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1 Abstract

This package provides methods to calculate flow cytometer’s detection efficiency (Q) and back-
ground illumination (B) by analyzing LED pulses and multi-level bead sets. The method im-
proves on previous formulations Wood (1998); Hoffman and Wood (2007); Chase and Hoffman
(1998) by fitting a full quadratic model with appropriate weighting, and by providing standard
errors and peak residuals as well as the fitted parameters themselves. K-means clustering is
incorporated for automated peak detection of multi-peak data. Overall, this method is suc-
cessful in providing good estimates of the Spe scales and backgrounds for all of the fluorescence
channels on instruments with good linearity. Known photoelectron scales and measurement
channel backgrounds make it possible to estimate the precision of measurements at different
signal levels and the effects of compensated spectral overlap on measurement quality.

2 Get the Latest Version

Examples in this vignette, documentation and unit tests are mostly dependent on data that is
available in the flowQBData library. This library is available as of BioConductor 3.4. You are
looking at a vignetter based on BioConductor 3.3. Therefore, we had to comment out most ex-
ecutable examples in order for this to compile. Please install flowQBData manually if you want
to run those examples. Or even better, please use the latest devel version of flowQB, which is
available from http://bioconductor.org/packages/devel/bioc/html/flowQB.html. That
way, all the examples etc. will work properly.

∗This project was supported by the Terry Fox Foundation, the Terry Fox Research Institute and the Canadian
Cancer Society. Josef Spidlen is an ISAC Marylou Ingram Scholar.
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3 Introduction

The basic measurement capabilities of a fluorescence cytometer measurement channel can be
estimated by knowing just two values: Q, the statistical number of photoelectrons (Spe) gen-
erated per unit of dye in the sample, and B, the background light in dye equivalents that sets
the minimum variance that underlies all measurements. From these the minimum detectable
amount of dye and the precision of measurements at different signal levels can be calculated.
Therefore, measurements of Q and B are the key to making valid comparisons between different
instruments and among different channels on an instrument.

We can achieve full specification of Q and B in two steps by evaluating photoelectron
scales for the measurement channels of interest and relating those to measurements on dye
reference samples. There are problems and challenges in implementing each step in a way
that is convenient and accurate in routine use. Here we address the photoelectron scale aspect
by providing reliable automated software for obtaining the needed information from LED or
multi-level, multi-dye bead data.

When a cell or particle moves through a sensing area on a flow cytometer, a focused laser
beam excites fluorescent dyes that emit a pulse of light in all directions. The optical system
collects some of this light and passes it through optical filters to the cathodes of one or more
PMT detectors where a fraction of the photons generate photoelectrons. The photoelectrons are
amplified through a series of dynodes to produce an output current pulse. The photoelectron
production is a Poisson process, so the variance of signals at a particular level is proportional
to the signal level itself. Since the amplification process through the dynodes introduces some
additional variance, we introduce the term “statistical photoelectrons” or Spe to denote the
effective Poisson number relating signal levels and their variances.

Since it is difficult to measure photoelectron counts directly, the usual method for esti-
mating photoelectron scales has been to measure uniform light signals at various levels and
fit the measured means and variances to a statistical model involving the Poisson distribu-
tion expectations for the relation between them. Historically, two kinds of signal source have
been used: an LED light source producing very uniform pulses at adjustable signal levels or
microspheres (also called “beads”) labeled with several different concentrations of a mixture
of fluorescent dyes. The model can be expressed as a second-degree (quadratic) polynomial
relating the observed signal means and variances to Q, B and, for microsphere samples, CV0,
a common non-statistical variability in the measurements of the different microsphere peaks.

For measurements on a population of similar particles like one of the populations in a multi-
level bead set, the observed variance should be the sum of the electronic noise, background light
not associated with the particles, Poisson variance related to the signal levels of the particles,
the variation in dye amount among the particles and illumination variations due to particles
taking different flow paths through the laser beam. The electronic noise and background light
combine into a variance contribution that is not dependent on the signal level. The Poisson
variance is proportional to the signal level, and the dye and illumination variations combine
to form CV0 whose contribution to the variances goes with the square of the signal level.
Therefore, the general equation for the observed variance can be expressed as

V (MI) = c0 + c1MI + c2M
2
I

where MI is the mean signal of the population in measurement intensity units, and V (MI) is
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the observed variance of a population with mean MI . Methods implemented in this package
fit sets of mean and variance data points with this equation to obtain the parameters c0, c1
and c2. If we scale the signal levels in Spe, we can define BSpe as the effective background level
in Spe and MSpe as the mean signal in Spe. Then, defining QI as the Spe per intensity unit,
as explained in our paper Parks et al. (2016), we can calculate

BSpe = c0/c
2
1

QI = 1/c1

CV 2
0 = c2

4 Requirements

The flowQB package requires the flowCore library in order to read FCS files Spidlen et al.
(2010), the stats package for its model fitting and also K-means clustering functionality, the
extremevalues package to determine outliers, and it also makes use of some basic functions
and classes from the methods and BiocGenerics packages. In addition, we suggest installing
the flowQBData package, which contains example data sets to demonstrate the functionality
of this package. Alternatively, one can use the FlowRepositoryR package in order to work
directly with data stored in FlowRepository. In addition, we recommend the xlsx package in
order to parse house-keeping information from MS Excel spreadsheets. Finally, we use the
RUnit package in order to implement unit tests assuring consistency and reproducibility of
the flowQB functionality over time. Let’s start by loading the flowQB package as well as the
flowQBData package with data to demonstrate the functionality of this package.

