Subclonal variant calling with multiple samples and prior knowledge using shearwater

Moritz Gerstung

May 11, 2016

Contents

1	Introduction	1
2	The statistical model 2.1 Definition 2.2 Testing for variants 2.2.1 The OR model 2.2.2 The AND model 2.3 Estimating ρ	2 2 3
	2.4 Using a prior	
3	Using shearwater 3.1 Minimal example 3.2 More realistic example	

1 Introduction

The shearwater algorithm was designed for calling subclonal variants in large (N = 10...1,000) cohorts of deeply ($\sim 100x$) sequenced unmatched samples. The large cohort allows for estimating a base-specific error profile on each position, which is modelled by a beta-binomial. A prior can be useded to selectively increase the power of calling variants on known mutational hotspots. The algorithm is similar to deepSNV, but uses a slightly different parametrization and a Bayes factors instead of a likelihood ratio test.

If you are using shearwater, please cite

• Gerstung M, Papaemmanuil E and Campbell PJ (2014). "Subclonal variant calling with multiple samples and prior knowledge." *Bioinformatics*, **30**, pp. 1198-1204.

2 The statistical model

2.1 Definition

Suppose you have an experimental setup with multiple unrelated samples. Let the index i denote the sample, j the genomic position and k a particular nucleotide. Let X_{ijk} and X'_{ijk} denote the counts of nucleotide k in sample i on position j in forward and reverse read orientation, respectively. We assume that

$$X \sim \text{BetaBin}(n, \mu, \rho)$$

$$X' \sim \text{BetaBin}(n', \mu', \rho).$$
(1)

are beta-binomially distributed. To test if there is a variant k in sample i, we compare the counts to a compound reference $X_{ijk} = \sum_{h \in H} X_{hjk}$ and $X'_{ijk} = \sum_{h \in H} X'_{hjk}$. The subset of indeces H is usually chosen such that $H = \{h : h \neq j\}$, that is the row sums X_{ijk} and X'_{ijk} . To reduce the effect of true

variants in other samples entering the compound reference, one may also choose H such that it only includes sample h with variant allele frequencies below a user defined threshold, typically 10%. We model the compound reference again as a beta-binomial,

$$\mathbf{X} \sim \text{BetaBin}(\mathbf{n}, \nu, \rho)$$
$$\mathbf{X}' \sim \text{BetaBin}(\mathbf{n}', \nu', \rho).$$
(2)

2.2 Testing for variants

Testing for the presence of a variant can now be formulated as a model selection problem in which we specify a null model and an alternative. Here we consider two options, "OR" and "AND".

2.2.1 The OR model

The OR model is defined in the following way:

$$M_{0}: \quad \mu = \nu \quad \lor \quad \mu' = \nu' M_{1}: \quad \mu = \mu' > \nu, \nu'.$$
(3)

Under the null model M_0 , the mean rates of the beta-binomials are identical in sample *i* and the compound reference on at least one strand. Under the alternative model M_1 , the mean rates μ, μ' are identical on both strands and greater than the mean in the compound reference on both strands. Here we use the following point estimates for the parameters:

$$\hat{\mu} = (X + X')/(n + n')
\hat{\nu} = \mathbf{X}/\mathbf{n}
\hat{\nu}' = \mathbf{X}'/\mathbf{n}'
\hat{\nu}_0 = (X + \mathbf{X})/(n + \mathbf{n})
\hat{\nu}'_0 = (X' + \mathbf{X}')/(n' + \mathbf{n}')
\hat{\mu}_0 = X/n
\hat{\mu}'_0 = X'/n'.$$
(4)

Using these values, the Bayes factor is approximated by

$$\frac{\Pr(D \mid M_{0})}{\Pr(D \mid M_{1})} = \frac{\Pr(X|\hat{\nu}_{0}) \Pr(X'|\hat{\mu}'_{0}) \Pr(\mathbf{X}|\hat{\nu}_{0})}{\Pr(X|\hat{\mu}) \Pr(X'|\hat{\mu}) \Pr(\mathbf{X}|\hat{\nu})} \\
+ \frac{\Pr(X|\hat{\mu}_{0}) \Pr(X'|\hat{\nu}'_{0}) \Pr(\mathbf{X}'|\hat{\nu}'_{0})}{\Pr(X|\hat{\mu}) \Pr(X'|\hat{\mu}) \Pr(\mathbf{X}'|\hat{\nu}'_{0})} \\
- \frac{\Pr(X|\hat{\nu}_{0}) \Pr(\mathbf{X}|\hat{\nu}_{0}) \Pr(X'|\hat{\nu}'_{0}) \Pr(\mathbf{X}'|\hat{\nu}'_{0})}{\Pr(X|\hat{\mu}) \Pr(X|\hat{\mu}) \Pr(X'|\hat{\mu}')}$$
(5)

Example The Bayes factors can be computed using the bbb command:

Here we have used a coverage of n = 100 on both strands and computed the Bayes factors assuming 1,000 samples to estimate the error rate $\nu = \nu'$ from. Shown are results for fixed values of $rho = \{10^{-4}, 10^{-2}\}$.

