```
EBTest(Data, NgVector = NULL, Conditions, sizeFactors, maxround,
Pool = F, NumBin = 1000, ApproxVal = 10^-10, Alpha = NULL,
Beta = NULL, PInput = NULL, RInput = NULL,
PoolLower = .25, PoolUpper = .75, Print = T, Qtrm = 1,QtrmCut=0)
```

Arguments

Data	A data matrix contains expression values for each transcript (gene or isoform level). In which rows should be transcripts and columns should be samples.
NgVector	A vector indicates the uncertainty group assignment of each isoform. e.g. if we use number of isoforms in the host gene to define the uncertainty groups, suppose the isoform is in a gene with 2 isoforms, Ng of this isoform should be 2. The length of this vector should be the same as the number of rows in Data. If it's gene level data, Ngvector could be left as NULL.
Conditions	A factor indicates the condition which each sample belongs to.

sizeFactors	The normalization factors. It should be a vector with lane specific numbers (the length of the vector should be the same as the number of samples, with the same order as the columns of Data).	
maxround	Number of iterations. The default value is 5. Users should always check the convergency by looking at the Alpha and Beta in output. If the hyper-parameter estimations are not converged in 5 iterations, larger number is suggested.	
Pool	While working without replicates, user could define the Pool = TRUE in the EBTest function to enable pooling.	
NumBin	By defining NumBin = 1000, EBSeq will group the genes with similar means together into 1,000 bins.	
PoolLower, Poo	lUpper	
	With the assumption that only subset of the genes are DE in the data set, we take genes whose FC are in the PoolLower - PoolUpper quantile of the FC's as the candidate genes (default is 25%-75%).	
	For each bin, the bin-wise variance estimation is defined as the median of the cross condition variance estimations of the candidate genes within that bin. We use the cross condition variance estimations for the candidate genes and the	
	bin-wise variance estimations of the host bin for the non-candidate genes.	
ApproxVal	The variances of the transcripts with mean < var will be approximated as mean/(1-ApproxVal).	
Alpha, Beta, PInput, RInput		
	If the parameters are known and the user doesn't want to estimate them from the data, user could specify them here.	
Print	Whether print the elapsed-time while running the test.	
Qtrm, QtrmCut	Transcripts with Qtrm th quantile < = QtrmCut will be removed before testing. The default value is Qtrm = 1 and QtrmCut=0. By default setting, transcripts with all 0's won't be tested.	

Details

For each transcript gi within condition, the model assumes: X_gislmu_gi ~ NB (r_gi0 * l_s, q_gi) q_gilalpha, beta^N_g ~ Beta (alpha, beta^N_g) In which the l_s is the sizeFactors of samples. The function will test "H0: $q_gi^C1 = q_gi^C2$ " and "H1: $q_gi^C1 != q_gi^C2$."

Value

Alpha	Fitted parameter alpha of the prior beta distribution. Rows are the values for each iteration.
Beta	Fitted parameter beta of the prior beta distribution. Rows are the values for each iteration.
P, PFromZ	The bayes estimator of being DE. Rows are the values for each iteration.
Z, PoissonZ	The Posterior Probability of being DE for each transcript(Maybe not in the same order of input).
RList	The fitted values of r for each transcript.
MeanList	The mean of each transcript (across conditions).
VarList	The variance of each transcript (across conditions).
QListi1	The fitted q values of each transcript within condition 1.
QListi2	The fitted q values of each transcript within condition 2.

