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1 The ropls package

The ropls R package implements the PCA, PLS(-DA) and OPLS(-DA) approaches with the original,
NIPALS-based, versions of the algorithms [1, 2]. It includes the R2 and Q2 quality metrics [3, 4], the
permutation diagnostics [5], the computation of the VIP values [1], the score and orthogonal distances to
detect outliers [6], as well as many graphics (scores, loadings, predictions, diagnostics, outliers, etc).

The functionalities from ropls can also be accessed via a graphical user interface in the Multivariate
module from the Workflow4Metabolomics.org online resource for computational metabolomics (http://
workflow4metabolomics.org/) which provides a user-friendly, web-based environment for data pre-processing,
statistical analysis, and annotation [7].

2 Context

2.1 Orthogonal Partial Least-Squares

Partial least-squares, which is a latent variable regression method based on covariance between the predictors
and the response, has been shown to efficiently handle datasets with multi-collinear predictors, as in the case
of spectrometry measurements [1]. More recently, Trygg and Wold introduced the orthogonal projection
to latent structures (OPLS) algorithm to model separately the variations of the predictors correlated and
orthogonal to the response [2].

OPLS has a similar predictive capacity compared to PLS and improves the interpretation of the predictive
components and of the systematic variation [8]. In particular, OPLS modeling of single responses only
requires one predictive component.

Diagnostics such as the Q2Y metrics and permutation testing are of high importance to avoid overfitting
and assess the statistical significance of the model. The variable importance in projection (VIP), which
reflects both the loading weights for each component and the variability of the response explained by this
component [8, 9] is often used for feature selection [2, 8].

2.2 OPLS software
OPLS is available in the SIMCA-P commercial software (Umetrics, Umea, Sweden; [3]). In addition, the

kernel-based version of OPLS [10] is available in the open-source R statistical environment [11], and a
single implementation of the linear algorithm in R has been described recently [12].

3 The sacurine metabolomics dataset

3.1 Study objective

The objective was to study the influence of age, body mass index and gender on metabolite concentrations
in urine, by analysing 183 samples from a cohort of adults with liquid chromatography coupled to high-
resolution mass spectrometry ([13]).


http://workflow4metabolomics.org/
http://workflow4metabolomics.org/
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3.2 Pre-processing and annotation
Urine samples were analyzed by using an LTQ Orbitrap in the negative ionization mode. A total of 109
metabolites were identified or annotated at the MSI level 1 or 2. After retention time alignment with

XCMS, peaks were integrated with Quan Browser. Signal drift and batch effect were corrected, and each
urine profile was normalized to the osmolality of the sample. Finally, the data were logl0 transformed.

3.3 Covariates

The volunteers’ age, body mass index, and gender were recorded.

4 Hands-on

4.1 Loading

We first load the ropls package:
> library(ropls)
We then load the sacurine dataset which contains:

1. The dataMatrix matrix of numeric type containing the intensity profiles (logl0 transformed)
2. The sampleMetadata data frame containg sample metadata
3. The variableMetadata data frame containg variable metadata

> data(sacurine)
> names (sacurine)

[1] "dataMatrix" "sampleMetadata" "variableMetadata"

We attach sacurine to the search path and display a summary of the content of the dataMatrix, sam-
pleMetadata and variableMetadata with the strF Function of the ropls package (see also str)

> attach(sacurine)
> strF(dataMatrix)

dim class mode typeof size NAs min mean median max
183 x 109 matrix numeric double 0.2 Mb 0 -0.3 4.2 4.3 6
(2-methoxyethoxy)propanoic acid isomer (gamma)Glu-Leu/Ile ...

HU_O11 3.019766011 3.888479324 ...

HU_014 3.81433889 4.277148905 ...

HU_208 3.748127215 4.523763202 ...