> library("flowQB")

> ## library("flowQBData")

> ## flowQBData is available since BioConductor 3.4, please install it

> ## manually in order to be able to run examples in this vignette

5 Fitting LED pulser data

An LED light pulser is producing very uniform pulses at adjustable signal levels. White LEDs
provide some signal at all visible wavelengths, but the far-red emission is weak. A given LED
pulse level will generate quite different photoelectron signals on different detectors, so it is
important to collect data over a wide range of LED levels to assure that the measurement
series on each detector will include the low, middle and high level signals needed for optimal
results in the fitting procedure. The fit_led function assumes that data generated by different
LED levels are provided as separate FCS files. These files are passed to the fit_led function
in the form of a vector of FCS file paths. In addition, house keeping details about the data
and the way the fitting procedure should be performed need to be provided, resulting in the
following list of arguments:

� fcs_file_path_list – A vector of FCS file paths pointing to data generated by an LED
pulser set to a range of LED levels; different levels generated different FCS files, all data
coming from a single instrument.
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� ignore_channels – A vector of short channel names (values of the $PnN keywords)
specifying channels that should not be considered for the fitting procedure. Normally,
those should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

� dyes – A vector of dye names that you would normally use with the detectors specified
below. This value does not affect the fitting, but those dyes will be “highlighted” in the
provided results.

� detectors – A vector of short channel names (values of the $PnN keywords) specifying
channels matching to the dyes specified above. The length of this vector shall correspond
to the length of the dyes vector. These channels should be all of the same type as specified
by the signal_type below, i.e., area, height or width of the measured signal.

� signal_type – The type of the signal specified as the “area”, “height” or “width”. This
should match to the signal type that is being captured by the channels specified in the
detectors argument. The signal type is being used in order to trigger type-specific peak
validity checks. Currently, if signal type equals to “height” then peaks with a mean value
lower than the lowest peak mean value are omitted from the fitting. In addition, peaks
that are not sufficiently narrow (i.e., exceeding a specific maximum CV) are also omitted
from the fitting. Currently, the maximum allowed CV is set to 0.65, but the code is
designed to make this user-configurable and signal type dependent eventually.

� instrument_name – The make/model of the instrument. The purpose if this argument
is to allow for instrument-specific peak validity checks. At this point, if “BD Accuri” is
passed as the instrument type, then peaks with a mean value lower than the lowest peak
mean value are omitted from the fitting. Additional instrument-specific peak validity
checks may be implemented in the future.

� bounds – On some instruments, the lowest LED peaks may be cut off at a data baseline so
that the peak statistics will not be valid. Therefore, peaks too close to the baseline need
to be excluded from the fitting. Also, many instruments do not maintain good linearity to
the full top of scale, so it is also important to specify a maximum level for good linearity
and, on each fluorescence channel, exclude any peak that is above that maximum. The
bounds argument shall provide a list specifying the minimum and maximum value for
the means of valid peaks; peaks with means outsize of this range will be ignored for that
particular channel.

� minimum_useful_peaks – Different peaks may be omitted for different channels due to
various validity checks described above. This argument specifies the minimal number of
valid peaks required in order for the fitting procedure to be performed on a particular
fluorescence channel. Generally, fitting the three quadratic parameters requires three
valid points to obtain a fit at all, and 4 or more points are needed to obtain error
estimates. Requiring higher values would exclude some of your data but likely produce
better results.

� max_iterations – The peaks have a wide range of variances, so unweighted least squares
fitting is not appropriate, and we need to apply appropriate weights in the fitting proce-
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dure. In particular, the populations with lower variances get more weight since having
the fit miss them by any particular amount is worse than missing a high variance popu-
lation by the same amount. This argument specifies the maximum number of iterations
for the iterative fitting approach with appropriate weight recalculations. In most cases,
the fitting converges relatively fast. The iterating stops when either the maximum of
iterations is used or if none of the coefficients of the model changed more than 0.00005.
The default maximum of 10 iterations seems to be enough in most cases. You can also
explore your results in order to see how many iterations were actually done for each of
the all of the fitting.

> ## Example is based on LED data from the flowQBData package

> fcs_directory <- system.file("extdata", "SSFF_LSRII", "LED_Series",

+ package="flowQBData")

> fcs_file_path_list <- list.files(fcs_directory, "*.fcs", full.names= TRUE)

> ## We are working with these FCS files:

> basename(fcs_file_path_list)

> ## Various house keeping information

> ## - Which channels should be ignored, typically the non-fluorescence

> ## channels, such as the time and the scatter channels

> ignore_channels <- c("Time",

+ "FSC-A", "FSC-W", "FSC-H",

+ "SSC-A", "SSC-W", "SSC-H")

> ## - Which dyes would you typically use with the detectors

> dyes <- c("APC", "APC-Cy7", "APC-H7", "FITC", "PE", "PE-Cy7", "PerCP",

+ "PerCP-Cy55", "V450", "V500-C")

> ## - What are the corresponding detectors, provide a vector of short channel

> ## names, i.e., values of the $PnN FCS keywords.