C1Mean	The mean of each transcript within Condition 1 (adjusted by normalization factors).
C2Mean	The mean of each transcript within Condition 2 (adjusted by normalization factors).
C1EstVar	The estimated variance of each transcript within Condition 1 (adjusted by nor- malization factors).
C2EstVar	The estimated variance of each transcript within Condition 2 (adjusted by nor- malization factors).
PoolVar	The variance of each transcript (The pooled value of within condition EstVar).
DataList	A List of data that grouped with Ng.
PPDE	The Posterior Probability of being DE for each transcript (The same order of input).
f0,f1	The likelihood of the prior predictive distribution of being EE or DE (in log scale).
AllZeroIndex	The transcript with expression 0 for all samples (which are not tested).
PPMat	A matrix contains posterior probabilities of being EE (the first column) or DE (the second column). Rows are transcripts. Transcripts with expression 0 for all samples are not shown in this matrix.
PPMatWith0	A matrix contains posterior probabilities of being EE (the first column) or DE (the second column). Rows are transcripts. Transcripts with expression 0 for all samples are shown as $PP(EE) = PP(DE) = NA$ in this matrix. The transcript order is exactly the same as the order of the input data.
ConditionOrder	The condition assignment for C1Mean, C2Mean, etc.
Conditions	The input conditions.
DataNorm	Normalized expression matrix.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBMultiTest, PostFC, GetPPMat

```
data(GeneMat)
str(GeneMat)
GeneMat.small = GeneMat[c(1:10,511:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each = 5)),
sizeFactors = Sizes, maxround = 5)
PP = GetPPMat(EBOut)
```

Description

'f0' gives the Prior Predictive Distribution of being EE.

Usage

f0(Input, AlphaIn, BetaIn, EmpiricalR, NumOfGroups, log)

Arguments

Input	Expression Values.	
AlphaIn, BetaIn, EmpiricalR		
	The parameters estimated from last iteration of EM.	
NumOfGroups	How many transcripts within each Ng group.	
log	If true, will give the log of the output.	

Value

The function will return the prior predictive distribution values of being EE.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

f1

Examples

```
#
#f0(matrix(rnorm(100,100,1),ncol=10), .5, .6,
# matrix(rnorm(100,200,1),ncol=10), 100, TRUE)
```

f0

Description

'f1' gives the Prior Predictive Distribution of DE.

Usage

```
f1(Input1, Input2, AlphaIn, BetaIn, EmpiricalRSP1,
EmpiricalRSP2, NumOfGroup, log)
```

Arguments

Input1	Expressions from Condition1.	
Input2	Expressions from Condition2.	
AlphaIn, BetaIn, EmpiricalRSP1, EmpiricalRSP2		
	The parameters estimated from last iteration of EM.	
NumOfGroup	How many transcripts within each Ng group.	
log	If true, will give the log of the output.	

Value

The function will return the prior predictive distribution values of being DE.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

f0

Examples

```
#f1(matrix(rnorm(100,100,1),ncol=10),
# matrix(rnorm(100,100,1),ncol=10), .5, .6,
# matrix(rnorm(100,200,1),ncol=10),
# matrix(rnorm(100,200,1),ncol=10), 100, TRUE)
```

f1

GeneMat

Description

'GeneMat' gives the simulated data for two condition gene DE analysis.

Usage

data(GeneMat)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

IsoList

Examples

data(GeneMat)

GetDEResults

Obtain Differential Expression Analysis Results in a Two-condition Test

Description

Obtain DE analysis results in a two-condition test using the output of EBTest()

Usage

```
GetDEResults(EBPrelim, FDR=0.05, Method="robust",
        FDRMethod="hard", Threshold_FC=0.7,
        Threshold_FCRatio=0.3, SmallNum=0.01)
```

Arguments

EBPrelim	Output from the function EBTest().
FDR	Target FDR, defaut is 0.05.
FDRMethod	"hard" or "soft". Giving a target FDR alpha, either hard threshold and soft threshold may be used. If the hard threshold is preferred, DE transcripts are defined as the the transcripts with PP(DE) greater than (1-alpha). Using the hard threshold, any DE transcript in the list has FDR <= alpha. If the soft threshold is preferred, the DE transcripts are defined as the transcripts with PP(DE) greater than crit_fun(PPEE, alpha). Using the soft threshold, the list of DE transcripts has average FDR alpha.

