
Simulating molecular regulatory networks using qpgraph

Inma Tur1,3, Alberto Roverato2 and Robert Castelo1

May 17, 2016

1. Universitat Pompeu Fabra, Barcelona, Spain.

2. Università di Bologna, Bologna, Italy.

3. Now at Kernel Analytics, Barcelona, Spain.

1 Introduction

The theoretical substrate used by qpgraph to estimate network models of molecular regulatory interactions is that of
graphical Markov models (GMMs). A useful way to understand the underpinnings of these models is to simulate them
and simulate data from them. More importantly, these simulated data may serve the purpose of verifying properties of
GMM estimation procedures, such as correctness or asymptotic behavior. Here we illustrate the functionalities of qpgraph
to perform these simulations. If you use them in your own research, please cite the following article:

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov models. Genetics,
198(4):1377-1393, 2014.

The interface provided by qpgraph tries to comply with the available functions in the base R stats package for simulating
data from probability distributions and the names of functions described below for the purpose of simulating graphs,
models and data follow the convention:

r<objectclass>(n, ...)

where <objectclass> refers to the class of object (in a broad sense, not just a formal S3 or S4 class) being simulated
and n is the number of observations to simulate. Except for the case of data, since the simulated observations are other
than R atomic types of objects, when n > 1, these functions return simulated observations in the form of a list with n
elements.

2 Simulation of graphs

An undirected graph G is a mathematical object defined by a pair of sets G = (V,E) where V = {1, . . . , p} is the
vertex set and E ⊆ (V × V) is the edge set. In the context of GMMs labeled undirected graphs are employed to
represent conditional (in)dependences among random variables (r.v.’s) X = {X1, . . . , Xp} indexed by the vertices in
V whose values occur on equal footing. Stepwise data generating processes can be represented by directed graphs. In
the context of GMMs one may also consider so-called marked graphs, which are graphs with marked vertices grouped
into two subsets, one associated to discrete variables and another to continuous ones. A graph with a single type of
vertices, i.e., that is not marked, it is also called pure. Diferent types of graphs determine different GMM classes. For
a comprehensive description of different GMM classes and more elaborate descriptions of the terminology and notation
used in this vignette the reader may consult the book of Lauritzen (1996).

The first step to simulate a GMM consists of simulating its associated graph. While there are many R packages that
provide procedures to simulate graphs, qpgraph provides its own minimal functionality for this purpose tailored to ease
the downstream simulation of GMMs. This functionality allows the user to simulate undirected graphs according to two
main criteria, the type of graph (pure or marked) and the type of model to simulate the random graph.

1

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/stats/index.html
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 2

The simplest type of model to simulate random undirected graphs is the so-called Erdős-Rényi which is generated by
either including an edge between every pair of vertices with a pre-specified probability or drawing a graph uniformly at
random among those with a pre-specified number of edges. In the context of exploring the performance of GMM structure
estimation procedures under different degrees of sparseness of the underlying graph, it is handy to work with the so-called
d-regular graphs (Harary, 1969). These are graphs with a constant degree vertex d which, in one hand, make the graph
density a linear function of d and, on the other hand, bound the smallest minimal separator between any two vertices
(Castelo and Roverato, 2006, see pg. 2646).

To specify the parameters that define one specific type of graph we want to simulate qpgraph provides the following
functions that build parameter objects which can be used afterwards to simulate graphs through a single call to the
function rgraphBAM():

> library(qpgraph)

> args(erGraphParam)

function (p = 4L, m = 4L, prob = NA_real_, labels = as.character(1:p))

NULL

> args(erMarkedGraphParam)

function (pI = 1L, pY = 3L, m = 4L, prob = NA_real_, Ilabels = paste0("I",

1:pI), Ylabels = paste0("Y", 1:pY))

NULL

> args(dRegularGraphParam)

function (p = 4L, d = 2L, exclude = as.integer(NULL), labels = as.character(1:p))

NULL

> args(dRegularMarkedGraphParam)

function (pI = 1L, pY = 3L, d = 2L, exclude = as.integer(NULL),

Ilabels = paste0("I", 1:pI), Ylabels = paste0("Y", 1:pY))

NULL

As we can see from their default values, a single call without arguments already define some small graphs on 5 vertices:

> erGraphParam()

