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1 Getting started

VSN is a method to preprocess microarray intensity data. This can be as simple as
> require("vsn")

> data("kidney")

> xnorm = justvsn(kidney)

where kidney is an ExpressionSet object with unnormalised data and xnorm the resulting
ExpressionSet with calibrated and glog2-transformed data.
> M = exprs(xnorm)[,1] - exprs(xnorm)[,2]

produces the vector of generalised log-ratios between the data in the first and second column.
VSN is a model-based method, and the more explicit way of doing the above is
> fit = vsn2(kidney)

> ynorm = predict(fit, kidney)

Figure 1: Scatterplots of the kidney example data, which were obtained from a two-colour cDNA ar-
ray by quantitating spots and subtracting a local background estimate
a) unnormalised and log2-transformed. b) normalised and transformed with VSN, Panel b shows the data
from the complete set of 8704 spots on the array, panel a only the 7806 spots for which both red and green
net intensities were greater than 0. Those spots which are missing in panel a are coloured in orange in
panel b.
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Figure 2: Standard deviation versus rank of the mean, and the mean, respectively

1In statistics, the term
estimator is used to de-
note an algorithm that
calculates a value from
measured data. This
value is intended to
correspond to the true
value of a parameter
of the underlying pro-
cess that generated the
data. Depending on the
amount of the available
data and the quality of
the estimator, the in-
tention may be more or
less satisfied.
2See Section 5.2.
3See Section 10.

where fit is an object of class vsn that contains the fitted calibration and transformation
parameters, and the method predict applies the fit to the data. The two-step protocol is
useful when you want to fit the parameters on a subset of the data, e. g. a set of control or
spike-in features, and then apply the model to the complete set of data (see Section 7 for
details). Furthermore, it allows further inspection of the fit object, e. g. for the purpose of
quality assessment.
Besides ExpressionSets, there are also justvsn methods for AffyBatch objects from the affy
package and RGList objects from the limma package. They are described in this vignette.
The so-called glog2 (short for generalised logarithm) is a function that is like the logarithm
(base 2) for large values (large compared to the amplitude of the background noise), but is
less steep for smaller values. Differences between the transformed values are the generalised
log-ratios. These are shrinkage estimators of the logarithm of the fold change. The usual
log-ratio is another example for an estimator1 of log fold change. There is also a close
relationship between background correction of the intensities and the variance properties of
the different estimators. Please see Section 12 for more explanation of these issues.
How does VSN work? There are two components: First, an affine transformation whose
aim is to calibrate systematic experimental factors such as labelling efficiency or detector
sensitivity. Second, a glog2 transformation whose aim is variance stabilisation.
An affine transformation is simply a shifting and scaling of the data, i. e. a mapping of the
form x 7→ (x − a)/s with offset a and scaling factor s. By default, a different offset and a
different scaling factor are used for each column, but the same for all rows within a column.
There are two parameters of the function vsn2 to control this behaviour: With the parameter
strata, you can ask vsn2 to choose different offset and scaling factors for different groups
(“strata”) of rows. These strata could, for example, correspond to sectors on the array2.
With the parameter calib, you can ask vsn2 to choose the same offset and scaling factor
throughout3. This can be useful, for example, if the calibration has already been done by
other means, e. g. quantile normalisation.
Note that VSN’s variance stabilisation only addresses the dependence of the variance on the
mean intensity. There may be other factors influencing the variance, such as gene-inherent
properties or changes of the tightness of transcriptional control in different conditions. These
need to be addressed by other methods.

3



Introduction to vsn (Sweave version)

4See Section 12 for
more on the relation-
ship between back-
ground correction and
variance stabilising
transformations.

5The parameters used
were: window width
10%, window midpoints
5%, 10%, 15%, . . . .
It should be said that
the proper way to do
is with quantile regres-
sion such as provided
by the quantreg pack-
age - what is done here
for these plots is sim-
ple, cheap and should
usually be good enough
due to the abundance
of data.

2 Running VSN on data from a single two-colour ar-
ray

The dataset kidney contains example data from a spotted cDNA two-colour microarray on
which cDNA from two adjacent tissue samples of the same kidney were hybridised, one labeled
in green (Cy3), one in red (Cy5). The two columns of the matrix exprs(kidney) contain
the green and red intensities, respectively. A local background estimate4 was calculated by
the image analysis software and subtracted, hence some of the intensities in kidney are close
to zero or negative. In Figure 1 on page 2 you can see the scatterplot of the calibrated and
transformed data. For comparison, the scatterplot of the log-transformed raw intensities is
also shown.
> select = (0==rowSums(exprs(kidney)<=0))

> plot(log2(exprs(kidney)[select, ]),

+ main = "a) raw", pch = ".", asp=1)

> plot(exprs(xnorm), main = "b) vsn",

+ pch = ".", asp=1,

+ col=ifelse(select, "black", "orange"))

To verify the variance stabilisation, there is the function meanSdPlot. For each feature
k = 1, . . . , n it shows the empirical standard deviation σ̂k on the y-axis versus the rank of
the average µ̂k on the x-axis.