	Based on results from our simulation studies, hard thresholds provide a better- controlled empirical FDR when sample size is relatively small(Less than 10 samples in each condition). User may consider the soft threshold when sam- ple size is large to improve power.
Method	"robust" or "classic". Using the "robust" option, EBSeq is more robust to genes with outliers and genes with extremely small variances. Using the "classic" option, the results will be more comparable to those obtained by using the GetPP-Mat() function from earlier version (<= 1.7.0) of EBSeq. Default is "robust".
Threshold_FC	Threshold for the fold change (FC) statistics. The default is 0.7. The FC statis- tics are calculated as follows. First the posterior FC estimates are calculated using PostFC() function. The FC statistics is defined as exp(-llog posterior FCl) and therefore is always less than or equal to 1. The default threshold was se- lected as the optimal threshold learned from our simulation studies. By setting the threshold as 0.7, the expected FC for a DE transcript is less than 0.7 (or greater than 1/0.7=1.4). User may specify their own threshold here. A higher (less conservative) threshold may be used here when sample size is large. Our simulation results indicated that when there are more than or equal to 5 samples in each condition, a less conservative threshold will improve the power when the FDR is still well-controlled. The parameter will be ignored if Method is set as "classic".
Threshold_FCRa	
	Threshold for the fold change ratio (FCRatio) statistics. The default is 0.3. The FCRatio statistics are calculated as follows. First we get another revised fold change statistic called Median-FC statistic for each transcript. For each transcript, we calculate the median of normalized expression values within each condition. The MedianFC is defined as exp(-llog((C1Median+SmallNum)/(C2Median+SmallNum)))). Note a small number is added to avoid Inf and NA. See SmallNum for more details. The FCRatio is calculated as exp(-llog(FCstatistics/MedianFC)). Therefore it is always less than or equal to 1. The default threshold was selected as the optimal threshold learned from our simulation studies. By setting the threshold as 0.3, the FCRatio for a DE transcript is expected to be larger than 0.3.
SmallNum	When calculating the FCRatio (or Median-FC), a small number is added for each transcript in each condition to avoid Inf and NA. Default is 0.01.
Dotoila	

Details

GetDEResults() function takes output from EBTest() function and output a list of DE transcripts under a target FDR. It also provides posterior probability estimates for each transcript.

Value

DEfound	A list of DE transcripts.
PPMat	Posterior probability matrix. Transcripts are following the same order as in the input matrix. Transcripts that were filtered by magnitude (in EBTest function), FC, or FCR are assigned with NA for both PPDE and PPEE.
Status	Each transcript will be assigned with one of the following values: "DE", "EE", "Filtered: Low Expression", "Filtered: Fold Change" and "Filtered: Fold Change Ratio". Transcripts are following the same order as in the input matrix.

Author(s)

Ning Leng, Yuan Li

GetMultiFC

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest

Examples

```
data(GeneMat)
str(GeneMat)
GeneMat.small = GeneMat[c(1:10,511:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each = 5)),
sizeFactors = Sizes, maxround = 5)
Out = GetDEResults(EBOut)
```

```
GetMultiFC
```

Calculate the Fold Changes for Multiple Conditions

Description

'GetMultiFC' calculates the Fold Changes for each pair of conditions in a multiple condition study.

Usage

GetMultiFC(EBMultiOut, SmallNum = 0.01)

Arguments

EBMultiOut	The output of EBMultiTest function.
SmallNum	A small number will be added for each transcript in each condition to avoid Inf
	and NA. Default is 0.01.

Details

Provide the FC (adjusted by the normalization factors) for each pair of comparisons. A small number will be added for each transcript in each condition to avoid Inf and NA. Default is set to be 0.01.

Value

FCMat	The FC of each pair of comparison (adjusted by the normalization factors).
Log2FCMat	The log 2 FC of each pair of comparison (adjusted by the normalization factors).
PostFCMat	The posterior FC of each pair of comparison.
Log2PostFCMat	The log 2 posterior FC of each pair of comparison.
CondMean	The mean of each transcript within each condition (adjusted by the normaliza- tion factors).
ConditionOrder	The condition assignment for C1Mean, C2Mean, etc.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBMultiTest, PostFC

Examples

```
data(MultiGeneMat)
MultiGeneMat.small = MultiGeneMat[201:210,]
Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)
Parti = PosParti[-3,]
MultiSize = MedianNorm(MultiGeneMat.small)
MultiOut = EBMultiTest(MultiGeneMat.small,
NgVector=NULL, Conditions=Conditions,
AllParti=Parti, sizeFactors=MultiSize,
maxround=5)
MultiFC = GetMultiFC(MultiOut)
```

GetMultiPP

Posterior Probability of Each Transcript

Description

'GetMultiPP' generates the Posterior Probability of being each pattern of each transcript based on the EBMultiTest output.