> detectors <- c("APC-A", "APC-Cy7-A", "APC-Cy7-A", "FITC-A", "PE-A", "PE-Cy7-A",

+ "PerCP-Cy5-5-A", "PerCP-Cy5-5-A", "Pacific Blue-A", "Aqua Amine-A")

> ## - The signal type that you are looking at (Area, Height or Width)

> signal_type <- "Area"

> ## - The instrument make/model

> instrument_name <- 'LSRII'

> ## - Set the minimum and maximum values, peaks with mean outsize of this range

> ## will be ignored

> bounds <- list(minimum = -100, maximum = 100000)

> ## - The minimum number of usable peaks (represented by different FCS files

> ## in case of an LED pulser) required in order for a fluorescence channel

> ## to be included in the fitting. Peaks with mean expression outside of the

> ## bounds specified above are omitted and therefore not considered useful.

> ## Fitting the three quadratic parameters requires three valid points to obtain

> ## a fit at all, and 4 or more points are needed to obtain error estimates.

> minimum_fcs_files <- 3

> ## - What is the maximum number of iterations for iterative fitting with

> ## weight adjustments
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> max_iterations <- 10 # The default 10 seems to be enough in typical cases

> ## Now, let's calculate the fitting

> led_results <- fit_led(fcs_file_path_list, ignore_channels, dyes,

+ detectors, signal_type, instrument_name, bounds = bounds,

+ minimum_useful_peaks = minimum_fcs_files, max_iterations = max_iterations)

The results of the fit_led function is a list with the following components:

� peak_stats – A list with summary stats for each of the channels for all the different peaks
(represented by different FCS files). For each of the channels, peak stats are captured by
a data frame with rows corresponding to the different peaks (FCS files) and the following
columns:

– N: the number of events in the peak

– M: the mean expression value for that peak

– SD: the standard deviation for that peak

– V: the variance for that peak (square of standard deviation)

– W: the weight of that peak

– Omit: was the peak omitted from the fitting? (TRUE or FALSE)

– QR: the residuals of the quadratic fitting

– LR: the residuals of the linear fitting

– QR-I: the residuals of the iterative quadratic fitting

– LR-I: the residuals of the iterative linear fitting

The values of W, QR, LR, QR-I and LR-I will be NA if Omit is TRUE.

> ## We have stats for these channels

> names(led_results$peak_stats)

> ## Explore the peak stats for a randomly chosen channel (PE-Cy7-A)

> ## Showing only the head in order to limit the output for the vignette

> head(led_results$peak_stats$`PE-Cy7-A`)

� bg_stats – A data frame with background stats for each channel. These stats are a
convenience way to look at peak stats of the lowest peak. The columns of the data frame
correspond to the different channels, and there are the following rows:

– N: the number of events in the lowest peak

– M: the mean expression value for the lowest peak

– SD: the standard deviation for the lowest peak

� dye_bg_stats – A data frame with background stats for each “dye”. These are the
same stats as bg_stats described above, but the columns will only be restricted to the
detectors/dyes that were listed as arguments of the fit_led call. The column headings
are converted from channel names (detectors) to “dyes” as per the mapping supplied by
the detectors and dyes arguments. The rows of the data frame are the same as with the
bg_stats described above.
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> ## Explore bg_stats

> led_results$bg_stats

> ## Explore dye_bg_stats

> led_results$dye_bg_stats

� fits – For the LED analysis, results are reported for both quadratic fitting and linear
fitting (effectively fixing CV0 = 0). Since the uniformity of LED signal outputs is likely
to be better than the ability of the cytometer electronics to evaluate them, the c2 term
in a quadratic fit should be very close to zero with a small standard error. If the results
of the quadratic fit are consistent with CV0 = 0, we can rely on the linear fit results
whose standard errors on c1 will generally be smaller than the c1 standard errors of the
quadratic fit.

The fits item contains a data frame with fits for each of the channels. The columns of
the data frame correspond to the different channels. The rows of the data frame capture
the coefficients of both, quadratic fitting and linear fitting as follows:

– c0: value of the c0 coefficient of the quadratic fitting

– c0 SE: standard error of the c0 coefficient of the quadratic fitting

– c0 P: the P-value for the c0 coefficient of the quadratic fitting

– c1: value of the c1 coefficient of the quadratic fitting

– c1 SE: standard error of the c1 coefficient of the quadratic fitting

– c1 P: the P-value for the c1 coefficient of the quadratic fitting

– c2: value of the c2 coefficient of the quadratic fitting

– c2 SE: standard error of the c2 coefficient of the quadratic fitting

– c2 P: the P-value for the c2 coefficient of the quadratic fitting

– c0’: value of the c0 coefficient of the linear fitting

– c0’ SE: standard error of the c0 coefficient of the linear fitting

– c0’ P: the P-value for the c0 coefficient of the linear fitting

– c1’: value of the c1 coefficient of the linear fitting

– c1’ SE: standard error of the c1 coefficient of the linear fitting

– c1’ P: the P-value for the c1 coefficient of the linear fitting

� dye_fits – A data frame with fits for each “dye”. These are the same stats as fits

described above, but the columns will only be restricted to the detectors/dyes that were
listed as arguments of the fit_led call. The column headings are converted from channel
names (detectors) to “dyes” as per the mapping supplied by the detectors and dyes
arguments. The rows of the data frame are the same as with the fits described above.

� iterated_fits – A data frame with fits for each of the channels in the same way as for
the fits described above, but based on iterative fitting with weights adjustments.

� iterated_dye_fits – A data frame with fits for each of the “dyes” in the same way as
for the dye_fits described above, ut based on iterative fitting with weights adjustments.
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> ## Explore dye_fits

> ## fits are the same rows but columns corresponding to all channels

> led_results$dye_fits

> ## Explore iterated_dye_fits

> ## iterated_fits are the same rows but columns corresponding to all channels

> led_results$iterated_dye_fits

The Q, B and intrinsic CV0 can be extracted from the fits using the equations shown
in the introduction. For your convenience, this is implemented in the qb_from_fits

function as shown below in this vignette.