µ̂k =
1

d

d∑
i=1

hki σ̂2
k =

1

d− 1

d∑
i=1

(hki − µ̂k)
2 1

> meanSdPlot(xnorm, ranks=TRUE)

> meanSdPlot(xnorm, ranks=FALSE)

The two plots are shown in Figure 2 on page 3. The red dots, connected by lines, show the
running median of the standard deviation5. The aim of these plots is to see whether there is a
systematic trend in the standard deviation of the data as a function of overall expression. The
assumption that underlies the usefulness of these plots is that most genes are not differentially
expressed, so that the running median is a reasonable estimator of the standard deviation
of feature level data conditional on the mean. After variance stabilisation, this should be
approximately a horizontal line. It may have some random fluctuations, but should not show
an overall trend. If this is not the case, that usually indicates a data quality problem, or is a
consequence of inadequate prior data preprocessing. The rank ordering distributes the data
evenly along the x-axis. A plot in which the x-axis shows the average intensities themselves
is obtained by calling the plot command with the argument ranks=FALSE; but this is less
effective in assessing variance and hence is not the default.
The histogram of the generalized log-ratios is shown in Figure 3 on page 5.
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Figure 3: Histogram of generalised log-ratios M for the kidney example data
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Figure 4: Standard deviation versus rank of the mean for the lymphoma example data
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Figure 5: M -A-plot for slide DLCL-0032 from the lymphoma example data
A false-colour representation of the data point density is used, in addition the 100 data points in the least
dense regions are plotted as dots.
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3 Running VSN on data from multiple arrays (“single
colour normalisation”)

The package includes example data from a series of 8 spotted cDNA arrays on which cDNA
samples from different lymphoma were hybridised together with a reference cDNA [7].
> data("lymphoma")

> dim(lymphoma)

Features Samples

9216 16

The 16 columns of the lymphoma object contain the red and green intensities, respectively,
from the 8 slides.
> pData(lymphoma)

name sample dye

lc7b047.reference lc7b047 reference Cy3

lc7b047.CLL-13 lc7b047 CLL-13 Cy5

lc7b048.reference lc7b048 reference Cy3

lc7b048.CLL-13 lc7b048 CLL-13 Cy5

lc7b069.reference lc7b069 reference Cy3

lc7b069.CLL-52 lc7b069 CLL-52 Cy5

lc7b070.reference lc7b070 reference Cy3

lc7b070.CLL-39 lc7b070 CLL-39 Cy5

lc7b019.reference lc7b019 reference Cy3

lc7b019.DLCL-0032 lc7b019 DLCL-0032 Cy5

lc7b056.reference lc7b056 reference Cy3

lc7b056.DLCL-0024 lc7b056 DLCL-0024 Cy5

lc7b057.reference lc7b057 reference Cy3

lc7b057.DLCL-0029 lc7b057 DLCL-0029 Cy5

lc7b058.reference lc7b058 reference Cy3

lc7b058.DLCL-0023 lc7b058 DLCL-0023 Cy5

Thus, the CH1 intensities are in columns 1, 3, . . . , 15, the CH2 intensities in columns 2, 4, . . . , 16.
We can call justvsn on all of them at once:
> lym = justvsn(lymphoma)

> meanSdPlot(lym)

Again, Figure 4 on page 5 helps to visually verify that the variance stabilisation worked. As
above, we can obtain the generalised log-ratios for each slide by subtracting the common
reference intensities from those for the 8 samples:
> iref = seq(1, 15, by=2)

> ismp = seq(2, 16, by=2)

> M= exprs(lym)[,ismp]-exprs(lym)[,iref]

> A=(exprs(lym)[,ismp]+exprs(lym)[,iref])/2

> colnames(M) = lymphoma$sample[ismp]

> colnames(A) = colnames(M)

7
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> j = "DLCL-0032"

> smoothScatter(A[,j], M[,j], main=j,

+ xlab="A", ylab="M", pch=".")

> abline(h=0, col="red")

Figure 5 on page 6 shows the resulting M -A-plot [6] for one of the arrays.

4 Running VSN on Affymetrix genechip data

The package affy provides excellent functionality for reading and processing Affymetrix
genechip data, and you are encouraged to refer to the documentation of the package affy for
more information about data structures and methodology. The preprocessing of Affymetrix
genechip data involves the following steps: (i) background correction, (ii) between-array nor-
malization, (iii) transformation and (iv) summarisation. The VSN method addresses steps
(i)–(iii). For the summarisation, I recommend to use the RMA method [10], and a simple
wrapper that provides all of these is provided through the method vsnrma.
> require("affydata")

> data("Dilution")

> d_vsn = vsnrma(Dilution)

For comparison, we also run rma.
> d_rma = rma(Dilution)

The scatterplots produced by the code below are compared in Figure 6 on page 9.
> par(pch=".")