Usage

```
GetMultiPP(EBout)
```

Arguments

EBout	The output of EBMultiTest function.
-------	-------------------------------------

Value

PP	The poster probabilities of being each pattern.
MAP	Gives the most likely pattern.
Patterns	The Patterns.

16

GetNg

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GetPPMat

Examples

```
data(MultiGeneMat)
MultiGeneMat.small = MultiGeneMat[201:210,]
```

```
Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)
Parti = PosParti[-3,]
MultiSize = MedianNorm(MultiGeneMat.small)
```

```
MultiOut = EBMultiTest(MultiGeneMat.small,
NgVector=NULL, Conditions=Conditions,
AllParti=Parti, sizeFactors=MultiSize,
maxround=5)
MultiPP = GetMultiPP(MultiOut)
```

GetNg

Ng Vector

Description

'GetNg' generates the Ng vector for the isoform level data. (While using the number of isoform in the host gene to define the uncertainty groups.)

Usage

```
GetNg(IsoformName, GeneName, TrunThre = 3)
```

Arguments

IsoformName	A vector contains the isoform names.
GeneName	The gene names of the isoforms in IsoformNames (Should be in the same order).
TrunThre	The number of uncertainty groups the user wish to define. The default is 3.

Value

GeneNg	The number of isoforms that are contained in each gene.
GeneNgTrun	The truncated Ng of each gene. (The genes contain more than 3 isoforms are with Ng 3.) $$
IsoformNg	The Ng of each isoform.
IsoformNgTrun	The truncated Ng of each isoform (could be used to define the uncertainty group assignment).

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
data(IsoList)
```

```
IsoMat = IsoList$IsoMat
IsoNames = IsoList$IsoNames
IsosGeneNames = IsoList$IsosGeneNames
IsoSizes = MedianNorm(IsoMat)
NgList = GetNg(IsoNames, IsosGeneNames)
```

```
#IsoNgTrun = NgList$IsoformNgTrun
#IsoEBOut = EBTest(Data = IsoMat, NgVector = IsoNgTrun,
# Conditions = as.factor(rep(c("C1","C2"), each=5)),
# sizeFactors = IsoSizes, maxround = 5)
```

GetNormalizedMat Calculate normalized expression matrix

Description

'GetNormalizedMat' calculates the normalized expression matrix. (Note: this matrix is only used for visualization etc. EBTes and EBMultiTest request *un-adjusted* expressions and normalization factors.)

Usage

GetNormalizedMat(Data, Sizes)

Arguments

Data	The data matrix with transcripts in rows and lanes in columns.
Sizes	A vector contains the normalization factor for each lane.

GetPatterns

Value

The function will return a normalized matrix.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
data(GeneMat)
str(GeneMat)
Sizes = MedianNorm(GeneMat)
NormData = GetNormalizedMat(GeneMat, Sizes)
```

```
GetPatterns
```

Generate all possible patterns in a multiple condition study

Description

'GetPatterns' generates all possible patterns in a multiple condition study.

Usage

```
GetPatterns(Conditions)
```

Arguments

Conditions The names of the Conditions in the study.

Value

A matrix describe all possible patterns.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

```
Conditions = c("C1","C1","C2","C2","C3","C3")
PosParti = GetPatterns(Conditions)
```

GetPP

Description

'GetPP' generates the Posterior Probability of being DE of each transcript based on the EBTest output.

Usage

GetPP(EBout)

Arguments

EBout The output of EBTest function.

Value

The poster probabilities of being DE.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GetPPMat

```
data(GeneMat)
GeneMat.small = GeneMat[c(1:10,500:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
PPDE = GetPP(EBOut)
str(PPDE)
head(PPDE)
```

GetPPMat

Description

'GetPPMat' generates the Posterior Probability of being each pattern of each transcript based on the EBTest output.

Usage

GetPPMat(EBout)

Arguments

EBout The output of EBTest function.