Erdos-Renyi pure graph parameter object

No. of pure vertices: 4

No. of edges: 4

Vertex labels: 1, 2, 3, 4

> erMarkedGraphParam()

Erdos-Renyi marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

No. of circle (Y) vertices: 3

No. of edges: 4

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

> dRegularGraphParam()

d-regular pure graph parameter object

No. of pure vertices: 4

Constant degree: 2

Vertex labels: 1, 2, 3, 4

> dRegularMarkedGraphParam()

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 3

d-regular marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

No. of circle (Y) vertices: 3

Constant degree: 2

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

The objects returned by these functions belong to different S4 classes derived from the following two main ones, graph-
Param and markedGraphParam:

> showClass("graphParam")

Class "graphParam" [package "qpgraph"]

Slots:

Name: p labels

Class: integer character

Known Subclasses: "erGraphParam", "dRegularGraphParam"

> showClass("markedGraphParam")

Class "markedGraphParam" [package "qpgraph"]

Slots:

Name: pI pY Ilabels Ylabels

Class: integer integer character character

Known Subclasses: "erMarkedGraphParam", "dRegularMarkedGraphParam"

While this level of detail is not crucial for the end-user, knowing the distinction between these two main types of graph
parameter objects, graphParam and markedGraphParam, may help to get more quickly acquainted with the type of
arguments we need in calls described below to simulate GMMs.

Finally, the function rgraphBAM() simulates one or more random graphs as objects of the class graphBAM defined in
the graph package. Its arguments are:

> args(rgraphBAM)

function (n, param, ...)

NULL

where n is the number of graphs to simulate (default n=1) and param is an object generated by one of the previous
parameter functions. A couple of minimal examples are:

> rgraphBAM(erGraphParam())

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> rgraphBAM(n=2, dRegularGraphParam())

[[1]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph

Simulating networks using qpgraph 4

I1 I2

Y1

Y2 Y3Y4

Y5

Y6

Y7

Y8

Y9

Y10

Figure 1: A random 3-regular marked undirected graph.

[[2]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

In a slightly more ellaborate example, if we would like to simulate a d-regular graph on 2 discrete vertices and 5 continuous
ones with a constant degree d = 3, we would make the following call to rgraphBAM(), which we previously seed to
enable the reader reproducing the same graph shown here:

> set.seed(1234)

> g <- rgraphBAM(dRegularMarkedGraphParam(pI=2, pY=10, d=3))

> plot(g)

where the last plot function call is defined (overloaded) in the qpgraph package to ease plotting the graph which is
displayed in Figure 1. This function uses the plotting capabilities from the Rgraphviz package and further arguments,
such as layoutType, can be passed downstream to the Rgraphviz plotting function to fine tune the display of the graph.

3 Simulation of undirected Gaussian GMMs

Undirected Gaussian GMMs are multivariate normal models on continuous r.v.’s XV = {X1, . . . , Xp} determined by an
undirected graph G = (V,E) with V = {1, . . . , p} and E ⊆ (V × V). In particular, the zero-pattern of the inverse
covariance matrix corresponds to the missing edges in G (Lauritzen, 1996). Therefore, simulating this type of GMM
amounts to simulate a covariance matrix whose inverse matches the missing edges of a given, or simulated, undirected
graph in its zero pattern and whose scaled covariance matches a given marginal correlation on the cells corresponding to
present edges. This can be easily accomplished with qpgraph using the function rUGgmm:

> args(rUGgmm)

function (n, g, ...)

NULL

where n corresponds to the number of undirected Gaussian GMMs we want to simulate (default n=1 and g corresponds
to either a graphParam object, a graphBAM object or a matrix. This depends on whether we want to simulate both the
graph and the covariance matrix underlying the GMM, by providing a graphParam object, or we just want to simulate
the covariance matrix given a graph specified as either a graphBAM object, an squared and symmetric adjacency matrix
or a two-column matrix describing an edge set. Examples of these are the following:

> rUGgmm(dRegularGraphParam(p=4, d=2))

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/Rgraphviz
http://bioconductor.org/packages/Rgraphviz
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 5

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

These three calls to rUGgmm() return objects of class UGgmm containing undirected Gaussian GMMs with an underlying
graph structure formed by a single undirected cycle on four vertices. The elements of an UGgmm object can be quickly
explored with the summary() function call:

> set.seed(12345)

> gmm <- rUGgmm(dRegularGraphParam(p=4, d=2))

> summary(gmm)

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

Graph density: 67%

Degree distribution of the undirected graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2 2 2 2 2

Distribution of marginal correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3352 0.5963 0.7587 0.6958 0.8582 0.9305

Distribution of partial correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.8236 -0.6656 -0.5352 -0.4232 -0.2928 0.2014

and the individual elements that are available to the user can be accessed as if it were a list object:

> class(gmm)

[1] "UGgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "p" "g" "mean" "sigma"

> gmm$X

[1] "1" "2" "3" "4"

> gmm$p

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 6

1

2 3

4

Figure 2: A 4-cycle undirected graph.

[1] 4

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean

[1] 0 0 0 0

> gmm$sigma

4 x 4 Matrix of class "dspMatrix"

1 2 3 4

1 1.1854830 0.8687971 1.0001179 0.4717917

2 0.8687971 0.9152916 0.7026960 0.6299566

3 1.0001179 0.7026960 0.9745280 0.3188662

4 0.4717917 0.6299566 0.3188662 0.9285910

We can also directly plot the UGgmm object to see the underlying undirected graph and, in this particular example, note
how the zeroes of the inverse covariance match the missing edges shown in Figure 2.

> plot(gmm)

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 9.5 -3.4 -7.2 0.0

2 -3.4 5.9 0.0 -2.3

3 -7.2 0.0 8.2 0.9

4 0.0 -2.3 0.9 2.3

Further arguments to rUGgmm() can be the desired mean marginal correlation derived from the cells of the covariance
matrix that match the present edges in the underlying graph (rho=0.5), the minimum tolerance at which the iterative
matrix completion algorithm that builds the covariance matrix stops (tol=0.001) and whether the function should report
progress on the calculations (verbose=FALSE). It is important to set the latter argument verbose=TRUE when we want
to simulate an undirected Gaussian GMM with more than, let’s say, 200 vertices, since around that number of vertices
and beyond the simulation of the covariance matrix becomes computationally demanding, specially when the underlying
graph is not very sparse. Further technical information on the algorithms employed to simulate the covariance matrix can
be found in the help pages of the qpgraph functions qpG2Sigma(), qpRndWishart(), qpIPF() and qpHTF() which are
called by the procedures described here.

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 7

Finally, to simulate multivariate normal observations from the undirected Gaussian GMM we just need to use the
rmvnorm() function from the mvtnorm package which is overloaded in the qpgraph package to take directly an UGgmm
object, as follows:

> rmvnorm(10, gmm)

1 2 3 4

[1,] 1.8203501 0.93389886 1.432134453 -0.1917191

[2,] 0.3276189 -0.04621885 0.004281742 0.8140006

[3,] 1.2455715 0.92583029 1.462412069 -0.1502647

[4,] -1.0649416 -1.43363508 0.025905355 -1.0810069

[5,] 0.8215409 0.92693851 0.457389128 1.0147731

[6,] 3.6015946 2.99690308 3.073395574 1.4028879

[7,] -0.3178426 0.04528419 -0.970752819 1.4148364

[8,] -0.9758867 -0.22685242 -1.549907669 -0.7448294

[9,] 1.6800263 0.99249248 1.773751270 -0.6969221

[10,] -0.0824054 0.09107758 -0.560575698 -0.2894250

Note that with sufficient data we can directly recover the zero-pattern of the inverse covariance matrix:

> set.seed(123)

> X <- rmvnorm(10000, gmm)

> round(solve(cov(X)), digits=1)

1 2 3 4

1 9.6 -3.4 -7.3 0.0

2 -3.4 5.9 0.0 -2.2

3 -7.3 0.0 8.1 0.9

4 0.0 -2.2 0.9 2.3

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 9.5 -3.4 -7.2 0.0

2 -3.4 5.9 0.0 -2.3

3 -7.2 0.0 8.2 0.9

4 0.0 -2.3 0.9 2.3

However, such a sample size would be exceptional and for more limited sample size but still with p < n the user may use
the qpgraph function qpPAC() which performs zero-partial correlation tests and when p� n, then the user may estimate
non-rejection rates Castelo and Roverato (2006) with the qpNrr() function and simplify the saturated model such that
it may become possible to apply qpPAC().