� iteration_numbers – A data frame with rows corresponding to all the different channels
and 2 columns, Q and L, showing the number of iterations used for the quadratic and
linear fitting, resp. This data frame can be reviewed in order to make sure the fitting is
converging fast enough and the max_iterations parameter is set large enough.

> ## Explore iteration numbers

> ## Showing only the head in order to limit the output for the vignette

> head(led_results$iteration_numbers)

6 Fitting bead data

The fit_beads function performs quadratic fitting for multi-level, multi-dye bead sets. In addi-
tion, the fit_spherotech function performs fitting for the Sph8 particle sets from Spherotech,
and the fit_thermo_fisher function performs fitting for the 6-level (TF6) Thermo Fisher set.
Internally, this is the same fit_beads function except that the number of expected peaks is
predefined to 8 and 6, resp.

The parameters for the bead data fitting functions are similar to those required for the LED
fitting. The main difference is that a single FCS file (supplied by the fcs_file_path argument)
is expected because the bead sets are provided as a mixture of the different populations and
therefore, acquiring data from a single sample will naturally result in all the peaks contained
within a single FCS file. All the beads are expected to have the same (or very similar) light
scatter properties. Therefore, we perform automated gating on the forward and side scatter
channels in order to isolate the main population. In order to do that, the method requires
a scatter_channels argument that specifies which 2 channels shall be used for the scatter
gating. After the main population is isolated, we use K-means clustering to separate the
expression peaks generated by different beads. The number of clusters is pre-defined as 8 for
the fit_spherotech function, 6 for the fit_thermo_fisher function, and provided by the
user in the form of the N_peaks argument in case of the fit_beads function. This clustering
is performed on data transformed with the Logicle transformation Parks et al. (2006); Moore
and Parks (2012). Generally, the Logicle width (w parameter) of 1.0 has been working well for
all our data, but users can change the default by providing a different logicle_width value.
The rest of the arguments is the same as with LED fitting; the complete list of arguments is a
follows:
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� fcs_file_path – A character string specifying the file path to the FCS file with the
acquired bead data.

� scatter_channels – A vector of 2 short channel names (values of the $PnN keywords)
specifying the 2 channels that should not be used to gate the main bead population. The
first channel should be a forward scatter channel, the second one should be a side scatter
channel.

� ignore_channels – A vector of short channel names (values of the $PnN keywords)
specifying channels that should not be considered for the fitting procedure. Normally,
those should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

� N_peaks – The number of peaks (different beads) to look for. This argument is applicable
to the fit_beads function only; the fit_spherotech and fit_thermo_fisher functions
have the number of peaks predefined to 8 and 6, resp.

� dyes – A vector of dye names. This value does not affect the fitting, but those dyes will
be “highlighted” in the provided results.

� detectors – A vector of short channel names (values of the $PnN keywords) specifying
channels matching to the dyes specified above. The length of this vector shall correspond
to the length of the dyes vector. These channels should be all of the same type as specified
by the signal_type below, i.e., area, height or width of the measured signal.

� signal_type – The type of the signal specified as the “area”, “height” or “width”. This
should match to the signal type that is being captured by the channels specified in the
detectors argument. The signal type is being used in order to trigger type-specific peak
validity checks. Currently, if signal type equals to “height” then peaks with a mean value
lower than the lowest peak mean value are omitted from the fitting. In addition, peaks
that are not sufficiently narrow (i.e., exceeding a specific maximum CV) are also omitted
from the fitting. Currently, the maximum allowed CV is set to 0.65, but the code is
designed to make this user-configurable and signal type dependent eventually.

� instrument_name – The make/model of the instrument. The purpose if this argument
is to allow for instrument-specific peak validity checks. At this point, if “BD Accuri” is
passed as the instrument type, then peaks with a mean value lower than the lowest peak
mean value are omitted from the fitting. Additional instrument-specific peak validity
checks may be implemented in the future.

� bounds – On some instruments, the lowest LED peaks may be cut off at a data baseline so
that the peak statistics will not be valid. Therefore, peaks too close to the baseline need
to be excluded from the fitting. Also, many instruments do not maintain good linearity to
the full top of scale, so it is also important to specify a maximum level for good linearity
and, on each fluorescence channel, exclude any peak that is above that maximum. The
bounds argument shall provide a list specifying the minimum and maximum value for
the means of valid peaks; peaks with means outsize of this range will be ignored for that
particular channel.
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� minimum_useful_peaks – Different peaks may be omitted for different channels due to
various validity checks described above. This argument specifies the minimal number of
valid peaks required in order for the fitting procedure to be performed on a particular
fluorescence channel.

� max_iterations – The maximum number of iterations for the iterative fitting approach
with appropriate weight recalculations.

� logicle_width – The data clustering part is performed on data transformed with the
Logicle transformation Parks et al. (2006); Moore and Parks (2012). Generally, the
Logicle width (w parameter) of 1.0 has been working well for all our data, but users can
change the default by providing a different value.

> ## Example of fitting bead data based on Sph8 particle sets from Spherotech

> fcs_file_path <- system.file("extdata", "SSFF_LSRII", "Other_Tests",

+ "933745.fcs", package="flowQBData")

> scatter_channels <- c("FSC-A", "SSC-A")

> ## Depending on your hardware and input, this may take a few minutes, mainly

> ## due to the required clustering stage of the algorithm.