Value

The poster probabilities of being EE (first column) and DE (second column).

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

```
data(GeneMat)
GeneMat.small = GeneMat[c(500:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
PP = GetPPMat(EBOut)
str(PP)
head(PP)
```

IsoList

Description

'IsoList' gives the simulated data for two condition isoform DE analysis.

Usage

data(IsoList)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GeteMat

Examples

data(IsoList)

IsoMultiList The simulated data for multiple condition isoform DE analysis

Description

'IsoMultiList' gives a set of simulated data for multiple condition isoform DE analysis.

Usage

data(IsoMultiList)

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

IsoList

Examples

data(IsoMultiList)

Likefun

Description

'Likefun' specifies the Likelihood Function of the NB-Beta Model.

Usage

```
Likefun(ParamPool, InputPool)
```

Arguments

ParamPool	The parameters that will be estimated in EM.
InputPool	The control parameters that will not be estimated in EM.

Value

The function will return the log-likelihood.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
#x1 = c(.6,.7,.3)
#Input = matrix(rnorm(100,100,1), ncol=10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#InputPool = list(Input[,1:5], Input[,6:10], Input,
# rep(.1,100), 1, RIn, RIn[,1:5], RIn[,6:10], 100)
#Likefun(x1, InputPool)
```

LikefunMulti Likelihood Function of the NB-Beta Model In Multiple Condition Test

Description

'LikefunMulti' specifies the Likelihood Function of the NB-Beta Model In Multiple Condition Test.

Usage

```
LikefunMulti(ParamPool, InputPool)
```

Arguments

ParamPool	The parameters that will be estimated in EM.
InputPool	The control parameters that will not be estimated in EM.

Value

The function will return the log-likelihood.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
#x1 = c(.6,.7,.3)
#Input = matrix(rnorm(100,100,1),ncol=10)
#RIn = matrix(rnorm(100,200,1),ncol=10)
#InputPool = list(list(Input[,1:5],Input[,6:10]),
# Input, cbind(rep(.1, 10), rep(.9,10)), 1,
# RIn, list(RIn[,1:5],RIn[,6:10]),
# 10, rbind(c(1,1),c(1,2)))
#LikefunMulti(x1, InputPool)
```

LogN

The function to run EM (one round) algorithm for the NB-beta model.

Description

'LogN' specifies the function to run (one round of) the EM algorithm for the NB-beta model.

Usage

```
LogN(Input, InputSP, EmpiricalR, EmpiricalRSP, NumOfEachGroup, AlphaIn, BetaIn, PIn, NoneZeroLength)
```

Arguments

Input, InputSP The expressions among all the samples. NumOfEachGroup Number of genes in each Ng group. AlphaIn, PIn, BetaIn, EmpiricalR, EmpiricalRSP The parameters from the last EM step. NoneZeroLength Number of Ng groups.

LogNMulti

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
#Input = matrix(rnorm(100,100,1), ncol=10)
#rownames(Input) = paste("g",1:10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#res = LogN(Input, list(Input[,1:5], Input[,6:10]),
# RIn, list(RIn[,1:5], RIn[,6:10]),
# 10, .6, .7, .3, 1)
```

LogNMulti

EM algorithm for the NB-beta model in the multiple condition test

Description

'LogNMulti' specifies the function to run (one round of) the EM algorithm for the NB-beta model in the multiple condition test.

Usage

```
LogNMulti(Input, InputSP, EmpiricalR, EmpiricalRSP,
NumOfEachGroup, AlphaIn, BetaIn, PIn,
NoneZeroLength, AllParti, Conditions)
```

Arguments

Input, InputSP	The expressions among all the samples.	
NumOfEachGroup	Number of genes in each Ng group.	
AlphaIn, PIn, BetaIn, EmpiricalR, EmpiricalRSP		
	The parameters from the last EM step.	
NoneZeroLength	Number of Ng groups.	
AllParti	The patterns of interests.	
Conditions	The condition assignment for each sample.	

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

#

