
Using the TRONCO package

Marco Antoniotti∗ Giulio Caravagna∗ Luca De Sano∗ Alex Graudenzi∗

Giancarlo Mauri∗ Bud Mishra† Daniele Ramazzotti∗

September 22, 2016

Overview. The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer progression
models via the approach of Suppes-Bayes Causal Network, both from an ensemble of tumors (cross-sectional
samples) and within an individual patient (multi-region or single-cell samples). The package provides parallel
implementation of algorithms that process binary matrices where each row represents a tumor sample and
each column a single-nucleotide or a structural variant driving the progression; a 0/1 value models the
absence/presence of that alteration in the sample. The tool can import data from plain, MAF or GISTIC
format files, and can fetch it from the cBioPortal for cancer genomics. Functions for data manipulation and
visualization are provided, as well as functions to import/export such data to other bioinformatics tools for,
e.g, clustering or detection of mutually exclusive alterations. Inferred models can be visualized and tested for
their confidence via bootstrap and cross-validation. TRONCO is used for the implementation of the Pipeline
for Cancer Inference.

In this vignette, we will give an overview of the package by presenting some of the functions that could be
most commonly used to arrange a data-analysis pipeline, along with their parameters to customize TRONCO’s
functioning. Advanced example case studies are available at the tool webpage

Version. 2.4.2 (June 2016)

Contact. tronco@disco.unimib.it

Bugs report. https://github.com/BIMIB-DISCo/TRONCO

Website. https://sites.google.com/site/troncopackage

∗Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi Milano Bicocca Milano, Italy.
†Courant Institute of Mathematical Sciences, New York University, New York, USA.

1

http://bioconductor.org/packages/TRONCO
http://bioconductor.org/packages/TRONCO
http://bioconductor.org/packages/TRONCO
http://bioconductor.org/packages/TRONCO
mailto:tronco@disco.unimib.it
https://github.com/BIMIB-DISCo/TRONCO
https://sites.google.com/site/troncopackage

Using the TRONCO package 2

Contents

1 Changelog 2

2 Algorithms and useful links 3

3 Loading data 3
3.1 Mutations annotated in a MAF format . 4
3.2 Copy Number Variants annotated in the GISTIC format . 6
3.3 Custom alterations annotated in a boolean matrix . 7
3.4 Downloading data from the cBio portal for cancer genomics . 7

4 Data visualisation 7
4.1 Summary report for a dataset and boolean queries . 7
4.2 Creating views with the “as” functions . 8
4.3 Dataset size . 9
4.4 Oncoprints . 10
4.5 Groups visualization (e.g., pathways) . 12

5 Data manipulation 13
5.1 Modifying events and samples . 13
5.2 Modifying patterns . 14
5.3 Subsetting a dataset . 15

6 Model inference 16
6.1 CAPRI . 17

6.1.1 Testable hypotheses via logical formulas (i.e., patterns) . 18
6.1.2 Model reconstruction . 24

6.2 CAPRESE . 25
6.3 Directed Minimum Spanning Tree with Mutual Information . 25
6.4 Partially Directed Minimum Spanning Tree with Mutual Information 26
6.5 Undirected Minimum Spanning Tree with Likelihood-Fit . 26
6.6 Undirected Minimum Spanning Tree with Mutual Information . 27

7 Post-reconstruction 27
7.1 Visualizing a reconstructed model . 28
7.2 Accessing information within a model (e.g., confidence) . 30
7.3 Confidence via non-parametric and statistical bootstrap . 33
7.4 Confidence via cross-validation (entropy loss, prediction and posterior classification errors) 36

8 Import/export to other tools 41

9 sessionInfo() 42

1 Changelog

2.4.2 Latest development version. Implements a noise model and finalizes a series of algorithms reconstructing
Suppes-Bayes Causal Network as maximum spanning trees.

2.4 Current stable version. New statistics available for model confidence via cross-validation routines. New algo-
rithms based on Minimum Spanning Tree extraction.

2.0 Released in summer 2015 on our GitHUB, replaced the Bioconductor version in autumn 2015. This version
is parallel, includes also the CAPRI algorithm, supports common GISTIC and MAF input formats, supports
TCGA samples editing and queries to the cBio portal. This version has new plotting capabilities, and a general
from-scratch design. It is not compatible with previous releases.

1.0 released in mid 2014, includes CAPRESE algorithm. It is now outdated and no more maintained;

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 3

2 Algorithms and useful links

Acronym Extended name App. Reference

CAPRESE Cancer Progression Extraction
with Single Edges

Ind PLoS ONE, 9(10):e108358, 2014.

CAPRI Cancer Progression Inference Ens Bioinformatics 31(18), 3016-3016, 2015.

MST (Edmond) Directed Minimum Spanning Tree
with Mutual Information

Ind In preparation.

MST (Gabow) Partially Directed Minimum Span-
ning Tree with Mutual Information

Ind In preparation.

MST (Chow Liu) Undirected Minimum Spanning
Tree with Likelihood-Fit

Ind In preparation.

MST (Prim) Undirected Minimum Spanning
Tree with Mutual Information

Ind In preparation.

Legend. Ens.: ensemble-level with cross-sectional data; Ind.: individual-level with single-cell or multi-region data.

External links to resources related to TRONCO.

• TRONCO was introduced in Bioinformatics. 2016 Feb 9. pii: btw035.
• TRONCO since version 2.3 is used to implement the Pipeline For Cancer Inference (PiCnIc) described in

Caravagna et al., 2016, under review.
• Case studies featuring Atypical Chronic Myeloid Leukemia, Colorectal Cancer, Clear Cell Renal Cell Carcinoma

and others are available at the tool webpage. Code for replication of each of those study is made available
through Bioinformatics Milano-Bicocca’s Github.

3 Loading data

library(TRONCO)

data(aCML)

data(crc_maf)

data(crc_gistic)

data(crc_plain)

Preliminaries. TRONCO transforms input data in a sort of database-alike format, where three main fields are
presente: genotypes which contains the genomic signatures of the input samples, annotations which provides an
index to the events present in the data and types, a field mapping type of events (e.g., mutations, CNAs, etc.) to
colors for display visualization. Other annotations are generated when a dataset is augmented with some metadata.
A TRONCO object shall be edited by using TRONCO functions, to avoid to create inconsistencies in its internal
representation. Function is.compliant can be used to test if a TRONCO object is consistent; the function is
called by any TRONCO function before returning a modified object, so to ensure that consistency is preserved –
is.compliant will raise an error if this is not the case.

TRONCO supports the import of data from 3 formats. The Mutation Annotation Format (MAF) is a tab-delimited
file containing somatic and/or germline mutation annotations; the GISTIC format for copy number alterations as
defined by TCGA and a custom boolean matrix format where the user can directly specify the mutational profiles to
be importend. Through some data included in the package we will show how to load your datasets in TRONCO.

http://bioconductor.org/packages/TRONCO
http://www.ncbi.nlm.nih.gov/pubmed/25299648
http://www.ncbi.nlm.nih.gov/pubmed/25971740
https://sites.google.com/site/troncopackage/
https://sites.google.com/site/troncopackage/
https://sites.google.com/site/troncopackage/
https://sites.google.com/site/troncopackage/
http://www.ncbi.nlm.nih.gov/pubmed/26861821
http://dx.doi.org/10.1101/027359
https://sites.google.com/site/troncopackage/
https://github.com/BIMIB-DISCo

Using the TRONCO package 4

aCML a TRONCO object that represents the atypical Chronic Myeloid Leukemia dataset by Piazza et al. (Nat. Gen.
2013 45(1):18-24).

crc maf a shortened version of the colorectal cancer mutation data made available by the TCGA consortium within the
COADREAD project1

crc gistic from the same TCGA project, we also provide a shortened version of the focal CNAs in the GISTIC format
where 1 represents a low level gain, 2 a high level gain, -1 a heterozygous loss of a gene and -2 its homozygous
loss.

crc plain a custom boolean matrix where rows are samples, and columns represent events – in this case alterations
in a certain gene. Notice with this format one could also custom types of alterations, for instance wider
chromosomal aberrations or, in principle, epigenetic states (over-expression, methylated regions, etc.) that are
persistent across tumor evolution.

Whatever is dataset created as explained in the next sections, it can be annotated by adding a mnemonic description
of the data, which will be used as plot titles when possible. Function annotate.description raises a warning if
the dataset was previously annotated.

aCML = annotate.description(aCML, ’aCML data (Bioinf.)’)

3.1 Mutations annotated in a MAF format

We use the function import.MAF to import a dataset in MAF format, in this case the following TCGA dataset

head(crc_maf[, 1:10])

Hugo_Symbol Entrez_Gene_Id Center NCBI_Build Chromosome Start_position

27 TP53 7157 hgsc.bcm.edu 36 17 7519131

246 FBXW7 55294 hgsc.bcm.edu 36 4 153466817

623 APC 324 hgsc.bcm.edu 36 5 112192485

649 TP53 7157 hgsc.bcm.edu 36 17 7518937

928 FBXW7 55294 hgsc.bcm.edu 36 4 153468834

1390 TP53 7157 hgsc.bcm.edu 36 17 7517864

End_position Strand Variant_Classification Variant_Type

27 7519131 + Missense_Mutation SNP

246 153466817 + Nonsense_Mutation SNP

623 112192485 + Nonsense_Mutation SNP

649 7518937 + Nonsense_Mutation SNP

928 153468834 + Missense_Mutation SNP

1390 7517864 + Missense_Mutation SNP

A default importation is done without adding parameters to import.MAF. In this case, all mutations per gene will be
considered equivalent, regardless of the type that is annotated in the MAF. Also, all genes will be imported, and all
samples.

dataset_maf = import.MAF(crc_maf)

*** Importing from dataframe

Loading MAF dataframe ...DONE

*** Mutations names: using Hugo_Symbol

*** Using full MAF: #entries 17

*** MAF report: TCGA=TRUE

Type of annotated mutations:

[1] "Missense_Mutation" "Nonsense_Mutation"

*** [merge.mutation.types = T] Mutations will be merged and annotated as 'Mutation'

Number of samples: 9

[TCGA = TRUE] Number of TCGA patients: 9

Number of annotated mutations: 17

Mutations annotated with "Valid" flag (%): 71

Number of genes (Hugo_Symbol): 6

1See https://tcga-data.nci.nih.gov/docs/publications/coadread 2012/ and our PicNiC case study (§2) for the real analysis of such
data.

http://bioconductor.org/packages/TRONCO
https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/

Using the TRONCO package 5

Starting conversion from MAF to 0/1 mutation profiles (1 = mutation) :9 x 6

.................

Starting conversion from MAF to TRONCO data type.