> spherotech_results <- fit_spherotech(fcs_file_path, scatter_channels,

+ ignore_channels, dyes, detectors, bounds,

+ signal_type, instrument_name, minimum_useful_peaks = 3,

+ max_iterations = max_iterations, logicle_width = 1.0)

> ## This is the same as if we were running

> ## fit_beads(fcs_file_path, scatter_channels,

> ## ignore_channels, 8, dyes, detectors, bounds,

> ## signal_type, instrument_name, minimum_useful_peaks = 3,

> ## max_iterations = max_iterations, logicle_width = 1.0)

Next, let’s explore the results of this function. Unlike with the LED data, only the results
of quadratic fitting are provided for fitting bead data by the fit_beads (and fit_spherotech,
fit_thermo_fisher) functions. This is because linear fitting does not account for the intrinsic
CV0 of the beads and is not appropriate for bead data, which always has a significant non-linear
component.

The results of the fit_beads (and fit_spherotech, Rfunctionfit thermo fisher) functions
is a list with the following components:

� transformed_data – A flowCore’s flowFrame object capturing the data from the input
FCS file after the Logicle transformation. This may be reviewed if one wanted to check
that the Logicle transformation was appropriate for the input FCS file.

� peaks – A list of flowCore’s flowFrame objects capturing the different peaks identified
in the input FCS file by the K-means clustering algorithm. This may be reviewed if one
wanted to check that the clustering algorithm identified the peaks correctly.

� peak_clusters – The result of the kmeans call. This shows the assignment of cluster
numbers to input data points and also provides additional details about the clustering;
see the documentation for the kmeans function for additional details.
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Note that you may see a warning message saying that
Warning message:

Quick-TRANSfer stage steps exceeded maximum (= 3762700)

According to kmeans documentation, in some cases, when some of the points (rows of
‘x’) are extremely close, the algorithm may not converge in the “Quick-Transfer” stage,
signaling a warning. Based on our experience, this has not negatively affected the result
of the clustering. By default, we use the Hartigan and Wong algorithm. We tried other
algorithms as well, but those were significantly slower. We also tried to round up the
data as advised in the kmeans documentation, but that has not resolved the warning.
Below, we demonstrate one way of a simple visual inspection of the clustering results.

> library("flowCore")

> plot(

+ exprs(spherotech_results$transformed_data[,"FITC-A"]),

+ exprs(spherotech_results$transformed_data[,"Pacific Blue-A"]),

+ col=spherotech_results$peak_clusters$cluster, pch='.')

Figure 1: Result of K-means clustering on bead data.

� peak_stats – A list with summary stats for each of the channels for all the different
peaks identified by the K-means clustering algorithm. For each of the channels, peak
stats are captured by a data frame with rows corresponding to the different peaks and
the following columns:
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– N: the number of events in the peak

– M: the mean expression value for that peak

– SD: the standard deviation for that peak

– V: the variance for that peak (square of standard deviation)

– W: the weight of that peak

– Omit: was the peak omitted from the fitting? (TRUE or FALSE)

– QR: the residuals of the quadratic fitting

– QR-I: the residuals of the iterative quadratic fitting

The values of W, QR, and QR-I will be NA if Omit is TRUE.

> ## We have stats for these channels

> names(spherotech_results$peak_stats)

> ## Explore the peak stats for a randomly chosen channel (PE-Cy7-A)

> spherotech_results$peak_stats$`PE-Cy7-A`

� fits – A a data frame with fits for each of the channels. The columns of the data frame
correspond to the different channels. The rows of the data frame capture the coefficients
of the quadratic fitting as follows:

– c0: value of the c0 coefficient

– c0 SE: standard error of the c0 coefficient

– c0 P: the P-value for the c0 coefficient

– c1: value of the c1 coefficient

– c1 SE: standard error of the c1 coefficient

– c1 P: the P-value for the c1 coefficient

– c2: value of the c2 coefficient

– c2 SE: standard error of the c2 coefficient

– c2 P: the P-value for the c2 coefficient

� dye_fits – A data frame with fits for each “dye”. These are the same stats as fits

described above, but the columns will only be restricted to the detectors/dyes that were
listed as arguments of the fit_beads (or fit_spherotech or Rfunctionfit thermo fisher)
call. The column headings are converted from channel names (detectors) to “dyes” as per
the mapping supplied by the detectors and dyes arguments. The rows of the data frame
are the same as with the fits described above.

� iterated_fits – A data frame with fits for each of the channels in the same way as for
the fits described above, but based on iterative fitting with weights adjustments.

� iterated_dye_fits – A data frame with fits for each of the “dyes” in the same way as
for the dye_fits described above, ut based on iterative fitting with weights adjustments.
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> ## Explore fits

> ## Selecting just a few columns to limit the output for the vignette

> spherotech_results$fits[,c(1,3,5,7)]

> ## Explore iterated_fits

> spherotech_results$iterated_fits[,c(1,3,5,7)]

The Q, B and intrinsic CV0 can be extracted from the fits using the equations shown
in the introduction. For your convenience, this is implemented in the qb_from_fits

function as shown below in this vignette.

� iteration_numbers – A data frame with rows corresponding to all the different channels
and a column, Q, showing the number of iterations used for the quadratic fitting. This
data frame can be reviewed in order to make sure the fitting is converging fast enough
and the max_iterations parameter is set large enough.