```
#Input = matrix(rnorm(100,100,1),ncol=10)
#rownames(Input) = paste("g",1:10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#res = LogNMulti(Input, list(Input[,1:5], Input[,6:10]),
# RIn, list(RIn[,1:5], RIn[,6:10]), 10, .6, .7,
# c(.3,.7), 1, rbind(c(1,1), c(1,2)),
# as.factor(rep(c("C1","C2"), each=5)))
```

MedianNorm

Median Normalization

Description

'MedianNorm' specifies the median-by-ratio normalization function from Anders et. al., 2010.

Usage

```
MedianNorm(Data, alternative = FALSE)
```

Arguments

Data	The data matrix with transcripts in rows and lanes in columns.
alternative	if alternative = TRUE, the alternative version of median normalization will be applied. The alternative method is similar to median-by-ratio normalization, but can deal with the cases when all of the genes/isoforms have at least one zero counts (in which case the median-by-ratio normalization will fail).
	In more details, in median-by-ratio normalization (denote l_1 as libsize for sample 1 as an example, assume total S samples):
	$hatl_1 = median_g [X_g1 / (X_g1*X_g2**X_gS)^-S] (1)$
	which estimates $l_1 / (l_1 * l_2 * * l_S)^-S$. Since we have the constrain that $(l_1 * l_2 * * l_S) = 1$, equation (1) estimates l_1 . Note (1) could also be written as:
	$hatl_1 = median_g [(X_g1/X_g1 * X_g1/X_g2 * * X_g1/X_gS)^{-S}]$
	In the alternative method, we estimate l_1/l_1 , l_1/l_2 , l_1/l_S individually by taking median_g(X_g1/X_g1), median_g(X_g1/X_g2) Then estimate l_1 = $l_1 / (l_1 * l_2 * * l_S)^{-S}$ by taking the geomean of these estimates:
	$\label{eq:hatl_1} \begin{array}{l} \mbox{hatl}_1 = [\mbox{ median}_g(X_g1/X_g1) * \mbox{ median}_g(X_g1/X_g2) * \mbox{ median}_g(X_g1/X_g3) \\ * \hdots & \mbox{ median}_g(X_g1/X_gS) \end{tabular} \begin{array}{l} \mbox{hatl}_2 & $

Value

The function will return a vector contains the normalization factor for each lane.

26

MultiGeneMat

Author(s)

Ning Leng

References

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biology (2010) 11:R106 (open access)

See Also

QuantileNorm

Examples

```
data(GeneMat)
Sizes = MedianNorm(GeneMat)
#EBOut = EBTest(Data = GeneMat,
# Conditions = as.factor(rep(c("C1","C2"), each=5)),
# sizeFactors = Sizes, maxround = 5)
```

MultiGeneMat

The simulated data for multiple condition gene DE analysis

Description

'MultiGeneMat' generates a set of the simulated data for multiple condition gene DE analysis.

Usage

```
data(MultiGeneMat)
```

Source

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

GeneMat

Examples

data(MultiGeneMat)

PlotPattern

Description

'PlotPattern' generates the visualized patterns before the multiple condition test.

Usage

PlotPattern(Patterns)

Arguments

Patterns The output of GetPatterns function.

Value

A heatmap to visualize the patterns of interest.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

```
Conditions = c("C1","C1","C2","C2","C3","C3")
Patterns = GetPatterns(Conditions)
PlotPattern(Patterns)
```

PlotPostVsRawFC Plot Posterior FC vs FC

Description

'PlotPostVsRawFC' helps the users visualize the posterior FC vs FC in a two condition study.

Usage

PlotPostVsRawFC(EBOut, FCOut)

Arguments

EBOut	The output of EBMultiTest function.
FCOut	The output of PostFC function.

PolyFitPlot

Value

A figure shows fold change vs posterior fold change.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

PostFC

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(500:600),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1", "C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
FC = PostFC(EBOut)
PlotPostVsRawFC(EBOut,FC)
```

PolyFitPlot	Fit the mean-var	relationship	using p	olynomial	regression

Description

'PolyFitPlot' fits the mean-var relationship using polynomial regression.