See §4.1 to understand how to visualize a TRONCO dataset. In the above case – where we see that mutations are
annotated as Missense Mutation or Nonsense Mutation, if a gene in a sample has both, these will be merged to a
unique Mutation type. In this case a pair gene name with Mutation will be what we call an “event” in our dataset
– e.g., APC Mutation.

If one would like to have two distinct events in the dataset, i.e., APC Missense Mutation and APC Nonsense Mutation,
parameter merge.mutation.types should be set to false in the call to import.MAF.

dataset_maf = import.MAF(crc_maf, merge.mutation.types = FALSE)

*** Importing from dataframe

Loading MAF dataframe ...DONE

*** Mutations names: using Hugo_Symbol

*** Using full MAF: #entries 17

*** MAF report: TCGA=TRUE

Type of annotated mutations:

[1] "Missense_Mutation" "Nonsense_Mutation"

*** [merge.mutation.types = F] Mutations will be distinguished by type

Number of samples: 9

[TCGA = TRUE] Number of TCGA patients: 9

Number of annotated mutations: 17

Mutations annotated with "Valid" flag (%): 71

Number of genes (Hugo_Symbol): 6

Starting conversion from MAF to 0/1 mutation profiles (1 = mutation) :

.................

Sometimes, we might want to filter out some of the entries in a MAF – maybe restricting the type of genes, mutations
or sample that we want to process. If one defines filter.fun as a function that returns TRUE only for those entries
which shall be considered, he gets a filter process which is applied to each row of the MAF file prior to transforming
that into a TRONCO dataset. In this example we select only mutations annotated to APC – we access that through
the Hugo Symbol flag of a MAF.

dataset_maf = import.MAF(crc_maf, filter.fun = function(x){ x['Hugo_Symbol'] == 'APC'})

*** Importing from dataframe

Loading MAF dataframe ...DONE

*** Mutations names: using Hugo_Symbol

*** Filtering full MAF: #entries 17

*** Using reduced MAF: #entries 3

*** MAF report: TCGA=TRUE

Type of annotated mutations:

[1] "Nonsense_Mutation"

*** [merge.mutation.types = T] Mutations will be merged and annotated as 'Mutation'

Number of samples: 3

[TCGA = TRUE] Number of TCGA patients: 3

Number of annotated mutations: 3

Mutations annotated with "Valid" flag (%): 33

Number of genes (Hugo_Symbol): 1

Starting conversion from MAF to 0/1 mutation profiles (1 = mutation) :3 x 1

...

Starting conversion from MAF to TRONCO data type.

It is also sometimes convenient – especially when working with data collected from a single individual patient – to
distinguish the type of mutations and their position in a gene, or if they are somehow annotated to COSMIC or
other databases. For instance, we might want to want to use the MA.protein.change annotation in the MAF
file to get composite names such as TP53.R175H, TP53.R213, TP53.R267W etc. This can be done by setting
paste.to.Hugo Symbol to have the relevant name of the MAF annotation

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 6

dataset_maf = import.MAF(crc_maf,

merge.mutation.types = FALSE,

paste.to.Hugo_Symbol = c('MA.protein.change'))

*** Importing from dataframe

Loading MAF dataframe ...DONE

*** Mutations names: augmenting Hugo_Symbol with values: MA.protein.change

*** Using full MAF: #entries 17

*** MAF report: TCGA=TRUE

Type of annotated mutations:

[1] "Missense_Mutation" "Nonsense_Mutation"

*** [merge.mutation.types = F] Mutations will be distinguished by type

Number of samples: 9

[TCGA = TRUE] Number of TCGA patients: 9

Number of annotated mutations: 17

Mutations annotated with "Valid" flag (%): 71

Number of genes (Hugo_Symbol): 16

Starting conversion from MAF to 0/1 mutation profiles (1 = mutation) :

.................

TRONCO supports custom MAF files, where possibly not all the standard annotations are present, via irregular

= TRUE.

3.2 Copy Number Variants annotated in the GISTIC format

We use the function import.GISTIC to import a dataset in GISTIC format, in this case from

crc_gistic

NRAS CTNNB1 FBXW7 APC KRAS TP53

TCGA-A6-2670 -1 0 0 -1 1 -1

TCGA-A6-2672 0 0 0 0 0 0

TCGA-A6-2674 0 0 0 0 0 0

TCGA-A6-2676 0 0 0 0 0 0

TCGA-A6-2677 0 0 0 0 0 -1

TCGA-A6-2678 0 0 0 0 0 -1

TCGA-A6-2683 -1 -1 -1 -1 0 -1

TCGA-A6-3807 0 -1 0 0 -1 -1

TCGA-AA-3516 0 0 0 0 0 0

In its default execution all the data annotated in the file is imported. But in principle it is possible to avoid to import
some genes or samples; in this case it is sufficient to use parameters filter.genes and filter.samples for this
function.

dataset_gistic = import.GISTIC(crc_gistic)

*** Using full GISTIC: #dim 9 x 6

*** GISTIC input format conversion started.

Converting input data to character for import speedup.

Creating 24 events for 6 genes

Extracting "Homozygous Loss" events (GISTIC = -2)

Extracting "Heterozygous Loss" events (GISTIC = -1)

Extracting "Low-level Gain" events (GISTIC = +1)

Extracting "High-level Gain" events (GISTIC = +2)

Transforming events in TRONCO data types

*** Binding events for 4 datasets.

*** Data extracted, returning only events observed in at least one sample

Number of events: n = 7

Number of genes: |G| = 6

Number of samples: m = 9

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 7

3.3 Custom alterations annotated in a boolean matrix

One can annotate its custom type of alterations in a boolean matrix such as crc plain

crc_plain

TP53 FBXW7 APC CTNNB1 NRAS KRAS

TCGA-AA-3517-01 1 0 0 0 0 0

TCGA-AA-3518-01 0 1 0 0 0 0

TCGA-AA-3519-01 1 0 1 0 0 0

TCGA-AA-3520-01 1 0 0 0 0 1

TCGA-AA-3521-01 0 0 1 0 0 1

In this case, function import.genotypes will convert the matrix to a TRONCO object where events’ names and
samples codes will be set from column and row names of the matrix. If this is not possible, these will be generated
from templates. By default, the event.type is set to variant but one can specify a custom name for the alteration
that is reported in the matrix

dataset_plain = import.genotypes(crc_plain, event.type='myVariant')

3.4 Downloading data from the cBio portal for cancer genomics

TRONCO uses the R interface to cBio to query data from the portal. All type of data can be downloaded from the
portal, which includes MAF/GISTIC data for a lot of different cancer studies. An example of interaction with the
portal is archived at the tool’s webpage.

Here, we show how to download lung cancer data somatic mutations for genes TP53, KRAS and PIK3CA, from
the lung cancer project run by TCGA, which is archived as luad tcga pub at cBio. If some of the parameters to
cbio.query are missing the function will become interactive by showing a list of possible data available at the portal.

data = cbio.query(

genes=c('TP53', 'KRAS', 'PIK3CA'),

cbio.study = 'luad_tcga_pub',

cbio.dataset = 'luad_tcga_pub_cnaseq',

cbio.profile = 'luad_tcga_pub_mutations')

4 Data visualisation

All examples in this section will be done with the the aCML dataset as reference.

4.1 Summary report for a dataset and boolean queries

We use the function view to get a short summary of a dataset that we loaded in TRONCO; this function reports on
the number of samples and events, plus some meta information that could be displayed graphically.

view(aCML)

Description: CAPRI - Bionformatics aCML data.

-- TRONCO Dataset: n=64, m=31, |G|=23, patterns=0.

Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.

Colors (plot): #7FC97F, #4483B0, #FDC086, #fab3d8.

Events (5 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

Genotypes (5 shown):

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 8

4.2 Creating views with the “as” functions

Several functions are available to create views over a dataset, with a set of parameter which can constraint the view
– as in the SELECT/JOIN approaches in databases. In the following examples we show their execution with the
default parameters, but shorten their output to make this document readable.

The main “as” functions are here documented. as.genotypes, that we can use to get the matrix of “genotypes”
that we imported.

as.genotypes(aCML)[1:10,5:10]

gene 29 gene 30 gene 31 gene 32 gene 33 gene 34

patient 1 1 0 0 0 0 0

patient 2 1 0 0 0 0 1

patient 3 1 1 0 0 0 0

patient 4 1 0 0 0 0 1

patient 5 1 0 0 0 0 0

patient 6 1 0 0 0 0 0

patient 7 1 0 0 0 0 0

patient 8 1 0 0 0 0 0

patient 9 1 0 0 0 0 0

patient 10 1 0 0 0 0 0

Differently, as.events and as.events.in.samples, that show tables with the events that we are processing in all
dataset or in a specific sample that we want to examine.

as.events(aCML)[1:5,]

type event

gene 4 "Ins/Del" "TET2"

gene 5 "Ins/Del" "EZH2"

gene 6 "Ins/Del" "CBL"

gene 7 "Ins/Del" "ASXL1"

gene 29 "Missense point" "SETBP1"

as.events.in.sample(aCML, sample = 'patient 2')

type event

gene 29 "Missense point" "SETBP1"

gene 34 "Missense point" "CBL"

gene 91 "Nonsense point" "ASXL1"

Concerning genes, as.genes shows the mnemonic names of the genes (or chromosomes, cytobands, etc.) that we
included in our dataset.

as.genes(aCML)[1:8]

[1] "TET2" "EZH2" "CBL" "ASXL1" "SETBP1" "NRAS" "KRAS" "IDH2"

And as.types shows the types of alterations (e.g., mutations, amplifications, etc.) that we have find in our dataset,
and function as.colors shows the list of the colors which are associated to each type.

as.types(aCML)

[1] "Ins/Del" "Missense point" "Nonsense Ins/Del" "Nonsense point"

as.colors(aCML)

Ins/Del Missense point Nonsense Ins/Del Nonsense point

"#7FC97F" "#4483B0" "#FDC086" "#fab3d8"

A function as.gene can be used to display the alterations of a specific gene across the samples

head(as.gene(aCML, genes='SETBP1'))

Missense point SETBP1

patient 1 1

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 9

patient 2 1

patient 3 1

patient 4 1

patient 5 1

patient 6 1

Views over samples can be created as well. as.samples and which.samples list all the samples in the data, or
return a list of samples that harbour a certain alteration. The former is

as.samples(aCML)[1:10]

[1] "patient 1" "patient 2" "patient 3" "patient 4" "patient 5" "patient 6"

[7] "patient 7" "patient 8" "patient 9" "patient 10"

and the latter is

which.samples(aCML, gene='TET2', type='Nonsense point')

[1] "patient 12" "patient 13" "patient 26" "patient 29" "patient 40" "patient 57"

[7] "patient 62"

A slightly different function, which manipulates the data, is as.alterations, which transforms a dataset with events
of different type to events of a unique type, labeled “Alteration”.

dataset = as.alterations(aCML)

*** Aggregating events of type(s) { Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point }

in a unique event with label " Alteration ".

Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

.......................

*** Binding events for 2 datasets.

view(dataset)

-- TRONCO Dataset: n=64, m=23, |G|=23, patterns=0.

Events (types): Alteration.

Colors (plot): khaki.

Events (5 shown):

G1 : Alteration TET2

G2 : Alteration EZH2

G3 : Alteration CBL

G4 : Alteration ASXL1

G5 : Alteration SETBP1

Genotypes (5 shown):

When samples are enriched with stage information function as.stages can be used to create a view over such table.
Views over patterns can be created as well – see Model Inference with CAPRI.

4.3 Dataset size

A set of functions allow to get the number of genes, events, samples, types and patterns in a dataset.

ngenes(aCML)

[1] 23

nevents(aCML)

[1] 31

nsamples(aCML)

[1] 64

ntypes(aCML)

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 10

[1] 4

npatterns(aCML)

[1] 0

4.4 Oncoprints

Oncoprints are the most effective data-visualization functions in TRONCO. These are heatmaps where rows represent
variants, and columns samples (the reverse of the input format required by TRONCO), and are annotated and
displayed/sorted to enhance which samples have which mutations etc.

By default oncoprint will try to sort samples and events to enhance exclusivity patterns among the events.

oncoprint(aCML)

*** Oncoprint for "CAPRI - Bionformatics aCML data"

with attributes: stage = FALSE, hits = TRUE

Sorting samples ordering to enhance exclusivity patterns.

Setting automatic row font (exponential scaling): 8.1

But the sorting mechanism is bypassed if one wants to cluster samples or events, or if one wants to split samples by
cluster (not shown). In the clustering case, the ordering is given by the dendrograms. In this case we also show the
annotation of some groups of events via parameter gene.annot.

oncoprint(aCML,

legend = FALSE,

samples.cluster = TRUE,

gene.annot = list(one = list('NRAS', 'SETBP1'), two = list('EZH2', 'TET2')),

gene.annot.color = 'Set2',

genes.cluster = TRUE)

CAPRI − Bionformatics aCML data

22% SETBP1
14% ASXL1
11% EZH2
11% TET2
8% NRAS
8% TET2
8% CSF3R
8% ASXL1
6% TET2
5% CBL
5% IDH2
5% KIT
5% CSF3R
3% CEBPA
3% EZH2
2% EZH2
2% CBL
2% KRAS
2% SUZ12
2% SF3B1
2% JARID2
2% EED
2% DNMT3A
2% CEBPA
2% EPHB3
2% ETNK1
2% GATA2
2% IRAK4
2% MTA2
2% WT1
2% RUNX1

hits hits
4

0

none

Ins/Del

Missense point

Nonsense Ins/Del

Nonsense point

64 samples
31 events
23 genes
0 patterns

CAPRI − Bionformatics aCML data

11% TET2
22% SETBP1
8% ASXL1
5% CSF3R
3% EZH2
8% CSF3R
8% TET2
3% CEBPA
2% WT1
11% EZH2
8% NRAS
5% KIT
2% RUNX1
5% IDH2
5% CBL
14% ASXL1
2% MTA2
2% IRAK4
2% GATA2
2% ETNK1
2% EPHB3
2% CEBPA
2% DNMT3A
2% EED
2% JARID2
2% SF3B1
2% SUZ12
2% KRAS
6% TET2
2% EZH2
2% CBL

hits

group

hits
4

0

group
one
none
two

Figure 1: Two different calls to oncoprint with aCML data. This plot gives a graphical visualization of the events
that are in the dataset – with a color per event type – but in left it sorts samples to enhance exclusivity patterns
among the events, while in right it clusters samples/events.

Oncoprints can be annotated; a special type of annotation is given by stage data. As this is not available for the
aCML dataset, we create it randomly, just for the sake of showing how the oncoprint is enriched with this information.
This is the random stage map that we create – if some samples had no stage a NA would be added automatically.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 11

stages = c(rep('stage 1', 32), rep('stage 2', 32))

stages = as.matrix(stages)

rownames(stages) = as.samples(aCML)

dataset = annotate.stages(aCML, stages = stages)

has.stages(aCML)

[1] FALSE

head(as.stages(dataset))

stage

patient 1 stage 1

patient 2 stage 1

patient 3 stage 1

patient 4 stage 1

patient 5 stage 1

patient 6 stage 1

The as.stages function can now be used to create a view over stages.

head(as.stages(dataset))

stage

patient 1 stage 1

patient 2 stage 1

patient 3 stage 1

patient 4 stage 1

patient 5 stage 1

patient 6 stage 1

After that the data is annotated via annotate.stages function, we can again plot an oncoprint – which this time
will detect that the dataset has also stages associated, and will diplay those

oncoprint(dataset, legend = FALSE)

If one is willing to display samples grouped according to some variable, for instance after a sample clustering task,
he can use group.samples parameter of oncoprint and that will override the mutual exclusivity ordering. Here,
we make the trick of using the stages as if they were such clustering result.

oncoprint(dataset, group.samples = as.stages(dataset))

CAPRI − Bionformatics aCML data

22% SETBP1
14% ASXL1
11% EZH2
11% TET2
8% NRAS
8% TET2
8% CSF3R
8% ASXL1
6% TET2
5% CBL
5% IDH2
5% KIT
5% CSF3R
3% CEBPA
3% EZH2
2% EZH2
2% CBL
2% KRAS
2% SUZ12
2% SF3B1
2% JARID2
2% EED
2% DNMT3A
2% CEBPA
2% EPHB3
2% ETNK1
2% GATA2
2% IRAK4
2% MTA2
2% WT1
2% RUNX1

hits
stage stage

stage 1
stage 2
none

hits
4

0

CAPRI − Bionformatics aCML data

22% SETBP1
14% ASXL1
11% EZH2
11% TET2
8% NRAS
8% TET2
8% CSF3R
8% ASXL1
6% TET2
5% CBL
5% IDH2
5% KIT
5% CSF3R
3% CEBPA
3% EZH2
2% EZH2
2% CBL
2% KRAS
2% SUZ12
2% SF3B1
2% JARID2
2% EED
2% DNMT3A
2% CEBPA
2% EPHB3
2% ETNK1
2% GATA2
2% IRAK4
2% MTA2
2% WT1
2% RUNX1

hits
stage
cluster cluster

stage 1
stage 2

stage
stage 1
stage 2
none

hits
4

0

none

Ins/Del

Missense point

Nonsense Ins/Del

Nonsense point

64 samples
31 events
23 genes
0 patterns

Figure 2: Example oncoprint output for aCML data with randomly annotated stages, in left, and samples clustered
by group assignment in right – for simplicity the group variable is again the stage annotation.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 12

4.5 Groups visualization (e.g., pathways)

TRONCO provides functions to visualize groups of events, which in this case are called pathways – though this could
be any group that one would like to define. Aggregation happens with the same rational as the as.alterations

function, namely by merging the events in the group.

We make an example of a pathway called MyPATHWAY involving genes SETBP1, EZH2 and WT1; we want it to be
colored in red, and we want to have the genotype of each event to be maintened in the dataset. We proceed as
follows (R’s output is omitted).

pathway = as.pathway(aCML,

pathway.genes = c('SETBP1', 'EZH2', 'WT1'),

pathway.name = 'MyPATHWAY',

pathway.color = 'red',

aggregate.pathway = FALSE)

*** Extracting events for pathway: MyPATHWAY .

*** Events selection: #events = 31 , #types = 4 Filters freq|in|out = { FALSE , TRUE , FALSE }

[filter.in] Genes hold: SETBP1, EZH2, WT1 ... [3 / 3 found].

Selected 5 events, returning.

Pathway extracted succesfully.

*** Binding events for 2 datasets.

Which we then visualize with an oncoprint

oncoprint(pathway, title = 'Custom pathway', font.row = 8, cellheight = 15, cellwidth = 4)

Custom pathway

38% MyPATHWAY

22% SETBP1

11% EZH2

3% EZH2

2% EZH2

2% WT1

hits hits
3

0

none

Pathway

Ins/Del

Missense point

Nonsense Ins/Del

Nonsense point

64 samples
6 events
4 genes

Figure 3: oncoprint output of a custom pathway called MyPATHWAY involving genes SETBP1, EZH2 and WT1; the
genotype of each event is shown.

In TRONCO there is also a function which creates the pathway view and the corresponding oncoprint to multiple
pathways, when these are given as a list. We make here a simple example of two custom pathways.

pathway.visualization(aCML,

pathways=list(P1 = c('TET2', 'IRAK4'), P2=c('SETBP1', 'KIT')),

aggregate.pathways=FALSE,

font.row = 8)

Annotating pathways with RColorBrewer color palette Set2 .

*** Processing pathways: P1, P2

##

[PATHWAY "P1"] TET2, IRAK4

*** Extracting events for pathway: P1 .

*** Events selection: #events = 31 , #types = 4 Filters freq|in|out = { FALSE , TRUE , FALSE }

[filter.in] Genes hold: TET2, IRAK4 ... [2 / 2 found].

Selected 4 events, returning.

Pathway extracted succesfully.

*** Binding events for 2 datasets.

##

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 13

##

[PATHWAY "P2"] SETBP1, KIT

*** Extracting events for pathway: P2 .

*** Events selection: #events = 31 , #types = 4 Filters freq|in|out = { FALSE , TRUE , FALSE }

[filter.in] Genes hold: SETBP1, KIT ... [2 / 2 found].

Selected 2 events, returning.

Pathway extracted succesfully.

*** Binding events for 2 datasets.

*** Binding events for 2 datasets.

*** Oncoprint for "Pathways: P1, P2"

with attributes: stage = FALSE, hits = TRUE

Sorting samples ordering to enhance exclusivity patterns.

NULL

If we had to visualize just the signature of the pathway, we could set aggregate.pathways=T.

pathway.visualization(aCML,

pathways=list(P1 = c('TET2', 'IRAK4'), P2=c('SETBP1', 'KIT')),

aggregate.pathways = TRUE,

font.row = 8)

Pathways: P1, P2

27% P1

27% P2

22% SETBP1

11% TET2

8% TET2

6% TET2

5% KIT

2% IRAK4

hits hits
4

0

none

P1

Ins/Del

Missense point

Nonsense point

P2

64 samples
8 events

Pathways: P1, P2

27% P1

27% P2

hits hits
2

0

none

P1

P2

Figure 4: oncoprint output of a custom pair of pathways, with events shown in top and hidden in bottom.

5 Data manipulation

All examples in this section will be done with the the aCML dataset as reference.