HU_209 4.208859398 4.675880567 ...
Valerylglycine isomer 2 Xanthosine

HU_O11 3.889078716 4.075879575

HU_014 4.181765852 4.195761901

HU_208 4.634338821 4.487781609

HU_209 4.47194762 4.222953354

> strF(sampleMetadata)
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age bmi gender
numeric numeric factor
nRow nCol size NAs
183 30Mb O
age bmi gender

HU_O11 29 19.75 M
HU_014 59 22.64 F
HU_208 27 18.61 F
HU_209 17.5 21.48 F

> strF(variableMetadata)

msilevel hmdb chemicalClass
numeric character character
nRow nCol size NAs

109 3 0 Mb 0

msilevel hmdb chemicalClass
(2-methoxyethoxy)propanoic acid isomer 2 Organi
(gamma)Glu-Leu/Ile 2 AA-pep
Valerylglycine isomer 2 2 AA-pep:AcyGly
Xanthosine 1 HMDB00299 Nucleo

4.2 Principal Component Analysis (PCA)

We perform a PCA on the dataMatrix matrix (samples as rows, variables as columns):
> sacurine.pca <- opls(dataMatrix)

PCA

183 samples x 109 variables

standard scaling of predictors
R2X(cum) pre ort

Total 0.501 8 O

A summary of the model (8 components were selected) is printed. In addition the default summary figure
is displayed (Figure 1).

Note:

1. Since dataMatrix does not contain missing value, the singular value decomposition was used by
default; NIPALS can be selected with the algoC argument specifying the algorithm (Character),

2. The predI = NA default number of predictive components (Integer) means that only components
with a variance superior to the mean variance of all components are kept (note that this rule requires
all components to be computed and can be quite time-consuming for large datasets with the NIPALS
algorithm; in such cases, one may specify a limited number of components with the predI parameter).

Let us see if we notice any partition according to gender, by labeling/coloring the samples according to the
gender and drawing the Mahalanobis ellipses for the male and female subgroups (Figure 2).

> genderFc <- sampleMetadatal[, "gender"]
> plot(sacurine.pca, typeVc = "x-score",
+ parAsColFcVn = genderFc, parEllipsesL = TRUE)
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Figure 1. PCA summary plot. Top left overview: the scree plot (i.e., inertia barplot) suggests that 3
components may be sufficient to capture most of the inertia; Top right outlier: this graphics shows the
distances within and orthogonal to the projection plane ([6]): the name of the samples with a high value
for at least one of the distances are indicated; Bottom left x-score; Bottom right x-loading.

Note that the plotting parameter to be used As Colors (Factor of character type or Vector of numeric type)
has a length equal to the number of rows of the dataMatrix matrix (ie of samples) and that this qualitative
or quantitative variable is converted into colors (by using an internal palette or color scale, respectively).
We could have visualized the age of the individuals by specifying parAsColFcVn = sampleMetadatal,
"age"].

4.3 Partial least-squares: PLS and PLS-DA

For PLS (and OPLS), the Y response(s) must be provided. Y can be either a numeric vector (respec-
tively matrix) for single (respectively multiple) (O)PLS regression, or a character factor for (O)PLS-DA
classification as in the following example (Figure 3).

> sacurine.plsda <- opls(dataMatrix, genderFc)

PLS-DA
183 samples x 109 variables and 1 response
standard scaling of predictors and response(s)
R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
Total 0.275 0.73 0.584 0.262 3 0 0.05 0.05

Note:

1. When set to NA (as in the default), the number of components predI is determined automatically
as follows ([3]): A new component h is added to the model if :
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Figure 2: PCA score plot colored according to gender. The displayed components can be specified with
parCompVi (plotting parameter specifying the Components: Vector of 2 integers)

(a) R2Y} > 1%, i.e., the percentage of Y dispersion (i.e., sum of squares) explained by component
h is more than 1%, and

(b) Q2Y), =1— PRESS)/RSSp—1 > 0 for PLS (or 5% when the number of samples is less than
100) or 1% for OPLS: Q2Y}, > 0 means that the predicted residual sum of squares (PRESS})
of the model including the new component h estimated by 7-fold cross-validation is less than
the residual sum of squares (RSSy_1) of the model with the previous components only (with
RS Sy being the sum of squared Y values).

2. The predictive performance of the full model is assessed by the cumulative Q2Y metric: Q2Y =

T

1— [I(1—Q2Y:). We have Q2Y € [0,1], and the higher the Q2Y, the better the performance.