Usage

```
PolyFitPlot(X, Y, nterms, xname = "Estimated Mean",
yname = "Estimated Var", pdfname = "",
xlim = c(-1,5), ylim = c(-1,7), ChangeXY = F,
col = "red")
```

Arguments

Х	The first group of values want to be fitted by the polynomial regression (e.g Mean of the data).
Y	The second group of values want to be fitted by the polynomial regression (e.g. variance of the data). The length of Y should be the same as the length of X.
nterms	How many polynomial terms want to be used.
xname	Name of the x axis.

yname	Name of the y axis.
pdfname	Name of the plot.
xlim	The x limits of the plot.
ylim	The y limits of the plot.
ChangeXY	If ChangeXY is setted to be TRUE, X will be treated as the dependent variable and Y will be treated as the independent one. Default is FALSE.
col	Color of the fitted line.

Value

The PolyFitPlot function provides a smooth scatter plot of two variables and their best fitting line of polynomial regression.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

```
data(IsoList)
str(IsoList)
IsoMat = IsoList$IsoMat
IsoNames = IsoList$IsoNames
IsosGeneNames = IsoList$IsosGeneNames
IsoSizes = MedianNorm(IsoMat)
NgList = GetNg(IsoNames, IsosGeneNames)
IsoNgTrun = NgList$IsoformNgTrun
#IsoEBOut = EBTest(Data = IsoMat.small,
# NgVector = IsoNgTrun,
# Conditions = as.factor(rep(c("C1", "C2"), each=5)),
# sizeFactors = IsoSizes, maxround = 5)
#par(mfrow=c(2,2))
#PolyFitValue = vector("list",3)
#for(i in 1:3)
# PolyFitValue[[i]] = PolyFitPlot(IsoEBOut$C1Mean[[i]],
# IsoEBOut$C1EstVar[[i]], 5)
#PolyAll = PolyFitPlot(unlist(IsoEBOut$C1Mean),
# unlist(IsoEBOut$C1EstVar), 5)
#lines(log10(IsoEBOut$C1Mean[[1]][PolyFitValue[[1]]$sort]),
# PolyFitValue[[1]]$fit[PolyFitValue[[1]]$sort],
# col="yellow", lwd=2)
#lines(log10(IsoEBOut$C1Mean[[2]][PolyFitValue[[2]]$sort]),
# PolyFitValue[[2]]$fit[PolyFitValue[[2]]$sort],
```

PostFC

```
# col="pink", lwd=2)
#lines(log10(IsoEBOut$C1Mean[[3]][PolyFitValue[[3]]$sort]),
# PolyFitValue[[3]]$fit[PolyFitValue[[3]]$sort],
# col="green", lwd=2)
#legend("topleft",c("All Isoforms","Ng = 1","Ng = 2","Ng = 3"),
# col = c("red","yellow","pink","green"),
# lty=1, lwd=3, box.lwd=2)
```

PostFC	Calculate the posterior fold change for each transcript across condi-
	tions

Description

'PostFC' calculates the posterior fold change for each transcript across conditions.

Usage

```
PostFC(EBoutput, SmallNum = 0.01)
```

Arguments

EBoutput	The ourput from function EBTest.
SmallNum	A small number will be added for each transcript in each condition to avoid Inf and NA. Default is 0.01.

Value

Provide both FC and posterior FC across two conditions. FC is calculated as (MeanC1+SmallNum)/(MeanC2+SmallNum And Posterior FC is calculated as:

Post alpha P_a_C1 = alpha + r_C1 * n_C1
Post beta P_b_C1 = beta + Mean_C1 * n_C1
P_q_C1 = P_a_C1 / (P_a_C1 + P_b_C1)
Post FC = ((1-P_q_C1)/P_q_c1) / ((1-P_q_c2)/P_q_c2)

PostFC	The posterior FC across two conditions.
RealFC	The FC across two conditions (adjusted by the normalization factors).
Direction	The diretion of FC calculation.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, GetMultiFC