Obviously, gene expression data, either from microarrays or log-transformed count data, are far from being multivariate
normal. However, many available methods for estimating molecular regulatory networks from expression data, such as
qpgraph, make such an assumption and simulating data from undirected Gaussian GMMs can help us to test these
methods under a controlled experiment, learning their basic properties and obvious pitfalls with such a clean data.

4 Simulation of homogeneous mixed GMMs

Mixed GMMs are GMMs for multivariate data defined by mixed discrete and continuous r.v.’s, X = {I, Y } where
I = {I1, . . . , IpI

} denote discrete r.v.’s and Y = {Y1, . . . , YpY
} denote continuous ones. This class of GMMs are

determined by marked graphs G = (V,E) with p marked vertices V = ∆ ∪ Γ where ∆ = {1, . . . , pI} are plotted with
dots and index the discrete r.v.’s in I and Γ = {1, . . . , pY } are denoted by circles and index the continuous r.v.’s in Y .

In the context of molecular regulatory networks and, particularly, of genetical genomics data where we associate discrete
r.v.’s to genotypes and continuous ones to expression profiles, we make the assumption that discrete genotypes affect

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/mvtnorm
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 8

gene expression and not the other way around. Under this assumption, we will consider the underlying graph G not
only with mixed vertices but also with mixed edges, where some are directed and represented by arrows and some are
undirected. More concretely G will be a partially-directed graph with arrows pointing from discrete vertices to continuous
ones and undirected edges between continuous vertices. From this restricted definition of a partially-directed graph it
follows inmediately that there are no semi-directed (direction preserving) cycles and allows one to interpret these GMMs
also as chain graphs, which are graphs formed by undirected subgraphs connected by directed edges (Lauritzen, 1996).
Currently, the graph and Rgraphviz packages, in which qpgraph relies to handle and plot graph objects, do not directly
allow one to define and work with partially-directed graphs. However, in the functionality described below qpgraph tries
to hide to the user complications derived from this fact.

A second important assumption qpgraph makes is that the joint distribution of the r.v.’s in X is a conditional Gaus-
sian distribution (also known as CG-distribution) by which continuous r.v.’s follow a multivariate normal distribution
N|Γ|(µ(i),Σ(i)) conditioned on the joint levels i ∈ I from the discrete variables in I.

A third and final assumption is that the conditional covariance matrix is constant across i ∈ I, the joint levels of I,
i.e., Σ(i) ≡ Σ. This implies that we are actually simulating the so-called homogeneous mixed GMMs. In the context of
genetical genomics data, this assumption implies that genotype alleles affect only the mean expression level of genes and
not the correlations between them.

Two restrictions currently constain further the type of mixed GMMs we can simulate with qpgraph. The first one is that
discrete variables are simulated under marginal independence between them and the second one is that every continuous
variable cannot be associated to more than one discrete variable. As we shall see below, the first restriction does not apply
when simulating expression quantitative trait loci data in experimental crosses, as genotype marker data is simulated by
another package, the qtl ackage (Broman et al., 2003). We are working to remove the second restriction in the near
future and enable multiple discrete variables having linear additive effects and interaction effects, on a common continuous
variable.

Similarly to how we did it with undirected Gaussian GMMs, simulating mixed GMMs is done with a call to the function
rHMgmm():

> args(rHMgmm)

function (n, g, ...)

NULL

where n corresponds to the number of mixed GMMs we want to simulate (default n=1 and g corresponds to either
a markedGraphParam object, a graphBAM object or a matrix. Note that the first assumption made before enables
specifying the underlying partially-directed graph just as we did for an undirected one, since directed edges are completely
determined by the vertex type at their endpoints (discrete to continuous). Examples of these are the following:

> rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE), I=1)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE), I=1)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph
http://bioconductor.org/packages/Rgraphviz
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 9

These three calls to rHMgmm() return objects of class HMgmm containing homogenous mixed GMMs with an underlying
graph structured formed by one discrete vertex pointing to two continous ones which are themselves forming an undirected
connected component with a fourth vertex, all together forming an undirected cycle on four vertices. Just as with UGgmm
objects, the elements of an HMgmm object can be quickly explored with the summary() function call:

> set.seed(12345)

> gmm <- rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

> summary(gmm)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 2 edges.