> ax = c(2, 16)

> plot(exprs(d_vsn)[,c(1,3)],

+ main = "vsn: array 1 vs 3",

+ asp=1, xlim=ax, ylim=ax)

> plot(exprs(d_rma)[,c(1,3)],

+ main = "rma: array 1 vs 3",

+ asp=1, xlim=ax, ylim=ax)

> plot(exprs(d_rma)[,1],

+ exprs(d_vsn)[,1],

+ xlab="rma", ylab="vsn",

+ asp=1, xlim=ax, ylim=ax,

+ main = "array 1")

> abline(a=0, b=1, col="#ff0000d0")

Both methods control the variance at low intensities, but we see that VSN does so more
strongly. See also Section 12 for further discussion on the VSN shrinkage.
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Figure 6: Results of vsnrma and rma on the Dilution example data
Array 1 was hybridised with 20µg RNA from liver, array 3 with 10µg of the same RNA.

5 Running VSN on RGList objects

There is a justvsn method for RGList objects. Usually, you will produce an RGList from
your own data using the read.maimages from the limma package. Here, for the sake of
demonstration, we construct an RGList from lymphoma.
> require("limma")

> wg = which(lymphoma$dye=="Cy3")

> wr = which(lymphoma$dye=="Cy5")

> lymRG = new("RGList", list(

+ R=exprs(lymphoma)[, wr],

+ G=exprs(lymphoma)[, wg]))

> lymNCS = justvsn(lymRG)

The justvsn method for RGList converts its argument into an NChannelSet, using a copy of
the coercion method from Martin Morgan in the package convert. It then passes this on to
the justvsn method for NChannelSet. The return value is an NChannelSet, as shown below.
> lymNCS

NChannelSet (storageMode: lockedEnvironment)

assayData: 9216 features, 8 samples

element names: G, R

protocolData: none

phenoData: none

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

Note that, due to the flexibility in the amount and quality of metadata that is in an RGList,
and due to differences in the implementation of these classes, the transfer of the metadata into
the NChannelSet may not always produce the expected results, and that some checking and

9
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Figure 7: Left: histogram of p-values from the moderated t-test between the and groups on the lymM

values
Right: M -values for the 5 genes with the smallest p-values.

often further dataset-specific postprocessing of the sample metadata and the array feature
annotation is needed. For the current example, we construct the AnnotatedDataFrame object
adf and assign it into the phenoData slot of lymNCS.
> vmd = data.frame(

+ labelDescription=I(c("array ID",

+ "sample in G", "sample in R")),

+ channel=c("_ALL", "G", "R"),

+ row.names=c("arrayID", "sampG", "sampR"))

> arrayID = lymphoma$name[wr]

> stopifnot(identical(arrayID,

+ lymphoma$name[wg]))

> ## remove sample number suffix

> sampleType = factor(sub("-.*", "",

+ lymphoma$sample))

> v = data.frame(

+ arrayID = arrayID,

+ sampG = sampleType[wg],

+ sampR = sampleType[wr])

> v

arrayID sampG sampR

1 lc7b047 reference CLL

2 lc7b048 reference CLL

3 lc7b069 reference CLL

4 lc7b070 reference CLL

5 lc7b019 reference DLCL

10
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6Note that the default
value for this parameter
is FALSE.

6 lc7b056 reference DLCL

7 lc7b057 reference DLCL

8 lc7b058 reference DLCL

> adf = new("AnnotatedDataFrame",

+ data=v,

+ varMetadata=vmd)

> phenoData(lymNCS) = adf

Now let us combine the red and green values from each array into the glog-ratio M and use
the linear modeling tools from limma to find differentially expressed genes (note that it is
often suboptimal to only consider M, and that taking into account absolute intensities as well
can improve analyses).
> lymM = (assayData(lymNCS)$R -

+ assayData(lymNCS)$G)

> design = model.matrix( ~ lymNCS$sampR)

> lf = lmFit(lymM, design[, 2, drop=FALSE])

> lf = eBayes(lf)

Figure 7 on page 10 shows the resulting p-values and the expression profiles of the genes
corresponding to the top 5 features.
> par(mfrow=c(1,2))

> hist(lf$p.value, 100, col="orange")

> pdat=t(lymM[order(lf$p.value)[1:5],])

> matplot(pdat,

+ lty=1, type="b", lwd=2,

+ col=hsv(seq(0,1,length=5), 0.7, 0.8),

+ ylab="M", xlab="arrays")

5.1 Background subtraction

Many image analysis programmes for microarrays provide local background estimates, which
are typically calculated from the fluorescence signal outside, but next to the features. These
are not always useful. Just as with any measurement, these local background estimates
are also subject to random measurement error, and subtracting them from the foreground
intensities will lead to increased random noise in the signal. On the other hand side, doing
so may remove systematic artifactual drifts in the data, for example, a spatial gradient.
So what is the optimal analysis strategy, should you subtract local background estimates or
not? The answer depends on the properties of your particular data. VSN itself estimates
and subtracts an over-all background estimate (per array and colour, see Section 9), so an
additional local background correction is only useful if there actually is local variability across
an array, for example, a spatial gradient.
Supposing that you have decided to subtract the local background estimates, how is it
done? When called with the argument backgroundsubtract=TRUE6, the justvsn method
will subtract local background estimates in the Rb and Gb slots of the incoming RGList. To
demonstrate this, we construct an RGList object lymRGwbg.