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(500:550),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
FC=PostFC(EBOut)
```

QQP

The Quantile-Quantile Plot to compare the empirical q's and simulated q's from fitted beta distribution

Description

'QQP' gives the Quantile-Quantile Plot to compare the empirical q's and simulated q's from fitted beta distribution.

Usage

QQP(EBOut, GeneLevel = F)

Arguments

EBOut	The output of EBTest or EBMultiTest.
GeneLevel	Indicate whether the results are from data at gene level.

Value

For data with n1 conditions and n2 uncertainty groups, n1*n2 plots will be generated. Each plot represents a subset of the data.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

See Also

EBTest, EBMultiTest, DenNHist

32

QuantileNorm

Examples

```
data(GeneMat)
GeneMat.small = GeneMat[c(500:1000),]
Sizes = MedianNorm(GeneMat.small)
EBOut = EBTest(Data = GeneMat.small,
Conditions = as.factor(rep(c("C1","C2"), each=5)),
sizeFactors = Sizes, maxround = 5)
par(mfrow=c(2,2))
QQP(EBOut)
```

Quantile Normalization

QuantileNorm

Description

'QuantileNorm' gives the quantile normalization.

Usage

QuantileNorm(Data, Quantile)

Arguments

Data	The data matrix with transcripts in rows and lanes in columns.
Quantile	The quantile the user wishs to use. Should be a number between 0 and 1

Details

Use a quantile point to normalize the data.

Value

The function will return a vector contains the normalization factor for each lane.

Author(s)

Ning Leng

References

Bullard, James H., et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC bioinformatics 11.1 (2010): 94.

See Also

MedianNorm

Examples

```
data(GeneMat)
Sizes = QuantileNorm(GeneMat,.75)
#EBOut = EBTest(Data = GeneMat,
# Conditions = as.factor(rep(c("C1","C2"), each=5)),
# sizeFactors = Sizes, maxround = 5)
```

RankNorm

Rank Normalization

Description

'RankNorm' gives the rank normalization.

Usage

RankNorm(Data)

Arguments

Data

The data matrix with transcripts in rows and lanes in columns.

Value

The function will return a matrix contains the normalization factor for each lane and each transcript.

Author(s)

Ning Leng

See Also

MedianNorm, QuantileNorm

Examples

```
data(GeneMat)
Sizes = RankNorm(GeneMat)
# Run EBSeq
# EBres = EBTest(Data = GeneData, NgVector = rep(1,10^4),
# Vect5End = rep(1,10^4), Vect3End = rep(1,10^4),
# Conditions = as.factor(rep(c(1,2), each=5)),
# sizeFactors = Sizes, maxround=5)
```

34

Index

*Topic **DE** EBMultiTest, 6 EBTest. 8 GetDEResults, 13 *Topic **FDR** crit_fun,4 *Topic Fold Change PostFC, 31 *Topic Multiple Condition EBMultiTest, 6 *Topic Ng GetNg, 17 *Topic Normalization GetNormalizedMat, 18 MedianNorm, 26 QuantileNorm, 33 RankNorm, 34 *Topic Posterior Probability GetMultiFC, 15 GetMultiPP, 16 GetPP, 20 GetPPMat, 21 PlotPostVsRawFC, 28 *Topic Q-Q plot QQP, 32 *Topic **Two condition** EBTest, 8 GetDEResults, 13 *Topic beta beta.mom, 3 DenNHist, 5 *Topic datasets GeneMat, 13 IsoList, 22 IsoMultiList, 22 MultiGeneMat, 27 *Topic package EBSeq_NingLeng-package, 2 *Topic patterns PlotPattern, 28

beta.mom, 3

crit_fun,4

DenNHist, 5 EBMultiTest, 6 EBSeq_NingLeng (EBSeq_NingLeng-package), 2 EBSeq_NingLeng-package, 2 EBTest. 8 f0,11 f1, 12 GeneMat, 13 GetDEResults, 13 GetMultiFC, 15 GetMultiPP, 16 GetNg, 17 GetNormalizedMat, 18 GetPatterns, 19 GetPP, 20 GetPPMat, 21 IsoList, 22 IsoMultiList, 22 Likefun, 23 LikefunMulti, 23 LogN, 24LogNMulti, 25 MedianNorm, 26 MultiGeneMat, 27 PlotPattern, 28 PlotPostVsRawFC, 28 PolyFitPlot, 29 PostFC, 31 QQP, 32 QuantileNorm, 33 RankNorm, 34