Graph density: 33% (all edges) 33% (mixed edges) 67% (continuous edges)

Degree distribution of the vertices in the graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2 2 2 2 2

Distribution of marginal correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7822 0.8063 0.8304 0.8304 0.8545 0.8786

Distribution of partial correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7536 -0.6937 -0.6339 -0.6339 -0.5740 -0.5142

Distribution of additive linear effects for present mixed edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

and again the individual elements that are available to the user can be accessed as if it were a list object:

> class(gmm)

[1] "HMgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "I" "Y" "p" "pI" "pY" "g" "mean" "sigma"

[10] "a" "eta2"

> gmm$X

[1] "I1" "Y1" "Y2" "Y3"

> gmm$I

[1] "I1"

> gmm$Y

[1] "Y1" "Y2" "Y3"

> gmm$p

[1] 4

> gmm$pI

[1] 1

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 10

I1

Y1 Y2

Y3

Figure 3: Homogeneous mixed graphical (chain) model with one discrete variable and three continuous ones forming an
undirected cycle on four vertices.

> gmm$pY

[1] 3

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean()

Y1 Y2 Y3

1 0.4720734 0.9669291 0.7242007

2 1.4720734 1.9669291 1.7934027

> gmm$sigma

3 x 3 Matrix of class "dspMatrix"

Y1 Y2 Y3

Y1 0.3986118 0.6302970 0.4720734

Y2 0.6302970 2.1100639 0.9669291

Y3 0.4720734 0.9669291 0.7242007

> gmm$a

Y1 Y2 Y3

1 1 NA

> gmm$eta2

Y1 Y2 Y3

0.35494969 0.09638361 NA

We can also directly plot the HMgmm object and qpgraph will use the necessary instructions from the graph and Rgraphviz
libraries to display a partially-directed graph as the one shown in Figure 3.

> plot(gmm)

Further arguments to rHMgmm() are all we described previously for the rUGgmm() function plus the desired additive linear
effect (a=1) of the discrete levels (alleles in the genetics context) on the continuous variables (genes in the genetics
context). To simulate conditional multivariate normal observations from the homogeneous mixed GMM we use the
rcmvnorm() function, which uses its pure continuous counterpart rmvnorm() from the mvtnorm package, but which is
defined in the qpgraph package as it needs to calculate the corresponding conditional mean vectors µ(i):

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph
http://bioconductor.org/packages/Rgraphviz
http://cran.fhcrc.org/web/packages/mvtnorm/index.html
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 11

> rcmvnorm(10, gmm)

I1 Y1 Y2 Y3

1 1 0.69288009 0.78201846 0.84474686

2 1 -0.07511924 -2.25118979 -0.07484308

3 1 0.30898513 2.16129006 0.45379595

4 1 0.44373890 1.73438953 0.69000584

5 1 0.03144977 1.35426519 0.95480862

6 1 -0.34614962 0.13665093 -0.45059696

7 2 1.45888312 1.52702362 1.81217248

8 1 0.17087970 0.19890662 0.67766218

9 1 0.32224897 0.05164234 1.09247428

10 2 1.39579255 0.68223679 1.48814816

Note that with sufficient data we can directly recover the zero-pattern of the inverse conditional covariance matrix:

> set.seed(123)

> X <- rcmvnorm(10000, gmm)

> csigma <- (1/10000)*sum(X[, gmm$I] == 1)*cov(X[X[, gmm$I]==1, gmm$Y]) +

+ (1/10000)*sum(X[, gmm$I] == 2)*cov(X[X[, gmm$I]==2, gmm$Y])

> round(solve(csigma), digits=1)

Y1 Y2 Y3

Y1 11.1 0.0 -7.2

Y2 0.0 1.2 -1.6

Y3 -7.2 -1.6 8.3

> round(solve(gmm$sigma), digits=1)

Y1 Y2 Y3

Y1 11.0 0.0 -7.2

Y2 0.0 1.2 -1.6

Y3 -7.2 -1.6 8.2

and that the sample sample mean vectors and additive effects approach the ones specified in the model according to the
mixed associations between the discrete and continuous variables:

> smean <- apply(X[, gmm$Y], 2, function(x, i) tapply(x, i, mean), X[, gmm$I])