11
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> rndbg=function(x, off, fac)

+ array(off+fac*runif(prod(dim(x))),

+ dim=dim(x))

> lymRGwbg = lymRG

> lymRGwbg$Rb = rndbg(lymRG, 100, 30)

> lymRGwbg$Gb = rndbg(lymRG, 50, 20)

In practice, of course, these values will be read from the image quantitation file with a
function such as read.maimages that produces the RGList object. We can call justvsn
> lymESwbg = justvsn(lymRGwbg[, 1:3],

+ backgroundsubtract=TRUE)

Here we only do this for the first 3 arrays to save compute time.

5.2 Print-tip groups

Figure 8: Scatterplot of normalised and transformed intensities for the red channel of array 1
Values on the x-axis correspond to normalisation without strata (EsenzaStr), values on the y-axis to nor-
malisation with strata (EconStr). The different colours correspond to the 16 different strata.

By default, VSN computes one normalisation transformation with a common set of parameters
for all features of an array (separately for each colour if it is a multi-colour microarray), see
Section 9. Sometimes, there is a need for stratification by further variables of the array
manufacturing process, for example, print-tip groups (sectors) or microtitre plates. This can
be done with the strata parameter of vsn2.
The example data that comes with the package does not directly provide the information
which print-tip each feature was spotted with, but we can easily reconstruct it:

12
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> ngr = ngc = 4L

> nsr = nsc = 24L

> arrayGeometry = data.frame(

+ spotcol = rep(1:nsc,

+ times = nsr*ngr*ngc),

+ spotrow = rep(1:nsr,

+ each = nsc, times=ngr*ngc),

+ pin = rep(1:(ngr*ngc),

+ each = nsr*nsc))

and call
> EconStr = justvsn(lymRG[,1],

+ strata=arrayGeometry$pin)

To save CPU time, we only call this on the first array. We compare the result to calling
justvsn without strata,
> EsenzaStr = justvsn(lymRG[,1])

A scatterplot comparing the transformed red intensities, using the two models, is shown in
Figure 8 on page 12.
> j = 1L

> plot(assayData(EsenzaStr)$R[,j],

+ assayData(EconStr)$R[,j],

+ pch = ".", asp = 1,

+ col = hsv(seq(0, 1, length=ngr*ngc),

+ 0.8, 0.6)[arrayGeometry$pin],

+ xlab = "without strata",

+ ylab = "print-tip strata",

+ main = sampleNames(lymNCS)$R[j])

6 Missing values

The parameter estimation algorithm of VSN is able to deal with missing values in the input
data. To demonstrate this, we generate an ExpressionSet lym2 in which about 10% of all
intensities are randomly missing,
> lym2 = lymphoma

> nfeat = prod(dim(lym2))

> wh = sample(nfeat, nfeat/10)

> exprs(lym2)[wh] = NA

> table(is.na(exprs(lym2)))

FALSE TRUE

132711 14745

and call vsn2 on it.
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Figure 9: Scatterplots of fitted parameters, values on the x-axis correspond to normalisation without
missing data (fit1), values on the y-axis to normalisation with ≈ 10% missing data (fit2)

> fit1 = vsn2(lymphoma, lts.quantile=1)

> fit2 = vsn2(lym2, lts.quantile=1)

The resulting fitted parameters are not identical, but very similar, see Figure 9 on page 14.
> par(mfrow=c(1,2))

> for(j in 1:2){

+ p1 = coef(fit1)[,,j]

+ p2 = coef(fit2)[,,j]

+ d = max(abs(p1-p2))

+ stopifnot(d < c(0.05, 0.03)[j])

+ plot(p1, p2, pch = 16, asp = 1,

+ main = paste(letters[j],

+ ": max diff=", signif(d,2), sep = ""),

+ xlab = "no missing data",

+ ylab = "10% of data missing")

+ abline(a = 0, b = 1, col = "blue")

+ }

Note that p1 and p2 would differ more if we used a different value than 1 for the lts.quantile
argument in the above calls of vsn2. This is because the outlier removal algorithm of vsn2
will, for this dataset, identify different sets of features as outliers for fit1 and fit2 and con-
sequently the optimisation result will be slightly different; this difference is arguably negligible
compared to the noise level in the data.
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7 Normalisation with ’spike-in’ probes

Normally, VSN uses all features on the array to fit the calibration and transformation parame-
ters, and the algorithm relies, to a certain extent, on the assumption that most of the features’
target genes are not differentially expressed (see also Section 13.2). If certain features are
known to correspond to, or not to correspond to, differentially expressed targets, then we
can help the algorithm by fitting the calibration and transformation parameters only to the
subset of features for which the “not differentially expressed” assumption is most appropri-
ate, and then applying the calibration and transformation to all features. For example, some
experimental designs provide “spike-in” control spots for which we know that their targets’
abundance is the same across all arrays (and/or colours).
For demonstration, let us assume that in the kidney data, features 100 to 200 are spike-in
controls. Then we can obtain a normalised dataset nkid as follows.
> spikeins = 100:200