> ## Explore iteration numbers

> ## Showing only the head in order to limit the output for the vignette

> head(spherotech_results$iteration_numbers)

7 Calculating Q and B from fits

The qb_from_fits function can be used to calculate Q and B using the equations shown in the
introduction. As arguments, the qb_from_fits function can take results from both, LED data
fitting (fit_led function) and bead data fitting (fit_beads, fit_spherotech function and
fit_thermo_fisher functions). You can calculate based on any of the fits (fits, dye_fits,
iterated_fits and iterated_dye_fits).

> ## 1 QB from both quadratic and linear fits of LED data

> qb_from_fits(led_results$iterated_dye_fits)

> ## 2 QB from quadratic fitting of bead data

> qb_from_fits(spherotech_results$iterated_dye_fits)

The result of this function is a matrix with columns corresponding to the names of the fits
used (e.g. dyes or detectors). In case of LED fits, the rows will contain the following items:

� q_QI The calculated QI value of the quadratic fitting.

� q_BSpe The calculated BSpe value of the quadratic fitting.

� q_CV0sq The calculated CV 2
0 value of the quadratic fitting.

� l_QI The calculated QI value of the linear fitting.

� l_BSpe The calculated BSpe value of the linear fitting.

As expected, you can see that the estimated CV 2
0 values for the LED data are very close

to 0 and therefore, the linear model may be preferable. Note that the estimated value can also
be small negative since; this is OK since those are just estimates from our model. The true
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CV 2
0 should be very close to 0 unless there is something wrong with the instrument or LED

data collection.
In case of bead data fits, the rows will contain the following items:

� q_QI The calculated QI value of the quadratic fitting.

� q_BSpe The calculated BSpe value of the quadratic fitting.

� q_CV0sq The calculated CV 2
0 value of the quadratic fitting.

8 Parsing house-keeping information from spreadsheets

We designed a simple MS Excel template in order to keep track of FCS files along with the
necessary metadata to facilitate fully automated processing of bead and LED data generated
by many different instruments. An example of this template is shown in the
inst/extdata/140126_InstEval_Stanford_LSRIIA2.xlsx file of the flowQBData package.
This spreadsheet self-explanatory and captures details, such as the instrument name, location,
data folder and file names, dyes or sample names, which channels are fluorescence based and
which aren’t. Below, we show an example of how the xlsx package can be used in order to
process metadata from the spreadsheet and perform the fitting based on that.

> ## Example of fitting based on house-keeping information in a spreadsheet

> library(xlsx)

> ## LED Fitting first

> inst_xlsx_path <- system.file("extdata",

+ "140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")

> xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)

> ignore_channels_row <- 9

> ignore_channels <- vector()

> i <- 1

> while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {

+ ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]

+ i <- i + 1

+ }

> instrument_folder_row <- 9

> instrument_folder_col <- 2

> instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]

> folder_column <- 18

> folder_row <- 14

> folder <- xlsx[[folder_column]][[folder_row]]

> fcs_directory <- system.file("extdata", instrument_folder,

+ folder, package="flowQBData")

> fcs_file_path_list <- list.files(fcs_directory, "*.fcs", full.names= TRUE)

> bounds_min_col <- 6

> bounds_min_row <- 7

> bounds_max_col <- 7
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> bounds_max_row <- 7

> bounds <- list()

> if (is.na(xlsx[[bounds_min_col]][[bounds_min_row]])) {

+ bounds$minimum <- -100

+ } else {

+ bounds$minimum <- as.numeric(xlsx[[bounds_min_col]][[bounds_min_row]])

+ }

> if (is.na(xlsx[[bounds_max_col]][[bounds_max_row]])) {

+ bounds$maximum <- 100000

+ } else {

+ bounds$maximum <- as.numeric(xlsx[[bounds_max_col]][[bounds_max_row]])

+ }

> signal_type_col <- 3

> signal_type_row <- 19

> signal_type <- xlsx[[signal_type_col]][[signal_type_row]]

> instrument_name_col <- 2

> instrument_name_row <- 5

> instrument_name <- xlsx[[instrument_name_col]][[instrument_name_row]]

> channel_cols <- 3:12

> dye_row <- 11

> detector_row <- 13

> dyes <- as.character(xlsx[dye_row,channel_cols])

> detectors <- as.character(xlsx[detector_row,channel_cols])

> ## Now we do the LED fitting

> led_results <- fit_led(fcs_file_path_list, ignore_channels, dyes,

+ detectors, signal_type, instrument_name, bounds = bounds,

+ minimum_useful_peaks = 3, max_iterations = 10)

> led_results$iterated_dye_fits

> qb_from_fits(led_results$iterated_dye_fits)

> ## Next we do the bead fitting; this example is with Thermo-fisher beads

> folder_column <- 17

> folder <- xlsx[[folder_column]][[folder_row]]

> filename <- xlsx[[folder_column]][[folder_row+1]]

> fcs_file_path <- system.file("extdata", instrument_folder, folder,

+ filename, package="flowQBData")

> thermo_fisher_results <- fit_thermo_fisher(fcs_file_path, scatter_channels,

+ ignore_channels, dyes, detectors, bounds,

+ signal_type, instrument_name, minimum_useful_peaks = 3,

+ max_iterations = 10, logicle_width = 1.0)

> ## The above is the same as this:

> ## N_peaks <- 6

> ## thermo_fisher_results <- fit_beads(fcs_file_path, scatter_channels,

> ## ignore_channels, N_peaks, dyes, detectors, bounds,

> ## signal_type, instrument_name, minimum_useful_peaks = 3,

> ## max_iterations = 10, logicle_width = 1.0)
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>

> thermo_fisher_results$iterated_dye_fits

> qb_from_fits(thermo_fisher_results$iterated_dye_fits)

9 Using data from FlowRepository

We have collected over 900 FCS files from running multi-level beads and LED generated data
on over 30 different instruments. This dataset has been uploaded to FlowRepository, it has
the public identifier FR-FCM-ZZTF and it will be released along with the publication of a paper
describing this work. MS Excel spredsheets with all the required metadata to perform the
calculations of Q, B and related characteristics are included with that data set. Here, we
will demonstrate how to access the data directly from within R in order to perform such
calculations.