Models trained on datasets with a larger number of features compared with the number of samples can
be prone to overfitting: in that case, high Q2Y values are obtained by chance only (see section 4.5.1).
To estimate the significance of Q2Y (and R2Y) for single response models, permutation testing can
be used [5]: models are built after random permutation of the Y values, and Q2Y),¢,,, are computed.
The p-value is equal to the proportion of Q2Y,crm above Q2Y (the default number of permutations
is 20 as a compromise between quality control and computation speed; it can be increased with the
permI parameter, e.g. to 1,000, to assess if the model is significant at the 0.05 level),

. The NIPALS algorithm is used for PLS (and OPLS); dataMatrix matrices with (a moderate amount
of) missing values can thus be analysed.

We see that our model with 3 predictive (pre) components has significant and quite high R2Y and Q2Y
values.
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Figure 3: PLS-DA model of the gender response. The default overview figure displays: Top left: signifi-
cance diagnostic: the R2Y and QQ2Y of the model are compared with the corresponding values obtained
after random permutation of the y response; Top right: inertia barplot: the graphic here suggests that 3
orthogonal components may be sufficient to capture most of the inertia; Bottom left: outlier diagnostics
(see Figure 1); Bottom right: X-score plot: the number of components and the cumulative R2X, R2Y
and Q2Y are indicated below the plot.

4.4 Orthogonal partial least squares: OPLS and OPLS-DA

To perform OPLS(-DA), we set orthoI (number of components which are orthogonal; Integer) to either
a specific number of orthogonal components, or to NA. Let us build an OPLS-DA model of the gender
response (Figure 4). Note that for OPLS modeling of a single response, the number of predictive component
is 1.

> sacurine.oplsda <- opls(dataMatrix, genderFc,
+ predI = 1, orthol = NA)

OPLS-DA
183 samples x 109 variables and 1 response
standard scaling of predictors and response(s)
R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
Total 0.275 0.73 0.602 0.262 1 2 0.05 0.05

Let us assess the predictive performance of our model. We first train the model on a subset of the samples
(here we use the odd subset value which splits the data set into two halves with similar proportions of
samples for each class; alternatively, we could have used a specific subset of indices for training):

> sacurine.oplsda <- opls(dataMatrix, genderFc, predIl = 1, orthol = NA, subset = "odd")

OPLS-DA
92 samples x 109 variables and 1 response
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Figure 4: OPLS-DA model of the gender response. In the (score plot), the predictive component is

displayed as abscissa and the (selected; default = 1) orthogonal component as ordinate.

standard scaling of predictors and response(s)
R2X(cum) R2Y(cum) Q2(cum) RMSEE RMSEP pre ort
Total 0.26 0.825 0.608 0.213 0.341 1 2

We compute the performances on the training subset:

> trainVi <- getSubsetVi(sacurine.oplsda)
> table(genderFc[trainVi], fitted(sacurine.oplsda))

M F
M50 O
F 0 42

We then compute the performances on the test subset:

> table(genderFc[-trainVi],

+ predict(sacurine.oplsda, dataMatrix[-trainVi, ]))
M F
M43 7
F 7 34

As expected, the predictions on the test subset are (slightly) lower. The classifier however still achieves

91% of correct predictions.

4.5 Comments
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4.5.1 Overfitting

Overfitting (i.e., building a model with good performances on the training set but poor performances on
a new test set) is a major caveat of machine learning techniques applied to data sets with more variables
than samples. A simple simulation of a random X data set and a y response shows that perfect PLS-DA
classification can be achieved as soon as the number of variables exceeds the number of samples, as detailed
in the example below (Figure 5; [14]). It is therefore essential to check that the Q2Y value of the model
is significant by random permutation of the labels.
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Figure 5: PLS overfit when the number of features exceeds the number of observations. A random matrix
X of 20 observations x 200 features was generated by sampling from the uniform distribution U(0,1). A
random y response was obtained by sampling (without replacement) from a vector of 10 zeros and 10 ones.
Top left, top right, and bottom left: the X-score plots of the PLS modeling of y by the (sub)matrix of X
restricted to the first 2, 20, or 200 features, are displayed (i.e., the observation/feature ratios are 0.1, 1,
and 10, respectively). Despite the good separation obtained on the bottom left score plot, we see that the
Q2Y estimation of predictive performance is low (negative). Bottom right: a significant proportion of the
models (in fact here all models) trained after random permutations of the labels have a higher Q2Y value
than the model trained with the true labels, confirming that PLS cannot specifically model the y response
with the X predictors, as expected.