5.1 Modifying events and samples

TRONCO provides functions for renaming the events that were included in a dataset, or the type associated to a set
of events (e.g., a “Mutation” could be renamed to a “Missense Mutation”).

dataset = rename.gene(aCML, 'TET2', 'new name')

dataset = rename.type(dataset, 'Ins/Del', 'new type')

as.events(dataset, type = 'new type')

type event

gene 4 "new type" "new name"

gene 5 "new type" "EZH2"

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 14

gene 6 "new type" "CBL"

gene 7 "new type" "ASXL1"

and return a modified TRONCO object. More complex operations are also possible. For instance, two events with
the same signature – i.e., appearing in the same samples – can be joined to a new event (see also Data Consolidation
in Model Inference) with the same signature and a new name.

dataset = join.events(aCML,

'gene 4',

'gene 88',

new.event='test',

new.type='banana',

event.color='yellow')

*** Binding events for 2 datasets.

where in this case we also created a new event type, with its own color.

In a similar way we can decide to join all the events of two distinct types, in this case if a gene x has signatures
for both type of events, he will get a unique signature with an alteration present if it is either of the second or the
second type

dataset = join.types(dataset, 'Nonsense point', 'Nonsense Ins/Del')

*** Aggregating events of type(s) { Nonsense point, Nonsense Ins/Del }

in a unique event with label " new.type ".

Dropping event types Nonsense point, Nonsense Ins/Del for 6 genes.

......

*** Binding events for 2 datasets.

as.types(dataset)

[1] "Ins/Del" "Missense point" "banana" "new.type"

TRONCO also provides functions for deleting specific events, samples or types.

dataset = delete.gene(aCML, gene = 'TET2')

dataset = delete.event(dataset, gene = 'ASXL1', type = 'Ins/Del')

dataset = delete.samples(dataset, samples = c('patient 5', 'patient 6'))

dataset = delete.type(dataset, type = 'Missense point')

view(dataset)

Description: CAPRI - Bionformatics aCML data.

-- TRONCO Dataset: n=62, m=8, |G|=7, patterns=0.

Events (types): Ins/Del, Nonsense Ins/Del, Nonsense point.

Colors (plot): #7FC97F, #FDC086, #fab3d8.

Events (5 shown):

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 66 : Nonsense Ins/Del WT1

gene 69 : Nonsense Ins/Del RUNX1

gene 77 : Nonsense Ins/Del CEBPA

Genotypes (5 shown):

5.2 Modifying patterns

TRONCO provides functions to edit patterns, pretty much as for any other type of events. Patterns however have
a special denotation and are supported only by CAPRI algorithm – see Model Reconstruction with CAPRI to see a
practical application of that.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 15

5.3 Subsetting a dataset

It is very often the case that we want to subset a dataset by either selecting only some of its samples, or some of its
events. Function samples.selection returns a dataset with only some selected samples.

dataset = samples.selection(aCML, samples = as.samples(aCML)[1:3])

view(dataset)

Description: CAPRI - Bionformatics aCML data.

-- TRONCO Dataset: n=3, m=31, |G|=23, patterns=0.

Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.

Colors (plot): #7FC97F, #4483B0, #FDC086, #fab3d8.

Events (5 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

Genotypes (5 shown):

Function events.selection, instead, performs selection according to a filter of events. With this function, we
can subset data according to a frequency, and we can force inclusion/exclusion of certain events by specifying their
name. For instance, here we pick all events with a minimum frequency of 5%, force exclusion of SETBP1 (all events
associated), and inclusion of EZH1 and EZH2.

dataset = events.selection(aCML, filter.freq = .05,

filter.in.names = c('EZH1','EZH2'),

filter.out.names = 'SETBP1')

*** Events selection: #events = 31 , #types = 4 Filters freq|in|out = { TRUE , TRUE , TRUE }

Minimum event frequency: 0.05 (3 alterations out of 64 samples).

...............................

Selected 9 events.

##

[filter.in] Genes hold: EZH1, EZH2 ... [1 / 2 found].

[filter.out] Genes dropped: SETBP1 ... [1 / 1 found].

Selected 10 events, returning.

as.events(dataset)

type event

gene 4 "Ins/Del" "TET2"

gene 5 "Ins/Del" "EZH2"

gene 7 "Ins/Del" "ASXL1"

gene 30 "Missense point" "NRAS"

gene 32 "Missense point" "TET2"

gene 33 "Missense point" "EZH2"

gene 55 "Missense point" "CSF3R"

gene 88 "Nonsense point" "TET2"

gene 89 "Nonsense point" "EZH2"

gene 91 "Nonsense point" "ASXL1"

An example visualization of the data before and after the selection process can be obtained by combining the gtable

objects returned by oncoprint. We here use gtable = T to get access to have a GROB table returned, and silent

= T to avoid that the calls to the function display on the device; the call to grid.arrange displays the captured
gtable objects.

library(gridExtra)

grid.arrange(

oncoprint(as.alterations(aCML, new.color = 'brown3'),

cellheight = 6, cellwidth = 4, gtable = TRUE,

silent = TRUE, font.row = 6)$gtable,

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 16

oncoprint(dataset, cellheight = 6, cellwidth = 4,

gtable = TRUE, silent = TRUE, font.row = 6)$gtable,

ncol = 1)

25% TET2
22% ASXL1
22% SETBP1
16% EZH2
11% CSF3R
8% NRAS
6% CBL
5% IDH2
5% CEBPA
5% KIT
2% KRAS
2% SUZ12
2% SF3B1
2% JARID2
2% EED
2% DNMT3A
2% EPHB3
2% ETNK1
2% GATA2
2% IRAK4
2% MTA2
2% WT1
2% RUNX1

hits hits
4

0

none

Alteration

64 samples
23 events
23 genes
0 patterns

14% ASXL1
11% EZH2
11% TET2
8% NRAS
8% TET2
8% CSF3R
8% ASXL1
6% TET2
3% EZH2
2% EZH2

hits hits
3

0
none

Ins/Del

Missense point

Nonsense point

64 samples
10 events
5 genes
0 patterns

Figure 5: Multiple output from oncoprint can be captured as a gtable and composed via grid.arrange (package
gridExtra). In this case we show aCML data on top – displayed after the as.alterations transformation – versus

a selected subdataset of events with a minimum frequency of 5%, force exclusion of SETBP1 (all events associated),
and inclusion of EZH1 and EZH2.

6 Model inference

We make use of the most of the functions described above to show how to perform inference with various algorithms;
the reader should read first those sections of the vignette to have an explanation of how those functions work.
The aCML dataset is used as a test-case for all algorithms, regardless it should be precessed by algorithms to infer
ensemble-level progression models.

To replicate the plots of the original paper were the aCML dataset was first analyzed with CAPRI, we can change
the colors assigned to each type of event with the function change.color.

dataset = change.color(aCML, 'Ins/Del', 'dodgerblue4')

dataset = change.color(dataset, 'Missense point', '#7FC97F')

as.colors(dataset)

Ins/Del Missense point Nonsense Ins/Del Nonsense point

"dodgerblue4" "#7FC97F" "#FDC086" "#fab3d8"

http://bioconductor.org/packages/TRONCO
http://cran.fhcrc.org/web/packages/ gridExtra/index.html

Using the TRONCO package 17

Data consolidation. All TRONCO algorithms require an input dataset were events have non-zero/non-one prob-
ability, and are all distinguishable. The tool provides a function to return lists of events which do not satisfy these
constraint.

consolidate.data(dataset)

$indistinguishable

list()

##

$zeroes

list()

##

$ones

list()

The aCML data has none of the above issues (the call returns empty lists); if this were not the case data manipulation
functions can be used to edit a TRONCO object (§5).

6.1 CAPRI

In what follows, we show CAPRI’s functioning by replicating the aCML case study presented in CAPRI’s original
paper. Regardless from which types of mutations we include, we select only the genes mutated at least in the 5% of
the patients – thus we first use as.alterations to have gene-level frequencies, and then we apply there a frequency
filter (R’s output is omitted).

alterations = events.selection(as.alterations(aCML), filter.freq = .05)

*** Aggregating events of type(s) { Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point }

in a unique event with label " Alteration ".

Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

.......................

*** Binding events for 2 datasets.

*** Events selection: #events = 23 , #types = 1 Filters freq|in|out = { TRUE , FALSE , FALSE }

Minimum event frequency: 0.05 (3 alterations out of 64 samples).

.......................

Selected 7 events.

##

Selected 7 events, returning.

To proceed further with the example we create the dataset to be used for the inference of the model. From the
original dataset we select all the genes whose mutations are occurring at least the 5% of the times, and we get that
by the alterations profiles; also we force inclusion of all the events for the genes involved in an hypothesis (those
included in variable gene.hypotheses, this list is based on the support found in the literature of potential aCML
patterns).

gene.hypotheses = c('KRAS', 'NRAS', 'IDH1', 'IDH2', 'TET2', 'SF3B1', 'ASXL1')

aCML.clean = events.selection(aCML,

filter.in.names=c(as.genes(alterations), gene.hypotheses))

*** Events selection: #events = 31 , #types = 4 Filters freq|in|out = { FALSE , TRUE , FALSE }

[filter.in] Genes hold: TET2, EZH2, CBL, ASXL1, SETBP1 ... [10 / 14 found].

Selected 17 events, returning.

aCML.clean = annotate.description(aCML.clean,

'CAPRI - Bionformatics aCML data (selected events)')

We show a new oncoprint of this latest dataset where we annotate the genes in gene.hypotheses in order to identify
them. The sample names are also shown.

oncoprint(aCML.clean, gene.annot = list(priors = gene.hypotheses), sample.id = TRUE)

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 18

CAPRI − Bionformatics aCML data (selected events)

patient 9
patient 12
patient 13
patient 3
patient 5
patient 2
patient 4
patient 7
patient 8
patient 14
patient 6
patient 1
patient 10
patient 11
patient 29
patient 24
patient 27
patient 21
patient 45
patient 48
patient 32
patient 39
patient 62
patient 17
patient 23
patient 20
patient 38
patient 57
patient 26
patient 40
patient 60
patient 34
patient 56
patient 41
patient 30
patient 42
patient 25
patient 55
patient 15
patient 35
patient 61
patient 22
patient 16
patient 18
patient 19
patient 28
patient 31
patient 33
patient 36
patient 37
patient 43
patient 44
patient 46
patient 47
patient 49
patient 50
patient 51
patient 52
patient 53
patient 54
patient 58
patient 59
patient 63
patient 64

22% SETBP1

14% ASXL1

11% EZH2

11% TET2

8% NRAS

8% TET2

8% CSF3R

8% ASXL1

6% TET2

5% CBL

5% IDH2

5% CSF3R

3% EZH2

2% EZH2

2% CBL

2% KRAS

2% SF3B1

hits

group

hits
4

0

group
none
priorsnone

Ins/Del

Missense point

Nonsense point

64 samples
17 events
10 genes
0 patterns

Figure 6: Data selected for aCML reconstruction annotated with the events which are part of a pattern that we will
input to CAPRI.