> smean

Y1 Y2 Y3

1 0.4637072 0.942311 0.7123249

2 1.4657407 1.985921 1.7951299

> gmm$mean()

Y1 Y2 Y3

1 0.4720734 0.9669291 0.7242007

2 1.4720734 1.9669291 1.7934027

> abs(smean[1,] - smean[2,])

Y1 Y2 Y3

1.002033 1.043610 1.082805

> gmm$a

Y1 Y2 Y3

1 1 NA

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 12

5 Simulation of eQTL models of experimental crosses

We illustrate in this section how we can use qpgraph in conjunction with the qtl package (Broman et al., 2003) to
simulate expression quantatitve trait loci (eQTL) models of experimental crosses and data from them. This functionality
employs the previously described procedures to simulate an homogeneous mixed GMM that represents the underlying
model of regulatory cis-eQTL, trans-eQTL and gene-gene associations, although this fact appears hidden to the user.

More concretely, the qpgraph package defines an object class called eQTLcross which basically holds a genetic map of the
genotype markers (as defined by the map class in the qtl package from Broman et al., 2003) and an homogeneous mixed
GMM defining the underlying molecular regulatory network that connects genotypes with genes and genes themselves,
where we use the term gene to refer to a gene expression profile.

In a similar vein to the way we simulated before graphs and GMMs, we need to create a parameter object that defines
the main features of the eQTL model we want to simulate. This is done through the function eQTLcrossParam() which
by default defines some minimal eQTL model:

> eQTLcrossParam()

eQTL backcross parameter object defining 20 markers,

20 genes, 20 cis-eQTL and 0 trans-eQTL.

cis-eQTL associations occur within 1.0 cM of a gene

and all eQTL are located at 0.0 cM from a marker.

Gene network parameters are defined by a

d-regular pure graph parameter object

No. of pure vertices: 20

Constant degree: 2

Vertex labels: g1, g2, g3, g4, g5, g6 ...

> args(eQTLcrossParam)

function (map = do.call("class<-", list(list(`1` = do.call("class<-",

list(do.call("names<-", list(seq(1, 100, length.out = 20),

paste0("m", 1:20))), "A"))), "map")), type = "bc", genes = 20,

cis = 1, trans = as.integer(NULL), cisr = 1, d2m = 0, networkParam = dRegularGraphParam())

NULL

To simulate an eQTLcross object qpgraph provides the function reQTLcross() giving as first argument the number of
eQTLcross objects we want to simulate and a eQTLcrossParam object:

> reQTLcross(n=2, eQTLcrossParam())

[[1]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

[[2]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

When the first argument n is omitted, then n=1 is assumed by default. Other arguments to reQTLcross() are the
mean marginal correlation between genes (rho=0.5), the magnitude of the linear additive effect of the simulated eQTL

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 13

associations (a=1), the minimum tolerance of the matrix completion algorithm that is involved in the construction of the
conditional covariance matrix (tol=0.001) and whether progress on the calculations should be shown verbose=FALSE.

To simulate a larger eQTLcross object we need to simulate a genetic map using the sim.map() function from the qtl
package (Broman et al., 2003), which should be loaded first. Since qpgraph overloads the qtl function sim.cross(),
which will be used later to simulate data from an eQTLcross object, we will detach qpgraph before loading qtl , and load
qpgraph again.

> detach("package:qpgraph")

> library(qtl)

> library(qpgraph)

> map <- sim.map(len=rep(100, times=20),

+ n.mar=rep(10, times=20),

+ anchor.tel=FALSE,

+ eq.spacing=FALSE,

+ include.x=TRUE)

and using it in combination with a larger number of genes (50) we can easily simulate this larger eQTLcross object:

> eqtl <- reQTLcross(eQTLcrossParam(map=map, genes=50))

> class(eqtl)

[1] "eQTLcross"

attr(,"package")

[1] "qpgraph"

> eqtl

eQTL backcross model with 200 markers, 50 genes,

50 eQTL and 50 gene-gene expression associations.

which, as we can see, it corresponds a backcross model with 50 genes each of them associated to a cis-eQTL, and with
a certain underlying gene network embedded into an homogeneous mixed GMM that forms part of this object and which
can be accessed as follows:

> eqtl$model

Homogeneous mixed graphical Markov model

with 50 discrete and 50 continuous r.v., and 100 edges.