2.2.2 The AND model

The AND model is defined in the following way:

$$M_{0}: \quad \mu = \nu \quad \land \quad \mu' = \nu' M_{1}: \quad \mu = \mu' > \nu, \nu'.$$
(6)

Here the null model states that the error rates $\nu = \mu$ and $\nu' = \mu'$ are identical on both strands, which is more restrictive and hence in favour of the alternative. In this case the Bayes factor is approximately

$$\frac{\Pr(D \mid M_0)}{\Pr(D \mid M_1)} = \frac{\Pr(X|\hat{\nu}_0) \Pr(\mathbf{X}|\hat{\nu}_0) \Pr(X'|\hat{\nu}'_0) \Pr(\mathbf{X}'|\hat{\nu}'_0)}{\Pr(X|\hat{\mu}) \Pr(\mathbf{X}|\hat{\mu}) \Pr(\mathbf{X}'|\hat{\mu}) \Pr(\mathbf{X}'|\hat{\nu}')}$$
(7)

Example The behaviour of the AND model can be inspected by the following commands

}

One realises that for small dispersion the Bayes factor depends mostly on the sum of the forward and reverse strands in the AND model.

2.3 Estimating ρ

If the dispersion parameter ρ is not specified, it is estiated at each locus using the following method-ofmoment estimator:

$$\hat{\rho} = \frac{Ns^2/(1-\hat{\nu})/\hat{\nu} - \sum_{i=1}^N 1/n_i}{N - \sum_{i=1}^N 1/n_i}$$

$$s^2 = \frac{N\sum_{i=1}^N n_i(\hat{\nu} - \hat{\mu}_i)^2}{(N-1)\sum_{i=1}^N n_i}.$$
(8)

This yields consistent estimates over a range of true values:

2.4 Using a prior

shearwater calls variants if the posterior probability that the null model M_0 is true falls below a certain threshold. Generally, the posterior odds is given by

$$\frac{\Pr(M_0 \mid D)}{\Pr(M_1 \mid D)} = \frac{1 - \pi(M_1))}{\pi(M_1)} \frac{\Pr(D \mid M_0)}{\Pr(D \mid M_1)}$$
(9)

where $\pi = \pi(M_1)$ is the prior probability of that a variant exists. These probabilities are not uniform and may be calculated from the distribution of observed somatic mutations. Such data can be found in the COSMIC data base http://www.sanger.ac.uk/cosmic.

As of now, the amount of systematic, genome-wide screening data is still sparse, which makes it difficult to get good estimates of the mutation frequencies in each cancer type. However, a wealth of data exists for somatic mutations within a given gene. Assume we know how likely it is that a gene is mutated. We then model

$$\pi = \begin{cases} \pi_{\text{gene}} \times \frac{\# \text{ Mutations at given position}}{\# \text{ Mutations in gene}} & \text{if variant in COSMIC} \\ \pi_{\text{background}} & \text{else.} \end{cases}$$
(10)

Suppose you have downloaded the COSMIC vcf "CosmicCodingMuts_v63_300113.vcf.gz" from ftp: //ngs.sanger.ac.uk/production/cosmic.

```
## Not run..
## Load TxDb
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
seqlevels(txdb) <- sub("chr","",seqlevels(txdb))
## Make prior</pre>
```

```
5
```

```
regions <- reduce(exons(txdb, filter=list(gene_id='7157'))) ## TP53 exons
cosmic <- readVcf("CosmicCodingMuts_v63_300113.vcf.gz", "hg19", param=ScanVcfParam(which=regions))
pi <- makePrior(cosmic, regions, pi.gene = 1)</pre>
```

The resulting prior can be visualised:

The data shows that the distribution of somatic variants is highly non-uniform, with multiple mutation hotspots.

3 Using shearwater

To run shearwater you need a collection of .bam files and the set of regions you want to analyse as a GRanges() object. Additionally, you may calculate a prior from a VCF file that you can download from ftp://ngs.sanger.ac.uk/production/cosmic.