> set.seed(123)

> obsI <- 20

> featVi <- c(2, 20, 200)

> featMaxI <- max(featVi)

> xRandMN <- matrix(runif(obsI * featMaxI), nrow = obsI)

> yRandVn <- sample(c(rep(0, obsI / 2), rep(l, obsI / 2)))
> layout (matrix(1:4, nrow = 2, byrow = TRUE))

> for(featI in featVi) {

+ randPlsi <- opls(xRandMN[, 1:featI], yRandVn,

+ predI = 2,
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permI = ifelse(featI == featMaxI, 100, 0),
plotL = FALSE)
plot(randPlsi, typeVc = "x-score", parDevNewL = FALSE,
parCexN = 1.3, parTitlelL = FALSE)
mtext (featI/obsI, font = 2, line = 2)
if (featl == featMaxI)
plot(randPlsi, typeVc = "permutation", parDevNewL = FALSE,
parCexN = 1.3)

F
mtext (" obs./feat. ratio:", adj = 0, at = 0, font = 2, line = -2, outer = TRUE)

4.5.2 VIP from OPLS models

The classical VIP metric is not useful for OPLS modeling of a single response since ([15, 13]):

1. VIP values remain identical whatever the number of orthogonal components selected,
2. VIP values are univariate (i.e., they do not provide information about interactions between variables).

In fact, when features are standardized, we can demonstrate a mathematical relationship between VIP and
p-values from a Pearson correlation test ([13]), as illustrated by the code below (Figure 6).

VIP

p-value

Figure 6: Relationship between VIP from one-predictive PLS or OPLS models with standardized variables,
and p-values from Pearson correlation test. The (p;, VIP;) pairs corresponding respectively to the VIP
values from OPLS modelling of the age response with the sacurine dataset, and the p-values from the
Pearson correlation test are shown as red dots. The y = ® (1 — 2/2)/2.ms curve is shown in red (where
®~! is the inverse of the probability density function of the standard normal distribution, and z,,,s is the
quadratic mean of the z; quantiles from the standard normal distribution; 2., = 2.6 for the sacurine
dataset and the age response). The vertical (resp. horizontal) blue line corresponds to univariate (resp.
multivariate) thresholds of p = 0.05 and VIP = 1, respectively ([13]).
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> ageVn <- sampleMetadatal[, "age"]

> pvaVn <- apply(dataMatrix, 2,

+ function(feaVn) cor.test(ageVn, feaVn)[["p.value"]])

> vipVn <- getVipVn(opls(dataMatrix, ageVn, predI = 1, orthol = NA, plot = FALSE))
> quantVn <- gqnorm(1 - pvaVn / 2)

> rmsQuantN <- sqrt(mean(quantVn~2))

> par(font = 2, font.axis = 2, font.lab = 2, las = 1,

+ mar = c(5.1, 4.6, 4.1, 2.1),

+ lwd = 2, pch = 16)

> plot(pvaVn, vipVn,

+ col = "red",

+ pch = 16,

+ xlab = "p-value", ylab = "VIP", xaxs = "i", yaxs = "i")

> box(1lwd = 2)

> curve(qnorm(1 - x / 2) / rmsQuantN, 0, 1, add = TRUE, col = "red", 1lwd = 3)
> abline(h = 1, col = "blue")

> abline(v = 0.05, col = "blue'")

The VIP properties above result from:

1. OPLS models of a single response have a single predictive component,

2. in the case of one-predictive component (O)PLS models, the general formula for VIPs can be simplified
to VIP; = \/m x |wj| for each feature j, were m is the total number of features and w is the vector
of loading weights,

3. in OPLS, w remains identical whatever the number of extracted orthogonal components,

for a single-response model, w is proportional to X'y (where ’ denotes the matrix transposition),

5. if X and y are standardized, X'y is the vector of the correlations between the features and the
response.

>

Galindo-Prieto et al. (2014) have recently suggested new VIP metrics for OPLS, VIP,.cq and VIPy.ip,,
to separately measure the influence of the features in the modeling of the dispersion correlated to, and
orthogonal to the response, respectively ([15]).

For OPLS(-DA) models, you can therefore get from the model generated with opls:

e the predictive VIP vector (which corresponds to the V1P, ,,.q metric measuring the variable impor-
tance in prediction) with getVipVn(model),

e the orthogonal VIP vector which is the V1P, ,.14, metric measuring the variable importance in
orthogonal modeling with getVipVn(model, orthoL = TRUE).