A dot plot describing the eQTL associations along the given genetic map can be obtained by calling the plot function
with the eQTLcross object as argument. In Figure 4 we see on the right panel such a plot, and on the left panel the
genetic map plotted by the plot function defined in the qtl package (Broman et al., 2003) to plot genetic maps.

> par(mfrow=c(1,2))

> plot(map)

> plot(eqtl, main="eQTL model with cis-associations only")

A somewhat more complex eQTL model with trans associations can be simulated by using the trans argument as follows:

> set.seed(123)

> eqtl <- reQTLcross(eQTLcrossParam(map=map, genes=50,

+ cis=0.5, trans=c(5, 5)), a=5)

In this call, cis=0.5 indicates that 50% of the genes should have cis-eQTL associations and among the remaining ones,
10 will be associated to two trans-eQTL affecting 5 genes each of the two. We have also increased the default additive
linear effect from the default value a=1 to a=5 which corresponds to a very strong linear additive effect from genotype
markers on gene expression. We can examine the cis and trans associations of the eQTLcross object with the ciseQTL()

and transeQTL() functions:

> head(ciseQTL(eqtl))

http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 14

100

80

60

40

20

0

Chromosome

Lo
ca

tio
n

(c
M

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Genetic map eQTL model with cis−associations only

eQTL location
G

en
e

lo
ca

tio
n

1 2 3 5 6 7 8 9 11 13 15 17 19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 4: A genetic map simulated with the qtl package (Broman et al., 2003) on the left, and on the right, an eQTL
model simulated using the genetic map with the qpgraph package.

chrom location QTL gene a

1 1 70.72429 QTL1 g2 5

2 1 75.47459 QTL2 g3 5

3 2 84.48877 QTL3 g4 5

4 5 51.34596 QTL4 g10 5

5 6 70.81028 QTL5 g15 5

6 6 78.35164 QTL6 g16 5

> transeQTL(eqtl)

chrom location QTL gene a

1 14 32.70995 QTL17 g6 5

2 14 32.70995 QTL17 g9 5

3 14 32.70995 QTL17 g13 5

4 14 32.70995 QTL17 g14 5

5 14 32.70995 QTL17 g24 5

6 18 88.54678 QTL24 g5 5

7 18 88.54678 QTL24 g18 5

8 18 88.54678 QTL24 g22 5

9 18 88.54678 QTL24 g36 5

10 18 88.54678 QTL24 g37 5

and examine where the eQTL associations occur and what genes map to trans-eQTL, as shown in Figure 5.

> plot(eqtl, main="eQTL model with trans-eQTL")

Using this eQTLcross object we can simulate data from the corresponding experimental cross with the function sim.cross()

from the qtl package (Broman et al., 2003) but which is overloaded in qpgraph to plug the eQTL associations into the
corresponding genetic loci:

> set.seed(123)

> cross <- sim.cross(map, eqtl)

http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph 15

eQTL model with trans−eQTL

eQTL location

G
en

e
lo

ca
tio

n

1 2 3 5 6 7 8 9 11 13 15 17 19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 5: An eQTL model including trans-acting associations simulated using the genetic map from Fig. 4.

> cross

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 100

No. phenotypes: 50

Percent phenotyped: 100

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

X chr: X

Total markers: 200

No. markers: 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

Percent genotyped: 100

Genotypes (%):

Autosomes: AA:51.7 AB:48.3

X chromosome: AA:50.6 AB:49.4

Note that here, the genotype data is simulated by the procedures implemented in the qtl package (Broman et al., 2003)
and qpgraph adds to that simulation the eQTL and gene network associations. Thus, while the rHMgmm() function
described in the previous section, does not simulate correlated discrete variables, here the genotypes will be correlated
according to the input arguments of the sim.cross() function in qtl (mainly, the map.function argument that converts
genetic distances into recombination fractions) and which can be passed through the previous call to sim.cross().

Let’s focus on a specific simulated eQTL, concretely on the second one of the following list:

http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 16

0 20 40 60 80

0

5

10

15

20

25

30

35

Map position (cM)

LO
D

 s
co

re

g3
g1
g13

Figure 6: Profile of LOD scores for three genes with direct and indirect eQTL.