> spfit = vsn2(kidney[spikeins,],

+ lts.quantile=1)

> nkid = predict(spfit, newdata=kidney)

Note that if we are sufficiently confident that the spikeins subset is really not differentially
expressed, and also has no outliers for other, say technical, reasons, then we can set the
robustness parameter lts.quantile to 1. This corresponds no robustness (least sum of
squares regression), but makes most use of the data, and the resulting estimates will be more
precise, which may be particularly important if the size of the spikeins set is relatively small.
Not that this explicit subsetting strategy is designed for features for which we have a priori
knowledge that their normalised intensities should be unchanged. There is no need for you to
devise data-driven rules such as using a first call to VSN to get a preliminary normalisation,
identify the least changing features, and then call VSN again on that subset. This strategy is
already built into the VSN algorithm and is controlled by its lts.quantile parameter. Please
see Section 13.2 and reference [3] for details.

8 Normalisation against an existing reference dataset

So far, we have considered the joint normalisation of a set of arrays to each other. What
happens if, after analysing a set of arrays in this fashion, we obtain some additonal arrays?
Do we re-run the whole normalisation again for the complete, new and bigger set of arrays?
This may sometimes be impractical.
Suppose we have used a set of training arrays for setting up a classifier that is able to
discriminate different biological states of the samples based on their mRNA profile. Now we
get new test arrays to which we want to apply the classifier. Clearly, we do not want to re-run
the normalisation for the whole, new and bigger dataset, as this would change the training
data; neither can we normalise only the test arrays among themselves, without normalising
them “towards” the reference training dataset. What we need is a normalisation procedure
that normalises the new test arrays “towards” the existing reference dataset without changing
the latter.
To simulate this situation with the available example data, pretend that the Cy5 channels of
the lymphoma dataset can be treated as 8 single-colour arrays, and fit a model to the first 7.
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Figure 10: Scatterplot of normalised intensities after normalisation by reference (x-axis, f8) and joint
normalisation (y-axis, fall)
There is good agreement.

> ref = vsn2(lymphoma[, ismp[1:7]])

Now we call vsn2 on the 8-th array, with the output from the previous call as the reference.
> f8 = vsn2(lymphoma[, ismp[8]],

+ reference = ref)

We can compare this to what we get if we fit the model to all 8 arrays,
> fall = vsn2(lymphoma[, ismp])

> coefficients(f8)[,1,]

[1] -0.396 -3.509

> coefficients(fall)[,8,]

[1] -0.323 -3.507

and compare the resulting values in the scatterplot shown in Figure 10 on page 16: they are
very similar.
> plot(exprs(f8), exprs(fall)[,8],

+ pch=".", asp=1)

> abline(a=0, b=1, col="red")
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More details on this can be found in the vignettes Verifying and assessing the performance
with simulated data and Likelihood Calculations for vsn that come with this package.

9 The calibration parameters

If yki is the matrix of uncalibrated data, with k indexing the rows and i the columns, then
the calibrated data y′ki is obtained through scaling by λsi and shifting by αsi:

y′ki = λsiyki + αsi 2

where s ≡ s(k) is the so-called stratum for feature k. In the simplest case, there is only one
stratum, i. e. the index s is always equal to 1, or may be omitted altogether. This amounts
to assuming that the data of all features on an array were subject to the same systematic
effects, such that an array-wide calibration is sufficient.
A model with multiple strata per array may be useful for spotted arrays. For these, strat-
ification may be according to print-tip [6] or PCR-plate [2]. For oligonucleotide arrays, it
may be useful to stratify the features by physico-chemical properties, e. g. to assume that
features of different sequence composition attract systematically different levels of unspecific
background signal.
The transformation to a scale where the variance of the data is approximately independent
of the mean is

hki = arsinh(λ0y
′
ki + α0) 3

= log

(
λ0y
′
ki + α0 +

√
(λ0y′ki + α0)

2
+ 1

)
,

with two parameters λ0 and α0. Equations (2) and (3) can be combined, so that the whole
transformation is given by

hki = arsinh
(
ebsi · yki + asi

)
. 4

Here, asi = αsi+λ0αsi and bsi = log(λ0λsi) are the combined calibation and transformation
parameters for features from stratum s and sample i. Using the parameter bsi as defined
here rather than ebsi appears to make the numerical optimisation more reliable (less ill-
conditioned).
We can access the calibration and transformation parameters through
> coef(fit)[1,,]

[,1] [,2]

[1,] -0.550 -5.84

[2,] -0.535 -5.86

For a dataset with d samples and s strata, coef(fit) is a numeric array with dimensions
(s, d, 2). For the example data that was used in Section 1 to generate fit, d = 2 and s = 1.
coef(fit)[s, i, 1], the first line in the results of the above code chunk, is what was called
asi in Eqn. (4), and coef(fit)[s, i, 2], the second line, is bsi.
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7I drop the indices s,
k and i, since for the
purpose of this section,
they are passive