6.1.1 Testable hypotheses via logical formulas (i.e., patterns)

CAPRI is the only algorithm in TRONCO that supports hypotheses-testing of causal structures expressed as logical
formulas with AND, OR and XOR operators. An example invented formula could be

(APC:Mutation XOR APC:Deletion) OR CTNNB1:Mutation

where APC mutations and deletions are in disjunctive relation with CTNNB1 mutations; this is done to test if those
events could confer equivalent fitness in terms of ensemble-level progression – see the original CAPRI paper and the
PiCnIc pipeline for detailed explanations.

Every formula is transformed into a CAPRI “pattern”. For every hypothesis it is possible to specify against which
possible target event it should be tested, e.g., one might test the above formula against PIK3CA mutations, but not
ATM ones. If this is not done, a pattern is tested against all other events in the dataset but those which constitute
itself. A pattern tested against one other event is called an hypothesis.

Adding custom hypotheses. We add the hypotheses that are described in CAPRI’s manuscript; we start with
hard exclusivity (XOR) for NRAS/KRAS mutation,

NRAS:Missense point XOR KRAS:Missense point

tested against all the events in the dataset (default pattern.effect = *)

aCML.hypo = hypothesis.add(aCML.clean, 'NRAS xor KRAS', XOR('NRAS', 'KRAS'))

When a pattern is included, a new column in the dataset is created – whose signature is given by the evaluation of the
formula constituting the pattern. We call this operation lifting of a pattern, and this shall create not inconsistency
in the data – i.e., it shall not duplicate any of the other columns. TRONCO check this; for instance when we try to
include a soft exclusivity (OR) pattern for the above genes we get an error (not shown).

aCML.hypo = hypothesis.add(aCML.hypo, 'NRAS or KRAS', OR('NRAS', 'KRAS'))

Notice that TRONCO functions can be used to look at their alterations and understand why the OR signature is
equivalent to the XOR one – this happens as no samples harbour both mutations.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 19

oncoprint(events.selection(aCML.hypo,

filter.in.names = c('KRAS', 'NRAS')),

font.row = 8,

ann.hits = FALSE)

We repeated the same analysis as before for other hypotheses and for the same reasons, we will include only the hard
exclusivity pattern. In this case we add a two-levels pattern

SF3B1:Missense point XOR (ASXL1:Ins/Del XOR ASXL1:Nonsense point)

since ASXL1 is mutated in two different ways, and no samples harbour both mutation types.

aCML.hypo = hypothesis.add(aCML.hypo, 'SF3B1 xor ASXL1', XOR('SF3B1', XOR('ASXL1')),

'*')

Finally, we now do the same for genes TET2 and IDH2. In this case 3 events for the gene TET2 are present, that
is “Ins/Del”, “Missense point” and “Nonsense point”. For this reason, since we are not specifying any subset of
such events to be considered, all TET2 alterations are used. Since the events present a perfect hard exclusivity, their
patters will be included as a XOR.

as.events(aCML.hypo, genes = 'TET2')

type event

gene 4 "Ins/Del" "TET2"

gene 32 "Missense point" "TET2"

gene 88 "Nonsense point" "TET2"

aCML.hypo = hypothesis.add(aCML.hypo,

'TET2 xor IDH2',

XOR('TET2', 'IDH2'),

'*')

aCML.hypo = hypothesis.add(aCML.hypo,

'TET2 or IDH2',

OR('TET2', 'IDH2'),

'*')

Which is the following pattern

(TET2:Ins/Del) XOR (TET2:Missense point) XOR (TET2:Nonsense point) XOR (IDH2:Missense point)

which we can visualize via anoncoprint.

oncoprint(events.selection(aCML.hypo,

filter.in.names = c('TET2', 'IDH2')),

font.row = 8,

ann.hits = FALSE)

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 20

8% NRAS

2% KRAS
none

Missense point

11% TET2

8% TET2

6% TET2

5% IDH2

none

Ins/Del

Missense point

Nonsense point

64 samples
4 events
2 genes

Figure 7: oncoprint output to show the perfect (hard) exclusivity among NRAS/KRAS mutations in aCML on top,
and the sofy-one among TET2 and IDH2 alterations.

Adding (automatically) hypotheses for homologous events. We consider homologous events those having the
same mnemonic name – as of function as.genes – but events of different type. For instance, mutations and deletions
of the same gene would be considered such (e.g., in the aCML dataset ASXL1 Ins/Del and Nonsense point). It could
be a good idea to test such events, in terms of progression fitness, to test is they might be equivalent; we can do
that by building a pattern of exclusivity among them. TRONCO has a function to make this automatically which,
by default, adds a soft exclusivity OR pattern among them.

aCML.hypo = hypothesis.add.homologous(aCML.hypo)

*** Adding hypotheses for Homologous Patterns

Genes: TET2, EZH2, CBL, ASXL1, CSF3R

Function: OR

Cause: *

Effect: *

.....Hypothesis created for all possible gene patterns.

This function added one pattern for each of TET2, EZH2, CBL, ASXL1, CSF3R (unless they created duplicated
columns in the dataset), with a connective OR/XOR which is appropriate for the events considered; for instance the
TET2 homologous pattern

(TET2:Ins/Del) XOR (TET2:Missense point) XOR (TET2:Nonsense point)

was created with a XOR function, as TET2 appears in perfect exclusivity.

Adding (automatically) hypotheses for a group of genes. The idea behind the previous function is generalized
by hypothesis.add.group, that add a set of hypotheses that can be combinatorially created out of a group of
genes. As such, this function can create an exponential number of hypotheses and should be used with caution as
too many hypotheses, with respect to sample size, should not be included.

This function takes, among its inputs, the top-level logical connective, AND/OR/XOR, a minimum/maximum pattern
size – to restrict the combinatorial sampling of subgroups –, plus a parameter that can be used to constrain the
minimum event frequency. If, among the events included some of them have homologous, these are put automatically
nested with the same logic of the hypothesis.add.group function.

dataset = hypothesis.add.group(aCML.clean, OR, group = c('SETBP1', 'ASXL1', 'CBL'))

*** Adding Group Hypotheses

Group: SETBP1, ASXL1, CBL

Function: OR

Cause: * ; Effect: * .

Genes with multiple events: ASXL1, CBL

Generating 4 patterns [size: min = 3 - max = 3].

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 21

Hypothesis created for all possible patterns.

The final dataset that will be given as input to CAPRI is finally shown. Notice the signatures of all the lifted patterns.

oncoprint(aCML.hypo, gene.annot = list(priors = gene.hypotheses), sample.id = TRUE,

font.row=10, font.column=5, cellheight=15, cellwidth=4)

CAPRI − Bionformatics aCML data (selected events)

patient 29
patient 24
patient 27
patient 21
patient 13
patient 12
patient 62
patient 23
patient 57
patient 26
patient 40
patient 34
patient 41
patient 25
patient 55
patient 48
patient 15
patient 56
patient 9
patient 2
patient 4
patient 7
patient 8
patient 45
patient 32
patient 39
patient 42
patient 22
patient 6
patient 5
patient 14
patient 3
patient 1
patient 10
patient 11
patient 17
patient 20
patient 38
patient 61
patient 30
patient 35
patient 60
patient 16
patient 18
patient 19
patient 28
patient 31
patient 33
patient 36
patient 37
patient 43
patient 44
patient 46
patient 47
patient 49
patient 50
patient 51
patient 52
patient 53
patient 54
patient 58
patient 59
patient 63
patient 64

28% TET2_or_IDH2

27% TET2_xor_IDH2

25% XOR_TET2

23% SF3B1_xor_ASXL1

22% SETBP1

22% XOR_ASXL1

16% XOR_EZH2

14% ASXL1

11% EZH2

11% TET2

11% OR_CSF3R

9% NRAS_xor_KRAS

8% NRAS

8% TET2

8% CSF3R

8% ASXL1

6% TET2

6% XOR_CBL

5% CBL

5% IDH2

5% CSF3R

3% EZH2

2% EZH2

2% CBL

2% KRAS

2% SF3B1

hits

group

hits
10

0

group
none
priorsnone

Ins/Del

Missense point

Nonsense point

Pattern

64 samples
26 events
10 genes
9 patterns

Figure 8: oncoprint output of the a dataset that has patterns that could be given as input to CAPRI to retrieve a
progression model.

Querying, visualizing and manipulating CAPRI’s patterns. We also provide functions to get the number of
hypotheses and patterns present in the data.

npatterns(dataset)

[1] 4

nhypotheses(dataset)

[1] 106

We can visualize any pattern or the elements involved in them with the following functions.

as.patterns(dataset)

[1] "OR_SETBP1_ASXL1" "OR_SETBP1_CBL" "OR_ASXL1_CBL"

[4] "OR_SETBP1_ASXL1_CBL"

as.events.in.patterns(dataset)

type event

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 22

gene 6 "Ins/Del" "CBL"

gene 7 "Ins/Del" "ASXL1"

gene 29 "Missense point" "SETBP1"

gene 34 "Missense point" "CBL"

gene 91 "Nonsense point" "ASXL1"

as.genes.in.patterns(dataset)

[1] "CBL" "ASXL1" "SETBP1"

as.types.in.patterns(dataset)

[1] "Ins/Del" "Missense point" "Nonsense point"

Similarily, we can enumerate the hypotheses with the function as.hypotheses, and delete certain patterns and
hypotheses. Deleting a pattern consists in deleting all of its hypotheses.

head(as.hypotheses(dataset))

cause type cause event effect type effect event

[1,] "Pattern" "OR_SETBP1_ASXL1" "Ins/Del" "TET2"

[2,] "Pattern" "OR_SETBP1_ASXL1" "Ins/Del" "EZH2"

[3,] "Pattern" "OR_SETBP1_ASXL1" "Ins/Del" "CBL"

[4,] "Pattern" "OR_SETBP1_ASXL1" "Missense point" "NRAS"

[5,] "Pattern" "OR_SETBP1_ASXL1" "Missense point" "KRAS"

[6,] "Pattern" "OR_SETBP1_ASXL1" "Missense point" "TET2"

dataset = delete.hypothesis(dataset, event = 'TET2')

dataset = delete.pattern(dataset, pattern = 'OR_ASXL1_CBL')

How to build a pattern. It is sometimes of help to plot some information about a certain combination of events,
and a target – especially to disentangle the proper logical connectives to use when building a pattern. Here, we test
genes SETBP1 and ASXL1 versus Missense point mutations of CSF3R, and observe that the majority of observations
are mutually exclusive, but almost half of the CSF3R mutated samples with Missense point mutations do not harbout
any mutation in SETBP1 and ASXL1.