As for the classical VIP, we still have the mean of VIP2 (and of VIP? +ho) Which, each, equals 1.

pred or

4.5.3 (Orthogonal) Partial Least Squares Discriminant Analysis: (O)PLS-DA

Two classes When the y response is a factor of 2 levels (character vectors are also allowed), it is internally
transformed into a vector of values € {0, 1} encoding the classes. The vector is centered and unit-variance
scaled, and the (O)PLS analysis is performed.

Brereton and Lloyd (2014) have demonstrated that when the sizes of the 2 classes are unbalanced, a bias
is introduced in the computation of the decision rule, which penalizes the class with the highest size ([16]).
In this case, an external procedure using resampling (to balance the classes) and taking into account the
class sizes should be used for optimal results.
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Multiclass In the case of more than 2 levels, the y response is internally transformed into a matrix (each
class is encoded by one column of values € {0,1}). The matrix is centered and unit-variance scaled, and
the PLS analysis is performed.

In this so-called 'PLS2' implementation, the proportions of 0 and 1 in the columns is usually unbalanced
(even in the case of balanced size of the classes) and the bias described previously occurs ([16]). The
multiclass PLS-DA results from ropls are therefore indicative only, and we recommend to set an external
procedure where each column of the matrix is modeled separately (as described above) and the resulting
probabilities are aggregated (see for instance [17]).

4.6 Closing session

Before closing this example session, we detach sacurine from the search path:
> detach(sacurine)

4.7 Session information

> sessionInfo()

R version 3.2.3 (2015-12-10), x86_64-w64-mingw32

Locale: LC_COLLATE=French_France.1252, LC_CTYPE=French_France. 1252,
LC_MONETARY=French_France.1252, LC_NUMERIC=C, LC_TIME=French_France. 1252
Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Other packages: ropls 1.3.20

Loaded via a namespace (and not attached): BiocStyle 1.9.7, tools 3.2.3

5 Pre-processing and annotation of mass spectrometry data

To illustrate how dataMatrix, sampleMetadata and variableMetadata can be obtained from raw mass
spectra file, we use the LC-MS data from the faahKO package [18]. We will pre-process the raw files with
the xcms package [19] and annotate isotopes and adducts with the CAMERA package [20], as described
in the corresponding vignettes (all these packages are from bioconductor).

Let us start by getting the paths to the 12 raw files (6 KO and 6 WT mice) in the ".cdf” open format.
The files are grouped in two sub-directories ("KO" and "WT") since xcms can use sample class information
when grouping the peaks and correcting retention times.

> library(faahK0)

> cdfpath <- system.file("cdf", package = "faahK0")

> cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
> basename (cdffiles)

[1] "ko15.CDF" "ko16.CDF" "ko18.CDF" "ko19.CDF" "ko21.CDF" "ko22.CDF" "wt15.CDF"
[8] "wt16.CDF" "wt18.CDF" "wt19.CDF" "wt21.CDF" "wt22.CDF"

Next, xcms is used to pre-process the individual raw files, as described in the vignette.
> library(xcms)
> xset <- xcmsSet (cdffiles)

> xset
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An "xcmsSet" object with 12 samples

Time range: 2506.1-4147.7 seconds (41.8-69.1 minutes)
Mass range: 200.1-599.3338 m/z

Peaks: 4721 (about 393 per sample)

Peak Groups: O

Sample classes: KO, WT

Peak picking was performed on MS1.
Profile settings: method = bin

step = 0.1

Memory usage: 0.713 MB

> xset <- group(xset)

262 325 387 450 512 575

> xset2 <- retcor(xset, family = "symmetric", plottype = "mdevden")

Retention Time Correction Groups: 133

> xset2 <- group(xset2, bw = 10)

262 325 387 450 512 575

> xset3 <- fillPeaks(xset2)

Finally, the annotateDiffreport from CAMERA annotates isotopes and adducts and builds a peak table
containing the peak intensities and the variable metadata.

> library(CAMERA)
> diffreport <- annotateDiffreport(xset3, quick=TRUE)

Start grouping after retention time.
Created 128 pseudospectra.
Generating peak matrix!
Run isotope peak annotation
% finished: 10 20 30 40 50 60 70 80 90 100
Found isotopes: 81

> diffreport[1:4, ]

300.
301.
298.
491.