9.1 The calibration parameters and the additive-multiplicative er-
ror model

VSN is based on the additive-multiplicative error model [4, 5], which predicts a quadratic
variance-mean relationship of the form [1]

v(u) = (c1u+ c2)
2 + c3. 5

This is a general parameterization of a parabola with three parameters c1, c2 and c3. Here,
u is the expectation value (mean) of the signal, and v the variance. c1 is also called the
coefficient of variation, since for large u, √v/u ≈ c1. The minimum of v is c3, this is the
variance of the additive noise component. It is attained at u = −c2/c3, and this is the
expectation value of the additive noise component, which ideally were zero (c2 = 0), but
in many applications is different from zero. Only the behaviour of v(u) for u ≥ −c2/c3 is
typically relevant.
The parameters a and b from Equation (4)7 and the parameters of the additive-multiplicative
error model are related by [1]

a =
c2√
c3

eb =
c1√
c3

6

This relationship is not 1:1, and it has a divergence at c3 → 0; both of these observations
have practical consequences, as explained in the following.

1. The fact that Equations (6) do not constitute a 1:1 relationship means that multiple
parameter sets of the additive-multiplicative error model can lead to the same transfor-
mation. This can be resolved, for example, if the coefficient of variation c1 is obtained
by some other means than the vsn2 function. For example, it can be estimated from
the standard deviation of the VSN-transformed data, which is, in the approximation of
the delta method, the same as the coefficient of variation [1, 3]. Then,

c3 = c21 e
−2b

c2 = c1 ae
−b. 7

2. The divergence for c3 → 0 can be a more serious problem. In some datasets, c3 is in
fact very small. This is the case if the size of the additive noise is negligible compared to
the multiplicative noise throughout the dynamic range of the data, even for the smallest
intensities. In other words, the additive-multiplicative error model is overparameterized,
and a simpler multiplicative-only model would be good enough. VSN is designed to
still produce reasonable results in these cases, in the sense that the transformation
stabilizes the variance (it turns essentially into the usual logarithm transformation),
but the resulting fit coefficients can be unstable.
The assessment of the precision of the estimated values of a and b (e. g. by resampling,
or by using replicate data) is therefore usually not very relevant; what is relevant is
an assessment of the precision of the estimated transformation, i. e. how much do the
transformed values vary [3].
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Figure 11: Scatterplots for badly biased data
Left hand side: raw data on log-log scale, right hand side: after calibration and transformation with vsn.

9.2 More on calibration

Now suppose the kidney example data were not that well measured, and the red channel had
a baseline that was shifted by 500 and a scale that differed by a factor of 0.25:
> bkid = kidney

> exprs(bkid)[,1]=0.25*(500+exprs(bkid)[,1])

We can again call vsn2 on these data
> bfit = vsn2(bkid)

> plot(exprs(bkid), main="raw",

+ pch=".", log="xy")

> plot(exprs(bfit), main="vsn",

+ pch=".")

> coef(bfit)[1,,]

Notice the change in the parameter b of the red channel: it is now larger by about log(4) ≈
1.4, and the shift parameter a has also been adjusted. The result is shown in Figure 11 on
page 19.
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10 Variance stabilisation without calibration

It is possible to force λsi = 1 and αsi = 0 for all s and i in Equation (2) by setting vsn2’s
parameter calib to "none". Hence, only the global variance stabilisation transformation (3)
will be applied, but no column- or row-specific calibration.
Here, I show an example where this feature is used in conjunction with quantile normalisation.
> lym_q = normalizeQuantiles(exprs(lymphoma))

> lym_qvsn = vsn2(lym_q, calib="none")

> plot(exprs(lym_qvsn)[, 1:2], pch=".",

+ main="lym_qvsn")

> plot(exprs(lym)[,1], exprs(lym_qvsn)[, 1],

+ main="lym_qvsn vs lym", pch=".",

+ ylab="lym_qvsn[,1]", xlab="lym[,1]")

The result is shown in Figure 12 on page 20.

Figure 12: The left panel shows the scatterplot between the red and green intensities of the array of
the lymphoma dataset after quantile normalisation followed by VSN variance stabilisation without
calibration
The right panel compares the values from that method, for CH1 of the first array, to that of VSN variance
stabilisation with affine calibration (lym was computed in Section 3).
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11 Assessing the performance of VSN