tronco.pattern.plot(aCML,

group = as.events(aCML, genes=c('SETBP1', 'ASXL1')),

to = c('CSF3R', 'Missense point'),

legend.cex=0.8,

label.cex=1.0)

Group:

type event

gene 7 "Ins/Del" "ASXL1"

gene 29 "Missense point" "SETBP1"

gene 91 "Nonsense point" "ASXL1"

Group tested against: CSF3R Missense point

Pattern conditioned to samples: patient 5, patient 13, patient 30, patient 34, patient 45

Co-occurrence in #samples: 0

Hard exclusivity in #samples: 1 2 0

Other observations in #samples: 2

Soft exclusivity in #samples: 0

CSF3R

ASXL1 1

SETBP1 2

ASXL1 0

soft 0

co-occurrence 0

other 2

CSF3R Missense point

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 23

[1,] 3

[2,] 0

[3,] 0

[4,] 2

CSF3R Missense point

Combination of group events
 in 5 samples with CSF3R Missense point

0

1

2

3

4

5

 ASXL1

SETBP1

 ASXL1

Observations supporting
 hard−exclusivity

0.
0

0.
5

1.
0

1.
5

2.
0

Table of observations

3 with 1 event (hard exclusivity)
0 with 2 or more events
0 with all events (co−occurrence)
2 with no events

Input group

Ins/Del in ASXL1
Missense point in SETBP1
Nonsense point in ASXL1

●
●
●

Events type

Ins/Del
Missense point
Nonsense point

Figure 9: Barplot to show an hypothesis: here we test genes SETBP1 and ASXL1 versus Missense point mutations
of CSF3R, which suggests that that pattern does not “capture” all the samples with CSF3R mutations.

It is also possible to create a circle plot where we can observe the contribution of genes SETBP1 and ASXL1 in every
match with a Missense point mutations of CSF3R.

tronco.pattern.plot(aCML,

group = as.events(aCML, genes=c('TET2', 'ASXL1')),

to = c('CSF3R', 'Missense point'),

legend = 1.0,

label.cex = 0.8,

mode='circos')

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 24

 ASXL1

 TET2

 TE
T2

ot
he

r

C
S

F
3R

Table of observations

3 with 1 event (hard exclusivity)
0 with 2 or more events
0 with all events (co−occurrence)
2 with no events

Input group

Ins/Del in TET2
Ins/Del in ASXL1
Missense point in TET2
Nonsense point in TET2
Nonsense point in ASXL1

●
●
●

Events type

Ins/Del
Missense point
Nonsense point

Figure 10: Circos to show an hypothesis: here we test genes SETBP1 and ASXL1 versus Missense point mutations
of CSF3R. The combination of this and the previous plots should allow to understand which pattern we shall write
in an attempt to capture a potential causality relation between the pattern and the event.

6.1.2 Model reconstruction

We run the inference of the model by CAPRI algorithm with its default parameter: we use both AIC and BIC as
regularizators, Hill-climbing as heuristic search of the solutions and exhaustive bootstrap (nboot replicates or more
for Wilcoxon testing, i.e., more iterations can be performed if samples are rejected), p-value are set at 0.05. We set
the seed for the sake of reproducibility.

model.capri = tronco.capri(aCML.hypo, boot.seed = 12345, nboot = 5)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 26.

Algorithm: CAPRI with "bic, aic" regularization and "hc" likelihood-fit strategy.

Random seed: 12345.

Bootstrap iterations (Wilcoxon): 5.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

......

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 25

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 37 edges out of 71 (52%)

*** Performing likelihood-fit with regularization bic.

*** Performing likelihood-fit with regularization aic.

*** Evaluating BIC / AIC / LogLik informations.

The reconstruction has been successfully completed in 00h:00m:02s

model.capri = annotate.description(model.capri, 'CAPRI - aCML')

6.2 CAPRESE

The CAPRESE algorithm is one of a set of algorithms to reconstruct progression models from data of an individual
patient. This algorithm uses a shrinkage-alike estimator combining correlation and probability raising among pair of
events. This algorithm shall return a forest of trees, a special case of a Suppes-Bayes Causal Network.

Despite this is derived to infer progression models from individual level data, we use it here to process aCML data
(without patterns and with its default parameters). This algorithm has no bootstrap and, as such, is the quickest
available in TRONCO.

model.caprese = tronco.caprese(aCML.clean)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: CAPRESE with shrinkage coefficient: 0.5.

*** Evaluating LogLik informations.

The reconstruction has been successfully completed in 00h:00m:00s

model.caprese = annotate.description(model.caprese, 'CAPRESE - aCML')

6.3 Directed Minimum Spanning Tree with Mutual Information

This algorithm is meant to extract a forest of trees of progression from data of an individual patient. This algorithm
is based on a formulation of the problem in terms of minimum spamming trees and exploits results from Edmonds.
We test it to infer a model from aCML data as we did with CAPRESE.

model.edmonds = tronco.edmonds(aCML.clean, nboot = 5, boot.seed = 12345)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: Edmonds with "no_reg" regularization Random seed: 12345.

Bootstrap iterations (Wilcoxon): 5.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

......

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 2 edges out of 24 (8%)

*** Performing likelihood-fit with regularization: no_reg and score: pmi .

*** Evaluating BIC / AIC / LogLik informations.

The reconstruction has been successfully completed in 00h:00m:01s

model.edmonds = annotate.description(model.edmonds, 'MST Edmonds - aCML')

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 26

6.4 Partially Directed Minimum Spanning Tree with Mutual Information

This algorithm extends the previous one in situations where it is not possible to fully assess a confident time ordering
among the nodes, hence leading to a partially directed input. This algorithm adopts Gabow search strategy to
evaluate the best directed minimum spanning tree among such undirected components. We test it to infer a model
from aCML data as all the other algorithms.

model.gabow = tronco.gabow(aCML.clean, nboot = 5, boot.seed = 12345)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: Gabow with "no_reg" regularization Random seed: 12345.

Bootstrap iterations (Wilcoxon): 5.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

......

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 2 edges out of 24 (8%)

*** Performing likelihood-fit with regularization: no_reg .

*** Evaluating BIC / AIC / LogLik informations.

The reconstruction has been successfully completed in 00h:00m:01s

model.gabow = annotate.description(model.gabow, 'MST Gabow - aCML')

6.5 Undirected Minimum Spanning Tree with Likelihood-Fit

This algorithm is meant to extract a progression from data of an individual patient, but it is not constrained to
retrieve a tree/forest – i.e., it could retrieve a direct acyclic graph – according to the level of noise and heterogeneity
of the input data. This algorithm is based on a formulation of the problem in terms of minimum spamming trees and
exploits results from Chow Liu and other variants for likelihood-fit. Thus, this algorithm is executed with potentially
multiple regularizator as CAPRI – here we use BIC/AIC.

We test it to aCML data as all the other algorithms.

model.chowliu = tronco.chowliu(aCML.clean, nboot = 5, boot.seed = 12345)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: Chow Liu with "bic, aic" regularization Random seed: 12345.

Bootstrap iterations (Wilcoxon): 5.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

......

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 2 edges out of 24 (8%)

*** Performing likelihood-fit with regularization bic .

*** Performing likelihood-fit with regularization aic .

*** Evaluating BIC / AIC / LogLik informations.

The reconstruction has been successfully completed in 00h:00m:01s

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 27

model.chowliu = annotate.description(model.chowliu, 'MST Chow Liu - aCML')

6.6 Undirected Minimum Spanning Tree with Mutual Information

This algorithm is meant to extract a progression from data of an individual patient. As the Chow Liu algorithm,
this could retrieve a direct acyclic graph according to the level of noise and heterogeneity of the input data. This
algorithm formulatesf the problem in terms of undirected minimum spamming trees and exploits results from Prim,
which are a generalization of Edomonds’ ones. We test it to aCML data as all the other algorithms.

model.prim = tronco.prim(aCML.clean, nboot = 5, boot.seed = 12345)

*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.

Algorithm: Prim with "no_reg" regularization Random seed: 12345.

Bootstrap iterations (Wilcoxon): 5.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

......

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 2 edges out of 24 (8%)

*** Performing likelihood-fit with regularization: no_reg .

*** Evaluating BIC / AIC / LogLik informations.

The reconstruction has been successfully completed in 00h:00m:02s

model.prim = annotate.description(model.prim, 'MST Prim - aCML data')

7 Post-reconstruction

TRONCO provides functions to plot a model, access information about the probabilities used to extract it from data,
and two types of confidence measures: those used to infer the model, and those computed a posteriori from it.

Function view provides updated information about a model if this is available.

view(model.capri)

Description: CAPRI - aCML.

-- TRONCO Dataset: n=64, m=26, |G|=10, patterns=9.

Events (types): Ins/Del, Missense point, Nonsense point, Pattern.

Colors (plot): #7FC97F, #4483B0, #fab3d8, slateblue.

Events (5 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

Genotypes (5 shown):

##

-- TRONCO Model(s): CAPRI

Score optimization via Hill-Climbing.

BIC, AIC regularizers.

BIC: score -566.2114 | logLik -501.7487 | 5 selective advantage relations.

AIC: score -528.5392 | logLik -491.5392 | 11 selective advantage relations.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 28

Available confidence measures:

Temporal priority | Probability raising | Hypergeometric

7.1 Visualizing a reconstructed model

We can plot a model by using function tronco.plot. Here, we plot the aCML model inferred by CAPRI with BIC
and AIC as a regolarizator. We set some parameters to get a nice plot (scaling etc.), and distinguish the edges
detected by the two regularization techniques. The confidence of each edge is shown in terms of temporal priority
and probability raising (selective advantage scores) and hypergeometric testing (statistical relevance of the dataset
of input). Events are annotated as in the oncoprint, edge p-values above a minium threshold (default 0.05) are red.

tronco.plot(model.capri,

fontsize = 12,

scale.nodes = 0.6,

confidence = c('tp', 'pr', 'hg'),

height.logic = 0.25,

legend.cex = 0.35,

pathways = list(priors = gene.hypotheses),

label.edge.size = 10)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: tp, pr, hg

RGraphviz object prepared.

Plotting graph and adding legends.