> library("FlowRepositoryR")

> ## 1) Specify your credentials to work with FlowRepository, this will not

> ## be required once the data is publicly available; see the

> ## FlowRepositoryR vignette for further details.

> setFlowRepositoryCredentials(email="your@email.com", password="password")

> ##

> ## 2) Get the dataset from FlowRepository

> ## Note that this does not download the data. You could download all

> ## data by running

> ## qbDataset <- download(flowRep.get("FR-FCM-ZZTF"))

> ## but note that this will download about 3 GB of data

> qbDataset <- flowRep.get("FR-FCM-ZZTF")

> ##

> summary(qbDataset)

> ## A flowRepData object (FlowRepository dataset) Asilomar Instrument

> ## Standardization

> ## 911 FCS files, 36 attachments, NOT downloaded

> ##

> ## 3) See which of the files are MS Excell spredsheets

> spreadsheet_indexes <- which(unlist(lapply(qbDataset@attachments,

+ function(a) { endsWith(a@name, ".xlsx") })))

> ##

> ## 4) Download a random spreadsheet, say the 5th spreadsheet

> ## This is a bit ugly at this point since the data is not public

> ## plus we don't want to download everythink, just one of the files

> library(RCurl)

> h <- getCurlHandle(cookiefile="")

> FlowRepositoryR:::flowRep.login(h)

> ## Once the data is public, only this line and without the curlHandle

> ## argument will be needed:

> qbDataset@attachments[[spreadsheet_indexes[5]]] <- xslx5 <- download(
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+ qbDataset@attachments[[spreadsheet_indexes[5]]], curlHandle=h)

> ## File 140126_InstEval_NIH_Aria_B2.xlsx downloaded.

> ##

> ## 5) Read the spreadsheet

> library(xlsx)

> xlsx <- read.xlsx(xslx5@localpath, 1, headers=FALSE, stringsAsFactors=FALSE)

> ##

> ## 6) Which FCS file contains the Spherotech data?

> ## This is based on how we create the Excel spreadsheets and

> ## the FCS file names.

> instrument_row <- 9

> instrument_col <- 2

> instrument_name <- xlsx[[instrument_folder_col]][[instrument_folder_row]]

> fol_col <- 16

> fol_row <- 14

> fol_name <- xlsx[[fol_col]][[fol_row]]

> fcsFilename <- paste(instrument_name, fol_name,

+ xlsx[[fol_col]][[fol_row+1]], sep="_")

> fcsFilename

> ## [1] "NIH Aria_B 140127_Other Tests_BEADS_Spherotech Rainbow1X_012.fcs"

> ##

> ## 7) Let's locate the file in our dataset and let's download it

> ## Again, the curlHandle is only needed since the file is not public yet

> fcsFileIndex = which(unlist(lapply(qbDataset@fcs.files, function(f) {

+ f@name == fcsFilename })))

> qbDataset@fcs.files[[fcsFileIndex]] <- fcsFile <- download(

+ qbDataset@fcs.files[[fcsFileIndex]], curlHandle=h)

> # File NIH Aria_B 140127_Other Tests_BEADS_Spherotech Rainbow1X_012.fcs

> # downloaded.

> ##

> ## 8) Read in some more metadata from the spreadsheet

> scatter_channels <- c(

+ xlsx[[fol_col]][[fol_row+2]],

+ xlsx[[fol_col]][[fol_row+3]])

> ignore_channels_row <- 9

> ignore_channels <- vector()

> i <- 1

> while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {

+ ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]

+ i <- i + 1

+ }

> bounds_min_col <- 6

> bounds_min_row <- 7

> bounds_max_col <- 7

> bounds_max_row <- 7
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> bounds <- list()

> if (is.na(xlsx[[bounds_min_col]][[bounds_min_row]])) {

+ bounds$minimum <- -100

+ } else {

+ bounds$minimum <- as.numeric(xlsx[[bounds_min_col]][[bounds_min_row]])

+ }

> if (is.na(xlsx[[bounds_max_col]][[bounds_max_row]])) {

+ bounds$maximum <- 100000

+ } else {

+ bounds$maximum <- as.numeric(xlsx[[bounds_max_col]][[bounds_max_row]])

+ }

> signal_type_col <- 3

> signal_type_row <- 19

> signal_type <- xlsx[[signal_type_col]][[signal_type_row]]

> channel_cols <- 3:12

> dye_row <- 11

> detector_row <- 13

> dyes <- as.character(xlsx[dye_row,channel_cols])

> detectors <- as.character(xlsx[detector_row,channel_cols])

> ##

> ## 9) Let's calculate the fits

> multipeak_results <- fit_spherotech(fcsFile@localpath, scatter_channels,

+ ignore_channels, dyes, detectors, bounds,

+ signal_type, instrument_name)