VSN is a parameter estimation algorithm that fits the parameters for a certain model. In
order to see how good the estimator is, we can look at bias, variance, sample size dependence,
robustness against model misspecificaton and outliers. This is done in the vignette Verifying
and assessing the performance with simulated data that comes with this package.
Practically, the more interesting question is how different microarray calibration and data
transformation methods compare to each other. Two such comparisons were made in refer-
ence [1], one with a set of two-colour cDNA arrays, one with an Affymetrix genechip dataset.
Fold-change estimates from VSN led to higher sensitivity and specificity in identifying differ-
entially expressed genes than a number of other methods.
A much more sophisticated and wider-scoped approach was taken by the Affycomp benchmark
study, presented at http://affycomp.biostat.jhsph.edu. It uses two benchmark datasets:
a Spike-In dataset, in which a small number of cDNAs was spiked in at known concentrations
and over a wide range of concentrations on top of a complex RNA background sample; and
a Dilution dataset, in which RNA samples from heart and brain were combined in a number
of dilutions and proportions. The design of the benchmark study, which has been open for
anyone to submit their method, was described in reference [8]. A discussion of its results was
given in reference [9]. One of the results that emerged was that VSN compares well with the
background correction and quantile normalization method of RMA; both methods place a
high emphasis on precision of the expression estimate, at the price of a certain bias (see also
Section 12). Another result was that reporter-sequence specific effects (e. g. the effect of GC
content) play a large role in these data and that substantial improvements can be achieved
when they are taken into account (something which VSN does not do).
Of course, the two datasets that were used in Affycomp were somewhat artificial: they had
fewer differentially expressed genes and were probably of higher quality than in most real-life
applications. And, naturally, in the meanwhile the existence of this benchmark has led to
the development of new processing methods where a certain amount of overfitting may have
occured.
I would also like to note the interaction between normalization/preprocessing and data quality.
For data of high quality, one can argue that any decent preprocessing method should produce
more or less the same results; differences arise when the data are problematic, and when
more or less successful measures may be taken by preprocessing methods to correct these
problems.

12 VSN, shrinkage and background correction

Generalised log-ratios can be viewed as a shrinkage estimator : for low intensities either in the
numerator and denominator, they are smaller in absolute value than the standard log-ratios,
whereas for large intensities, they become equal. Their advantage is that they do not suffer
from the variance divergence of the standard log-ratios at small intensities: they remain
well-defined and have limited variance when the data come close to zero or even become
negative.
An illustration is shown in Figure 13 on page 22. Data were generated from the additive-
multiplicative error model [3–5]. The horizontal line corresponds to the true log2-ratio 1
(corresponding to a factor of 2). For intensities x2 that are larger than about ten times the
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Figure 13: The shrinkage property of the generalised log-ratio
Blue diamonds and error bars correspond to mean and standard deviation of the generalised log-ratio h, as
obtained from VSN, and black dots and error bars to the standard log-ratio q (both base 2).

additive noise level σa, generalised log-ratio h and standard log-ratio q coincide. For smaller
intensities, we can see a variance-bias trade-off : q has almost no bias, but a huge variance,
thus an estimate of the fold change based on a limited set of data can be arbitrarily off. In
contrast, h keeps a constant variance – at the price of systematically underestimating the
true fold change. This is the main argument for using a variance stabilising transformation.
Note that there is also some bias in the behaviour of q for small x2, particularly at x2 = 0.5.
This results from the occurence of negative values in the data, which are discarded from the
sampling when the (log-)ratio is computed.
Please consult the references for more on the mathematical background [1–3].
It is possible to give a Bayesian interpretation: our prior assumption is the conservative one of
no differential expression. Evidence from a feature with high overall intensity is taken strongly,
and the posterior results in an estimate close to the empirical intensity ratio. Evidence from
features with low intensity is downweighted, and the posterior is still strongly influenced by
the prior.
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Figure 14: Graphs of the functions y = log2(x), y = glog2(x, c) = log2(x +
√
x2 + c2) − 1, and

y = log2(x+ xoff), where c = 50 and xoff = 50

13 Quality assessment

Quality problems can often be associated with physical parameters of the manufacturing or
experimental process. Let us look a bit closer at the lymphoma data. Recall that M is the 9216
times 8 matrix of generalized log-ratios and A a matrix of the same size with the average
glog2-transformed intensities. The dataframe arrayGeometry (from Section 5.2) contains,
for each array feature, the identifier of the print-tip by which it was spotted and the row and
column within the print-tip sector. Figure 15 on page 24 shows the boxplots of A values of
array CLL-13 stratified by row.
> colours = hsv(seq(0,1,length=nsr),0.6,1)

> j = "CLL-13"

> boxplot(A[, j] ~ arrayGeometry$spotrow,

+ col=colours, main=j,

+ ylab="A", xlab="spotrow")

You may want to explore similar boxplots for other stratifying factors such as column within
print-tip sector or print-tip sector and look at these plots for the other arrays as well.
In Figure 15 on page 24, we see that the features in rows 22 and 23 are all very dim. If we
now look at these data in the M -A-plot (Figure 16 on page 24), we see that these features
not only have low A-values, but fall systematically away from the M = 0 line.
> plot(A[,j], M[,j], pch=16, cex=0.3,

+ col=ifelse(arrayGeometry$spotrow%in%(22:23),

+ "orange", "black"))

> abline(h=0, col="blue")
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Figure 15: Boxplot of A values of array CLL-13 stratified by within-sector row
The features in rows 22 and 23 are all very dim.