300

300

2/3390
2/3390
2/3187
2/3397

.2/3390
301.
298.
491.

2/3390
2/3187
2/3397

.2/3390
301.
298.

2/3390
2/3187

name fold tstat pvalue mzmed mzmin
M300T3390 5.693594 -14.44368 5.026336e-08 300.1898 300.1706

M301T3390 5.876588 -15.57570 6.705719e-08 301.1879 301.1659
M298T3187 3.870918 -11.93891 3.310025e-07 298.1508 298.1054
M491T3397 24.975703 -16.83986 4.463361e-06 491.2000 491.1877
rtmin rtmax npeaks KO WT kolb kol6 kol8
3386.765 3396.335 12 6 6 4534353.6 4980914.5 5290739.1
3386.765 3392.101 7 6 1 962353.4 1047934.1 1109303.0
3184.124 3191.312 4 4 0 180780.8 203927.0 191015.9
3367.123 3424.681 6 6 0 432037.0 332159.1 386966.8
ko21 ko22 wtlb wtl6 wtl8 wt19

4733236.1 3931592.6 349660.885 491793.18 645526.70 634108.85
984787.2 806171.5 86450.412 120096.52 143007.95 137319.69
156869.1 220288.6 16269.096 43677.78 54739.13 76318.01

mzmax rtmed
300.2000 3390.324
301.1949 3389.627
298.1592 3186.803
491.2063 3397.160
ko19
4564262.9
946943.4
190626.8
334951.5
wt21
1438254 .446
218483.143
54726.115
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491.2/3397 294816.2 373577.6  7643.138 10519.94 26472.29 33598.32 8030.467
wt22 isotopes adduct pcgroup

300.2/3390 1364627.84 (9] (M]+ 20
301.2/3390 291392.97 [9] [M+1]+ 20
298.2/3187  49679.94 102
491.2/3397 0.00 28

We then build the dataMatrix, sampleMetadata and variableMetadata matrix and dataframes as follows:

sampleVc <- grep(" kol wt", colnames(diffreport), value = TRUE)

dataMatrix <- t(as.matrix(diffreport[, sampleVc]))

dimnames (dataMatrix) <- list(sampleVc, diffreport[, "name"])

sampleMetadata <- data.frame(row.names = sampleVc,

genotypeFc = substr(sampleVc, 1, 2))

variableMetadata <- diffreport[, !(colnames(diffreport) 7inj, c("name", sampleVc))]
rownames (variableMetadata) <- diffreport[, "name"]

vV V. + VvV Vv Vv Vv

The data can now be analysed with the ropls package as described in the previous section (i.e. by performing
a PCA and an OPLS-DA):

> library(ropls)
> opls(dataMatrix)

PCA

12 samples x 400 variables

standard scaling of predictors
R2X(cum) pre ort

Total 0.588 2 0

> opls(dataMatrix, sampleMetadatal[, "genotypeFc"], orthoI = NA)

OPLS-DA
12 samples x 400 variables and 1 response
standard scaling of predictors and response(s)
R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
Total 0.739 0.993 0.823 0.0554 1 3 0.1 0.05

6 Other datasets

In addition to the sacurine dataset presented above, the package contains the following datasets to illustrate
the functionalities of PCA, PLS and OPLS (see the examples in the documentation of the opls function):

aminoacids Amino-Acids Dataset. Quantitative structure property relationship (QSPR; [1]).

cellulose NIR-Viscosity example data set to illustrate multivariate calibration using PLS, spectral filtering
and OPLS (Multivariate calibration using spectral data. Simca tutorial. Umetrics, Sweden).

cornell Octane of various blends of gasoline: Twelve mixture component proportions of the blend are
analysed [4].
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foods Food consumption patterns accross European countries (FOODS). The relative consumption of 20
food items was compiled for 16 countries. The values range between 0 and 100 percent and a high value
corresponds to a high consumption. The dataset contains 3 missing data [3].

linnerud Three physiological and three exercise variables are measured on twenty middle-aged men in a
fitness club [4].

lowarp A multi response optimization data set (LOWARP) [3].

mark Marks obtained by french students in mathematics, physics, french and english. Toy example to
illustrate the potentialities of PCA [21].
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