Warning in strwidth(legend, units = "user", cex = cex, font = text.font): font metrics unknown

for character 0xa

Warning in strheight(legend, units = "user", cex = cex): font metrics unknown for character

0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 29

CAPRI − aCML

●●

●

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

ASXL1
8% (5)

< 0.01
< 0.01
0.03

< 0.01
< 0.01
0.05

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
0.1 *

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
0.08 *

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
< 0.01

0.06 *
< 0.01
0.01

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
< 0.01

●

●

●

●

Events type

Ins/Del
Missense point
Nonsense point

Patterns
Exclusivity (hard)

Pathways
priors

●

●

●

●

Edge confidence
Temporal Priority
Probability Raising
Hypergeometric test
p−value cutoff < 0.05

Sample size
n = 64, m = 26
|G| = 10, |P| = 9

Algorithm:
capri bic
capri aic

Figure 11: aCML model reconstructed by CAPRI with AIC/BIC as regolarizators; the confidence of each edge is
shown both in terms of temporal priority and probability raising (selective advantage scores) and hypergeometric
testing (statistical relevance of the dataset of input).

We can also make a multiplot with this function, which in this case we do by showing the models inferred by the
other algorithms based on Minimum Spanning Trees.

par(mfrow = c(2,2))

tronco.plot(model.caprese, fontsize = 22, scale.nodes = 0.6, legend = FALSE)

tronco.plot(model.edmonds, fontsize = 22, scale.nodes = 0.6, legend = FALSE)

tronco.plot(model.chowliu, fontsize = 22, scale.nodes = 0.6, legend.cex = .7)

Warning in strwidth(legend, units = "user", cex = cex, font = text.font): font metrics unknown

for character 0xa

Warning in strheight(legend, units = "user", cex = cex): font metrics unknown for character

0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

tronco.plot(model.prim, fontsize = 22, scale.nodes = 0.6, legend = FALSE)

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 30

CAPRESE − aCML

CSF3R
5% (3)

SETBP1
22% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
11% (7)

CBL
5% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
2% (1)

CSF3R
8% (5)

CBL
2% (1)

ASXL1
14% (9)

TET2
11% (7)

EZH2
3% (2)

ASXL1
8% (5)

MST Edmonds − aCML

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CSF3R
8% (5)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

EZH2
4% (2)

ASXL1
8% (5)

MST Chow Liu − aCML

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CSF3R
8% (5)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

ASXL1
8% (5)

●

●

●

Events type

Ins/Del
Missense point
Nonsense point

●

●

●

●

Sample size
n = 64, m = 17
|G| = 10, |P| = 0

Algorithm:
chow liu bic
chow liu aic

MST Prim − aCML data

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CSF3R
8% (5)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

EZH2
4% (2)

ASXL1
8% (5)

Figure 12: aCML data processed model by algorithms to extract models from individual patients, we show the otput
of CAPRESE, and all algorithms based on Minimum Spanning Trees (Edmonds, Chow Liu and Prim). Only the
model retrieved by Chow Liu has two different edge colors as it was regularized with two different strategies: AIC
and BIC.

7.2 Accessing information within a model (e.g., confidence)

We can visualize a summary of the parameters used for the reconstruction, test if an object has a model or delete it
(which shall be done to retrieve the original dataset).

as.data.frame(as.parameters(model.capri))

algorithm command regularization do.boot nboot pvalue min.boot min.stat boot.seed

1 CAPRI hc bic TRUE 5 0.05 3 TRUE 12345

2 CAPRI hc aic TRUE 5 0.05 3 TRUE 12345

silent error.rates.epos error.rates.eneg

1 FALSE 0 0

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 31

2 FALSE 0 0

has.model(model.capri)

[1] TRUE

dataset = delete.model(model.capri)

Model structure. A set of functions can be used to visualize the content of object which contains the reconstructed
model. For instance, we can access the adjacency matrix of a model by using as.adj.matrix which will return a
matrix for each one of the regularizators used – in this case because CAPRI was run with both BIC/AIC.

str(as.adj.matrix(model.capri))

List of 2

$ capri_bic: num [1:26, 1:26] 0 0 0 0 0 0 0 0 0 0 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

$ capri_aic: num [1:26, 1:26] 0 0 0 0 0 0 0 0 0 0 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

Empirical probabilities. Every model is inferred by estimating the empirical marginal, joint and conditional prob-
abilities for all the events, from input data. These in some cases are estimated by a bootstrap procedure (see the
algorithms implemented). TRONCO has functions to extract such table, that could be in turn printed by using
external functions for, e.g., heatmap visualization (see below for an example via the pheatmap package). We show
these functions working with the CAPRI model; in this case the tables are the same for both BIC/AIC structures as
they are computed before performing penalized likelihood-fit. The marginal P (x) for x an event in the dataset are
obtained by as.marginal.probs.

marginal.prob = as.marginal.probs(model.capri)

head(marginal.prob$capri_bic)

marginal probability

gene 4 0.057291667

gene 5 0.009548611

gene 6 0.015625000

gene 7 0.132812500

gene 29 0.198784722

gene 30 0.077256944

Similarly, the joint P (x, y) for every pair of events in the dataset is given by as.joint.probs.

joint.prob = as.joint.probs(model.capri, models='capri_bic')

joint.prob$capri_bic[1:3, 1:3]

gene 4 gene 5 gene 6

gene 4 0.05729167 0.000000000 0.000000

gene 5 0.00000000 0.009548611 0.000000

gene 6 0.00000000 0.000000000 0.015625

And as.conditional.probs finally gives the conditional P (x | y) for every edge in the dataset.

conditional.prob = as.conditional.probs(model.capri, models='capri_bic')

head(conditional.prob$capri_bic)

conditional probability

gene 4 1

gene 5 0.1264368

gene 6 0.2068966

http://bioconductor.org/packages/TRONCO
http://cran.fhcrc.org/web/packages/pheatmap/index.html

Using the TRONCO package 32

gene 7 1

gene 29 1

gene 30 1

Confidence measures. Confidence scores can be accessed by function as.confidence, which takes as parameter
the type of confidence measure that one wants to access to. This will work for either confidence measures assessed
before reconstructing the model – if available –, or afterwards.

str(as.confidence(model.capri, conf = c('tp', 'pr', 'hg')))

List of 3

$ hg: num [1:26, 1:26] 1 0.0625 0.0625 0.4632 0.6067 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

$ tp: num [1:26, 1:26] 1.00 1.00 1.00 7.66e-07 1.54e-07 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

$ pr: num [1:26, 1:26] 1 1 1 0.557 1 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

.. ..$: chr [1:26] "gene 4" "gene 5" "gene 6" "gene 7" ...

Other functions visualize tables summarizing the statistics for each edge in the model, For instance, if one uses function
as.selective.advantage.relations the p-values for temporal priority, probability raising and hypergeometric
testing, as well as other information about each edge can be accessed, e.g., the number of observations for the
upstream and the downstream events.

as.selective.advantage.relations(model.capri)

$capri_bic

SELECTS SELECTED OBS.SELECTS OBS.SELECTED TEMPORAL.PRIORITY

1 Missense point SETBP1 Nonsense point ASXL1 14 5 3.586517e-07

2 Missense point TET2 Ins/Del EZH2 5 1 3.042779e-07

3 Missense point TET2 Ins/Del CBL 5 1 5.138164e-07

4 Nonsense point ASXL1 Pattern XOR_CBL 5 4 4.969218e-03

5 Pattern XOR_ASXL1 Missense point CBL 14 3 1.432328e-07

PROBABILITY.RAISING HYPERGEOMETRIC

1 1.575005e-07 0.0049513989

2 1.981523e-04 0.0781250000

3 4.930027e-06 0.0000000000

4 1.868612e-04 0.0009364534

5 5.704252e-08 0.0087365591

##

$capri_aic

SELECTS SELECTED OBS.SELECTS OBS.SELECTED TEMPORAL.PRIORITY

1 Ins/Del ASXL1 Missense point KRAS 9 1 1.576141e-07

2 Missense point SETBP1 Nonsense point ASXL1 14 5 3.586517e-07

3 Missense point SETBP1 Nonsense point CSF3R 14 3 1.605563e-07

4 Missense point TET2 Ins/Del EZH2 5 1 3.042779e-07

5 Missense point TET2 Ins/Del CBL 5 1 5.138164e-07

6 Nonsense point TET2 Missense point NRAS 7 5 2.548590e-03

7 Nonsense point TET2 Pattern NRAS_xor_KRAS 7 6 6.056954e-02

8 Nonsense point ASXL1 Pattern XOR_CBL 5 4 4.969218e-03

9 Pattern TET2_xor_IDH2 Ins/Del ASXL1 17 9 7.605877e-07

10 Pattern XOR_TET2 Missense point EZH2 16 7 2.129905e-07

11 Pattern XOR_ASXL1 Missense point CBL 14 3 1.432328e-07

PROBABILITY.RAISING HYPERGEOMETRIC

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 33

1 7.766886e-05 0.0000000000

2 1.575005e-07 0.0049513989

3 9.491867e-06 0.1023425499

4 1.981523e-04 0.0781250000

5 4.930027e-06 0.0000000000

6 3.058910e-05 0.0075907809

7 5.965059e-05 0.0144204483

8 1.868612e-04 0.0009364534

9 3.653246e-07 0.0450857493

10 9.501132e-07 0.0302854437

11 5.704252e-08 0.0087365591

7.3 Confidence via non-parametric and statistical bootstrap

TRONCO provides three different strategies to perform bootstrap and assess confidence of each edge in terms of
a score in the range [0, 100] (100 is the highest confidence). Non-parametric (default) and statistical bootstrap
strategies are available, and can be executed by calling function tronco.bootstrap with type parameter set ap-
propriately. This function is parallel, and parameter cores.ratio (default 1) can be used to percentage of available
cores that shall be used to compute the scores. Parameter nboot controls the number of bootstrap iterations.

model.boot = tronco.bootstrap(model.capri, nboot = 3)

*** Executing now the bootstrap procedure, this may take a long time...

Expected completion in approx. 00h:00m:01s

Using 5 cores via "parallel"

Reducing results

Performed non-parametric bootstrap with 3 resampling and 0.05 as pvalue for the statistical tests.

model.boot = tronco.bootstrap(model.boot, nboot = 3, type = 'statistical')

*** Executing now the bootstrap procedure, this may take a long time...

Expected completion in approx. 00h:00m:01s

Using 5 cores via "parallel"

Reducing results

Performed statistical bootstrap with 3 resampling and 0.05 as pvalue for the statistical tests.

Bootstrap scores can be annotated to the tronco.plot output by setting them via the confidence parameter
confidence=c(’npb’, ’sb’). In this case edge thickness will be proportional to the non-parametric (npb) scores
– the last to appear in the confidence parameter.

tronco.plot(model.boot,

fontsize = 12,

scale.nodes = .6,

confidence=c('sb', 'npb'),

height.logic = 0.25,

legend.cex = .35,

pathways = list(priors= gene.hypotheses),

label.edge.size=10)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: sb, npb

RGraphviz object prepared.

Plotting graph and adding legends.