3.1 Minimal example

Here is a minimal example that uses two .bam files from the deepSNV package. The data is loaded into a large array using the loadAllData() function:

```
## Load data from deepSNV example
regions <- GRanges("B.FR.83.HXB2_LAI_IIIB_BRU_K034", IRanges(start = 3120, end=3140))
files <- c(system.file("extdata", "test.bam", package="deepSNV"), system.file("extdata", "control.bar
counts <- loadAllData(files, regions, q=10)
dim(counts)
## [1] 2 21 10</pre>
```

The dimension of counts for N samples, a total of L positions is $N \times L \times 2|B|$, where |B| = 5 is the size of the alphabet $B = \{A, T, C, G, -\}$ and the factor of 2 for the two strand orientations. The Bayes factors can be computed with the bbb function:

```
## Run (bbb) computes the Bayes factor
bf <- bbb(counts, model = "OR", rho=1e-4)</pre>
dim(bf)
## [1] 2 21 5
vcf <- bf2Vcf(bf, counts, regions, cutoff = 0.5, samples = files, prior = 0.5, mvcf = TRUE)
show(vcf)
## class: CollapsedVCF
## dim: 8 2
## rowRanges(vcf):
    GRanges with 4 metadata columns: REF, ALT, QUAL, FILTER
##
## info(vcf):
    DataFrame with 4 columns: ER, PI, AF, LEN
##
## info(header(vcf)):
##
          Number Type Description
##
                Float Error rate
      ER 1
      PI 1
##
                Float Prior
                 Float Allele frequency in cohort
##
      AF 1
                 Float Length of the alt allele
##
      LEN 1
## geno(vcf):
## SimpleList of length 8: GT, GQ, BF, VF, FW, BW, FD, BD
## geno(header(vcf)):
##
         Number Type
                        Description
      GT 1
               String Genotype
##
##
      GQ 1
                Integer Genotype Quality
##
      BF 1
               Float
                       Bayes factor
##
      VF 1
               Float
                       Variant frequency in sample
##
      FW 1
               Integer Forward variant read count
##
      BW 1
                Integer Backward variant read count
                Integer Read Depth forward
##
      FD 1
               Integer Read Depth backward
##
      BD 1
```

The resulting Bayes factors were thresholded by a posterior cutoff for variant calling and converted into a VCF object by bf2Vcf.

For two samples the Bayes factors are very similar to the p-values obtained by deepSNV:

3.2 More realistic example

Suppose the bam files are in folder ./bam and the regions of interest are stored in a GRanges() object with metadata column Gene, indicating which region (typically exons for a pulldown experiment) belongs to which gene. Also assume that we have a tabix indexed vcf file CosmicCodingMuts_v63_300113.vcf.gz. The analysis can be parallelized by separately analysing each gene, which is the unit needed to compute the prior using makePrior.

```
## Not run
files <- dir("bam", pattern="*.bam$", full.names=TRUE)
MC_CORES <- getOption("mc.cores", 2L)
vcfList <- list()
for(gene in levels(mcols(regions)$Gene)){
    rgn <- regions[mcols(regions)$Gene=gene]
    counts <- loadAllData(files, rgn, mc.cores=MC_CORES)
    ## Split into
    BF <- mcChunk("bbb", split = 200, counts, mc.cores=MC_CORES)
    COSMIC <- readVcf("CosmicCodingMuts_v63_300113.vcf.gz", "GRCh37", param=ScanVcfParam(which==
    prior <- makePrior(COSMIC, rgn, pi.mut = 0.5)
    vcfList[[gene]] <- bf2Vcf(BF = BF, counts=counts, regions=rgn, samples = files, cutoff = 0.5
}
## Collapse vcfList
vcf <- do.call(rbind, vcfList)</pre>
```

The mcChunk function splits the counts objects into chunks of size split and processes these in parallel using mclapply.

Instead of using a for loop one can also use a different mechanism, e.g. submitting this code to a computing cluster, etc.

sessionInfo()

- R version 3.3.0 (2016-05-03), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, parallel, splines, stats, stats4, utils
- Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, Biostrings 2.40.0, GenomeInfoDb 1.8.1, GenomicRanges 1.24.0, IRanges 2.6.0, RColorBrewer 1.1-2, Rhtslib 1.4.1, Rsamtools 1.24.0, S4Vectors 0.10.0, SummarizedExperiment 1.2.1, VGAM 1.0-1, VariantAnnotation 1.18.0, XVector 0.12.0, deepSNV 1.18.1, knitr 1.13

• Loaded via a namespace (and not attached): AnnotationDbi 1.34.1, BSgenome 1.40.0, BiocParallel 1.6.1, DBI 0.4-1, GenomicAlignments 1.8.0, GenomicFeatures 1.24.1, RCurl 1.95-4.8, RSQLite 1.0.0, XML 3.98-1.4, biomaRt 2.28.0, bitops 1.0-6, evaluate 0.9, formatR 1.4, highr 0.6, magrittr 1.5, rtracklayer 1.32.0, stringi 1.0-1, stringr 1.0.0, tools 3.3.0, zlibbioc 1.18.0