Figure 16: M -A-plot of the data from array CLL-13
Dots coloured in orange are from rows 22 and 23. A possible explanation may be as follows (although I do
not know for sure that this is the right explanation): The PCR product (cDNA) that is spotted on these
arrays is put on by a print head that sucks cDNA out of microtitre plates and deposits them in spots one
after another, row by row. If the content of one plate is faulty, this results in a set of subsequent spots that
are faulty. Because the 16 print-tip sectors are spotted in parallel, this affects all sectors in the same way.
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8It has been reported
that for some genes
the dye bias is differ-
ent from gene to gene,
such that the propor-
tionality factor does
not simply factorise
as in (8). As long as
this only occurs spo-
radically, this will not
have much effect on
the estimation of the
calibration and variance
stabilisation parame-
ters. Further, by using
an appropriate exper-
imental design such
as colour-swap or ref-
erence design, the ef-
fects of gene-specific
dye biases on subse-
quent analyses can be
reduced.

Hence, in a naive analysis the data from these features would be interpreted as contributing
evidence for differential expression, while they are more likely just the result of a quality
problem. So what can we do? There are some options:

1. Flag the data of the affected features as unreliable and set them aside from the subse-
quent analysis.

2. Use a more complex, stratified normalisation method that takes into account the dif-
ferent row behaviours, for example, VSN with strata (see Section 5.2).

3. It has also been proposed to address this type of problem by using a non-linear regression
on the A-values, for example the loess normalization of reference [11] that simply
squeezes the M -A-plot to force the centre of the distribution of M to lie at 0 along
the whole A-range.

An advantage of option 3 is that it works without knowing the real underlying stratifying
factor. However, it assumes that the stratifying factor is strongly confounded with A, and
that biases that it causes can be removed through a regression on A.
In the current example, if we believe that the real underlying stratifying factor is indeed row
within sector, this assumption means that (i) few of the data points from rows 22 and 23
have high A-values, and that (ii) almost all data points with very low A values are from these
rows; while (i) appears tenable, (ii) is definitely not the case.

13.1 Stratifying factors such as print-tip, PCR plate, reporter-sequence

By default, the VSN method assumes that the measured signal yik increases, to sufficient
approximation, proportionally to the mRNA abundance cik of gene k on the i-th array, or on
the i-th colour channel:

yik ≈ αi + λiλkcik. 8

For a series of d single-colour arrays, i = 1, . . . , d, and the different factors λi reflect the dif-
ferent initial amounts of sample mRNA or different overall reverse transcription, hybridisation
and detection efficiencies. The feature affinity λk contains factors that affect all measure-
ments with feature k in the same manner, such as sequence-specific labelling efficiency. The
λk are assumed to be the same across all arrays. There can be a non-zero overall offset αi.
For a two-colour cDNA array, i = 1, 2, and the λi take into account the different overall
efficiencies of the two dyes8.
Equation 8 can be generalised to

yik ≈ αis + λisλkcik. 9

that is, the background term αis and the gain factor λis can be different for different groups
s of features on an array. The VSN methods allows for this option by using the strata

argument of the function vsn2. We have seen an example above where this could be useful.
For Affymetrix genechips, one can find systematic dependences of the affinities λis and
the background terms αis on the reporter sequence, however, the optimal stratification of
reporters based on their sequence is an active area of research.
Nevertheless, there are situations in which either assumption (8) or (9) is violated, and these
include:
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9more precisely, number
of features per stratum

Saturation. The biochemical reactions and/or the photodetection can be run in such a
manner that saturation effects occur. It may be possible to rescue such data by using
non-linear transformations. Alternatively, it is recommended that the experimental
parameters are chosen to avoid saturation.

Batch effects. The feature affinities λk may differ between different manufacturing batches
of arrays due, e.g., to different qualities of DNA amplification or printing. VSN cannot
be used to simultaneously calibrate and transform data from different batches.

How to reliably diagnose and deal with such violations is beyond the scope of this vignette;
see the references for more [2, 6].

13.2 Most genes unchanged assumption

With respect to the VSN model fitting, data from differentially transcribed genes can act as
outliers (but they do not necessarily need to do so in all cases). The maximal number of out-
liers that do not gravely affect the model fitting is controlled by the parameter lts.quantile.
Its default value is 0.9, which allows for 10% outliers. The value of lts.quantile can be
reduced down to 0.5, which allows for up to 50% outliers. The maximal value is 1, which
results in a least-sum-of-squares estimation that does not allow for any outliers.
So why is this parameter lts.quantile user-definable and why don’t we just always use
the most “robust” value of 0.5? The answer is that the precision of the estimated VSN
parameters is better the more data points go into the estimates, and this may especially be
an issue for arrays with a small number of features9. So if you are confident that the number
of outliers is not that large, using a high value of lts.quantile can be justified.
There has been confusion on the role of the “most genes unchanged assumption”, which
presumes that only a minority of genes on the arrays is detectably differentially transcribed
across the experiments. This assumption is a sufficient condition for there being only a small
number of outliers, and these would not gravely affect the VSN model parameter estimation.
However, it is not a necessary condition: the parameter estimates and the resulting normalised
data may still be useful if the assumption does not hold, but if the effects of the data from
differentially transcribed genes balance out.
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