> allcis <- ciseQTL(eqtl)

> allcis[allcis$chrom==1,]

chrom location QTL gene a

1 1 70.72429 QTL1 g2 5

2 1 75.47459 QTL2 g3 5

> gene <- allcis[2, "gene"]

> chrom <- allcis[2, "chrom"]

> location <- allcis[2, "location"]

Find out the genes connected to gene g3 in the underlying regulatory network:

> connectedGenes <- graph::inEdges(gene, eqtl$model$g)[[1]]

> connectedGenes <- connectedGenes[connectedGenes %in% eqtl$model$Y]

> connectedGenes

[1] "g1" "g13"

Now, using the qtl package (Broman et al., 2003) and its scanone() function, we perform a simple QTL analysis by
single marker regression using the expression profiles from genes g3, g1, g13 as phenotypes:

> out.mr <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes))

By using the plotting functionalities of the qtl package (Broman et al., 2003) we can examine the LOD score profile of
these three genes on chromosome 1 where the eQTL of gene g3 is located:

> plot(out.mr, chr=chrom, ylab="LOD score", lodcolumn=1:3, col=c("black", "blue", "red"), lwd=2)

> abline(v=allcis[allcis$gene == gene, "location"])

> legend("topleft", names(out.mr)[3:5], col=c("black", "blue", "red"), lwd=2, inset=0.05)

http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 17

We can observe in Figure 6 that not only the directly associated gene g3 seems to have an eQTL at position 75.5 cM,
but also the genes g1, g13 connected to g3 in the underlying gene network. Using a permutation procedure implemented
in qtl , we calculate LOD score threholds that yield genome-wide statistical significant eQTL associations:

> out.perm <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes),

+ n.perm=100, verbose=FALSE)

> summary(out.perm, alpha=c(0.05, 0.10))

LOD thresholds (100 permutations)

g3 g1 g13

5% 2.53 2.68 2.71

10% 2.34 2.45 2.49

and examine which genotype markers yield such significant associations to these the expression profiles of these genes:

> summary(out.mr, perms=out.perm, alpha=0.05)

chr pos g3 g1 g13

D1M9 1 75.5 33.70 20.09 4.53

D14M3 14 22.9 3.14 2.62 10.15

Notice that the directly associated gene g3 as well as the indirectly associated ones g1, g13 have genome-wide significant
LOD scores on the same eQTL located at 75.5 cM in chromosome 1.

6 Session information

> toLatex(sessionInfo())

� R version 3.3.0 (2016-05-03), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils
� Other packages: AnnotationDbi 1.34.2, Biobase 2.32.0, BiocGenerics 0.18.0, GenomeInfoDb 1.8.2, IRanges 2.6.0,

Rgraphviz 2.16.0, S4Vectors 0.10.0, XML 3.98-1.4, annotate 1.50.0, genefilter 1.54.2, graph 1.50.0,
org.EcK12.eg.db 3.3.0, qpgraph 2.6.1, qtl 1.39-5

� Loaded via a namespace (and not attached): BiocParallel 1.6.2, BiocStyle 2.0.2, Biostrings 2.40.0, DBI 0.4-1,
GenomicAlignments 1.8.0, GenomicFeatures 1.24.2, GenomicRanges 1.24.0, Matrix 1.2-6, RCurl 1.95-4.8,
RSQLite 1.0.0, Rsamtools 1.24.0, SummarizedExperiment 1.2.2, XVector 0.12.0, biomaRt 2.28.0, bitops 1.0-6,
lattice 0.20-33, mvtnorm 1.0-5, rtracklayer 1.32.0, splines 3.3.0, survival 2.39-4, tools 3.3.0, xtable 1.8-2,
zlibbioc 1.18.0

References

Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003). R/qtl: Qtl mapping in experimental crosses. Bioinformatics,
19(7):889–90.

Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical model search from microarray data with
p larger than n. J Mach Learn Res, 7:2621–2650.

Harary, F. (1969). Graph theory. Addison-Wesley.

Lauritzen, S. (1996). Graphical models. Oxford University Press.

http://bioconductor.org/packages/qpgraph
http://cran.fhcrc.org/web/packages/qtl/index.html

	1 Introduction
	2 Simulation of graphs
	3 Simulation of undirected Gaussian GMMs
	4 Simulation of homogeneous mixed GMMs
	5 Simulation of eQTL models of experimental crosses
	6 Session information