> ##

> ## 10) And same as before, we can extract Q, B and CV0 from the fits

> qb_from_fits(multipeak_results$iterated_dye_fits)

> # APC APC-Cy7 APC-H7 FITC PE

> # q_QI 0.2406655 0.1291517 0.1291517 0.2034718 0.9014326

> # q_BSpe 34.33642 21.47796 21.47796 21.57055 812.5968

> # q_CV0sq 0.0006431427 0.0004931863 0.0004931863 0.001599552 0.001065658

> # PE-Cy7 PerCP PerCP-Cy55 V450 V500-C

> # q_QI 0.2754679 0.08987149 0.08987149 0.07051216 0.192678

> # q_BSpe 11.15762 8.167175 8.167175 24.81647 63.4188

> # q_CV0sq 0.001286111 0.001622208 0.001622208 0.005127177 0.004315592

The example shown above processes the Spherotech beads. In order to process the Thermo
Fisher beads, one would need to change fol_col to 17 in order to determine the proper filename
with Thermo Fisher beads results. This is due to how the MS Excel spreadsheet templeta is
created. Then, one would use the fit_thermo_fisher instead of the fit_spherotech function.

If one wanted to process the LED data described by this spredsheet, one would look at
columns 3 to 12 to extact the fol_name from row 14 and the last part of the filename from
row 15. Same as shown in the example above, the instrument name, fol_name and the last
part of the file name would need to be appended to obtain the complete file name that can be
looked up among FCS files in the QB dataset. Specifically, one could lookup the LED FCS
files referenced by the spreadsheet as follows:

18



> LEDfcsFileIndexes <- which(unlist(lapply(qbDataset@fcs.files, function(f)

+ {

+ f@name %in% paste(instrument_name, xlsx[14, 3:12], xlsx[15, 3:12], sep="_")

+ })))

> # [1] 173 174 175 176 177 178 179 180 181 182

These can than be downloaded and processed analogically to what has been shown above,
e.g.,

> dir <- tempdir()

> cwd <- getwd()

> setwd(dir)

> lapply(LEDfcsFileIndexes, function(i) {

+ qbDataset@fcs.files[[i]] <- download(qbDataset@fcs.files[[i]],

+ curlHandle=h)

+ })

> setwd(cwd)

> fcs_file_path_list <- list.files(dir, "*.fcs", full.names= TRUE)

> led_results <- fit_led(fcs_file_path_list, ignore_channels, dyes,

+ detectors, signal_type, instrument_name, bounds = bounds)

10 Package version

The flowQB package and its functionality have been changed significantly between this and
past versions. Functionality described above is only applicable if you have the latest version
as shown below.

> ## This vignette has been created with the following configuration

> sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.4 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:
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[1] flowQB_1.18.4

loaded via a namespace (and not attached):

[1] Rcpp_0.12.6 mvtnorm_1.0-5 lattice_0.20-33

[4] gWidgets_0.0-54 matrixStats_0.50.2 corpcor_1.6.8

[7] digest_0.6.10 rrcov_1.3-11 grid_3.3.1

[10] pcaPP_1.9-60 stats4_3.3.1 gWidgetstcltk_0.0-55

[13] graph_1.50.0 robustbase_0.92-6 flowCore_1.38.2

[16] extremevalues_2.3.2 tools_3.3.1 Biobase_2.32.0

[19] DEoptimR_1.0-6 parallel_3.3.1 BiocGenerics_0.18.0

[22] cluster_2.0.4 tcltk_3.3.1

References

E. S. Chase and R. A. Hoffman. Resolution of dimly fluorescent particles: a practical measure
of fluorescence sensitivity. Cytometry, 33(2):267–279, Oct 1998.

R. A. Hoffman and J. C. Wood. Characterization of flow cytometer instrument sensitivity.
Curr Protoc Cytom, Chapter 1:Unit1.20, Apr 2007.

W. A. Moore and D. R. Parks. Update for the logicle data scale including operational code
implementations. Cytometry A, 81(4):273–277, Apr 2012.

D. R. Parks, M. Roederer, and W. A. Moore. A new ”Logicle” display method avoids deceptive
effects of logarithmic scaling for low signals and compensated data. Cytometry A, 69(6):
541–551, Jun 2006.

D. R. Parks, F. El Khettabi, W. A. Moore, J. Spidlen, R. R. Brinkman, J. C. S. Wood,
S. Perfetto, R. A. Hoffman, and E. Chase. Evaluating flow cytometer performance with
weighted quadratic least squares analysis of LED and multi-level bead data. (to be submitted),
2016.

J. Spidlen, W. Moore, D. Parks, M. Goldberg, C. Bray, P. Bierre, P. Gorombey, B. Hyun,
M. Hubbard, S. Lange, R. Lefebvre, R. Leif, D. Novo, L. Ostruszka, A. Treister, J. Wood,
R. F. Murphy, M. Roederer, D. Sudar, R. Zigon, and R. R. Brinkman. Data File Standard
for Flow Cytometry, version FCS 3.1. Cytometry A, 77(1):97–100, Jan 2010.

J. C. Wood. Fundamental flow cytometer properties governing sensitivity and resolution.
Cytometry, 33(2):260–266, Oct 1998.

20


	Abstract
	Get the Latest Version
	Introduction
	Requirements
	Fitting LED pulser data
	Fitting bead data
	Calculating Q and B from fits
	Parsing house-keeping information from spreadsheets
	Using data from FlowRepository
	Package version