Warning in strwidth(legend, units = "user", cex = cex, font = text.font): font metrics unknown

for character 0xa

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 34

Warning in strheight(legend, units = "user", cex = cex): font metrics unknown for character

0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

CAPRI − aCML

●●

●

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

ASXL1
8% (5)

1
0.33

1
0.33

1
0.67

1
1

1
0.67

1
0.67

1
0.67

1
0.33

1
0.33

1
0.33

1
0.67

●

●

●

●

Events type

Ins/Del
Missense point
Nonsense point

Patterns
Exclusivity (hard)

Pathways
priors

●

●

●

●

Edge confidence
Statistical Bootstrap
Non Parametric Bootstrap
p−value cutoff < 0.05

Sample size
n = 64, m = 26
|G| = 10, |P| = 9

Algorithm:
capri bic
capri aic

Figure 13: aCML model reconstructed by CAPRI with AIC/BIC as regolarizators and annotated with both non-
parametric and statistical bootstrap scores. Edge thickness is proportional to the non-parametric scores.

Bootstrap scores can extracted or visualized even with other TRONCO functions. For instance, we can accessall scores
via as.bootstrap.scores, which resembles function as.selective.advantage.relations and will display the
scores per edge. Notice that even function view gives an update output by mentioning the available bootstrap scores.

as.bootstrap.scores(model.boot)

$capri_bic

SELECTS SELECTED OBS.SELECTS OBS.SELECTED NONPAR.BOOT

1 Missense point SETBP1 Nonsense point ASXL1 14 5 66.66667

2 Missense point TET2 Ins/Del EZH2 5 1 66.66667

3 Missense point TET2 Ins/Del CBL 5 1 66.66667

4 Nonsense point ASXL1 Pattern XOR_CBL 5 4 66.66667

5 Pattern XOR_ASXL1 Missense point CBL 14 3 66.66667

STAT.BOOT

1 100

2 100

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 35

3 100

4 100

5 100

##

$capri_aic

SELECTS SELECTED OBS.SELECTS OBS.SELECTED NONPAR.BOOT

1 Ins/Del ASXL1 Missense point KRAS 9 1 33.33333

2 Missense point SETBP1 Nonsense point ASXL1 14 5 66.66667

3 Missense point SETBP1 Nonsense point CSF3R 14 3 100.00000

4 Missense point TET2 Ins/Del EZH2 5 1 66.66667

5 Missense point TET2 Ins/Del CBL 5 1 66.66667

6 Nonsense point TET2 Missense point NRAS 7 5 33.33333

7 Nonsense point TET2 Pattern NRAS_xor_KRAS 7 6 33.33333

8 Nonsense point ASXL1 Pattern XOR_CBL 5 4 66.66667

9 Pattern TET2_xor_IDH2 Ins/Del ASXL1 17 9 33.33333

10 Pattern XOR_TET2 Missense point EZH2 16 7 33.33333

11 Pattern XOR_ASXL1 Missense point CBL 14 3 66.66667

STAT.BOOT

1 100

2 100

3 100

4 100

5 100

6 100

7 100

8 100

9 100

10 100

11 100

view(model.boot)

Description: CAPRI - aCML.

-- TRONCO Dataset: n=64, m=26, |G|=10, patterns=9.

Events (types): Ins/Del, Missense point, Nonsense point, Pattern.

Colors (plot): #7FC97F, #4483B0, #fab3d8, slateblue.

Events (5 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

Genotypes (5 shown):

##

-- TRONCO Model(s): CAPRI

Score optimization via Hill-Climbing.

BIC, AIC regularizers.

BIC: score -566.2114 | logLik -501.7487 | 5 selective advantage relations.

AIC: score -528.5392 | logLik -491.5392 | 11 selective advantage relations.

Available confidence measures:

Temporal priority | Probability raising | Hypergeometric

Bootstrap estimation available.

If we want to access a matrix with the scores and visualize that in a heatmap we can use for instance the pheatmap

function of TRONCO. In this case we need to use also function keysToNames to translate internal TRONCO keys
to mnemonic names in the plot

pheatmap(keysToNames(model.boot, as.confidence(model.boot, conf = 'sb')sbcapri_aic) * 100,

main = 'Statistical bootstrap scores for AIC model',

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 36

fontsize_row = 6,

fontsize_col = 6,

display_numbers = TRUE,

number_format = "%d"

)

Statistical bootstrap scores for AIC model

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
P

attern X
O

R
_C

B
L

N
onsense point A

S
X

L1

N
onsense point C

S
F

3R

M
issense point C

B
L

M
issense point E

Z
H

2

M
issense point K

R
A

S

M
issense point N

R
A

S

P
attern N

R
A

S
_xor_K

R
A

S

Ins/D
el A

S
X

L1

P
attern O

R
_C

S
F

3R

P
attern X

O
R

_A
S

X
L1

P
attern X

O
R

_E
Z

H
2

P
attern X

O
R

_T
E

T
2

P
attern T

E
T

2_or_ID
H

2

P
attern T

E
T

2_xor_ID
H

2

P
attern S

F
3B

1_xor_A
S

X
L1

N
onsense point E

Z
H

2

N
onsense point T

E
T

2

M
issense point C

S
F

3R

M
issense point S

F
3B

1

M
issense point ID

H
2

M
issense point T

E
T

2

Ins/D
el T

E
T

2

M
issense point S

E
T

B
P

1

Ins/D
el E

Z
H

2

Ins/D
el C

B
L

Nonsense point TET2

Missense point TET2

Missense point SETBP1

Pattern XOR_ASXL1

Pattern XOR_TET2

Pattern TET2_xor_IDH2

Nonsense point ASXL1

Ins/Del ASXL1

Pattern OR_CSF3R

Pattern XOR_CBL

Pattern XOR_EZH2

Pattern TET2_or_IDH2

Pattern SF3B1_xor_ASXL1

Pattern NRAS_xor_KRAS

Nonsense point CSF3R

Nonsense point EZH2

Missense point CSF3R

Missense point SF3B1

Missense point IDH2

Missense point CBL

Missense point EZH2

Missense point KRAS

Missense point NRAS

Ins/Del CBL

Ins/Del TET2

Ins/Del EZH2

0

20

40

60

80

100

Figure 14: Heatmap of the bootstrap scores for the CAPRI aCML model (via AIC regularization).

7.4 Confidence via cross-validation (entropy loss, prediction and posterior classification
errors)

TRONCO implements k-fold cross-validation routines (from the bnlearn package) to provide estimates of the following
statistics:

• the negative entropy (via tronco.kfold.eloss) of a whole model ? i.e., the negated expected log-likelihood
of the test set for the Bayesian network fitted from the training set.

• the prediction error (via tronco.kfold.prederr) for a single node x and its parents set X – i.e., how precisely
we can predict the values of x by using only the information present in its local distribution, via X.

• the posterior classification error (via tronco.kfold.posterr) for a single node x and one of its parent node
y ∈ X – i.e., the values of x are predicted using only the information present in y by likelihood weighting and
Bayesian posterior estimates.

By default, a 10 repetitions from 10-fold cross-validation experiment are perfomed, for all the models which are found
inside a TRONCO object – in this case 2, one for CAPRI with BIC and one for CAPRI with AIC.

model.boot = tronco.kfold.eloss(model.boot)

Calculating entropy loss with k-fold cross-validation

[k = 10 | runs = 10 | regularizer = capri_bic] ... DONE

http://bioconductor.org/packages/TRONCO
http://cran.fhcrc.org/web/packages/bnlearn/index.html

Using the TRONCO package 37

Model logLik = -501.7487

Mean eloss = 8.363665 | 1.666903 %

Stdev eloss = 0.03832627

Calculating entropy loss with k-fold cross-validation

[k = 10 | runs = 10 | regularizer = capri_aic] ... DONE

Model logLik = -491.5392

Mean eloss = 8.302625 | 1.689108 %

Stdev eloss = 0.04194586

model.boot = tronco.kfold.prederr(model.boot, runs = 2)

*** Using 5 cores via "parallel"

Scanning 26 nodes for their prediction error (all parents).

Regularizer: capri_bic

*** Reducing results

Scanning 26 nodes for their prediction error (all parents).

Regularizer: capri_aic

*** Reducing results

model.boot = tronco.kfold.posterr(model.boot, runs = 2)

*** Using 5 cores via "parallel"

Scanning 5 edges for posterior classification error.

Regularizer: capri_bic

*** Reducing results

Scanning 11 edges for posterior classification error.

Regularizer: capri_aic

*** Reducing results

These results can be visualized in terms of summary tables, as for the other confidence scores.

as.kfold.eloss(model.boot)

Mean %-of-logLik Stdev

capri_bic 8.363665 1.666903 0.03832627

capri_aic 8.302625 1.689108 0.04194586

as.kfold.prederr(model.boot)

$capri_bic

SELECTED MEAN.PREDERR SD.PREDERR

5 Missense point SETBP1 0.2187500 0.00000000

6 Missense point NRAS 0.0781250 0.00000000

7 Missense point KRAS 0.0156250 0.00000000

8 Missense point TET2 0.0781250 0.00000000

9 Missense point EZH2 0.1093750 0.00000000

10 Missense point CBL 0.0468750 0.00000000

11 Missense point IDH2 0.0468750 0.00000000

12 Missense point SF3B1 0.0156250 0.00000000

13 Missense point CSF3R 0.0781250 0.00000000

14 Nonsense point TET2 0.1093750 0.00000000

15 Nonsense point EZH2 0.0312500 0.00000000

16 Nonsense point ASXL1 0.0781250 0.00000000

17 Nonsense point CSF3R 0.0468750 0.00000000

18 Pattern NRAS_xor_KRAS 0.0937500 0.00000000

19 Pattern SF3B1_xor_ASXL1 0.2343750 0.00000000

20 Pattern TET2_xor_IDH2 0.2656250 0.00000000

21 Pattern TET2_or_IDH2 0.2812500 0.00000000

22 Pattern XOR_TET2 0.2500000 0.00000000

23 Pattern XOR_EZH2 0.1562500 0.00000000

24 Pattern XOR_CBL 0.0859375 0.01104854

25 Pattern XOR_ASXL1 0.2187500 0.00000000

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 38

26 Pattern OR_CSF3R 0.1093750 0.00000000

##

$capri_aic

SELECTED MEAN.PREDERR SD.PREDERR

5 Missense point SETBP1 0.2187500 0.00000000

6 Missense point NRAS 0.0781250 0.00000000

7 Missense point KRAS 0.0156250 0.00000000

8 Missense point TET2 0.0781250 0.00000000

9 Missense point EZH2 0.1093750 0.00000000

10 Missense point CBL 0.0468750 0.00000000

11 Missense point IDH2 0.0468750 0.00000000

12 Missense point SF3B1 0.0156250 0.00000000

13 Missense point CSF3R 0.0781250 0.00000000

14 Nonsense point TET2 0.1093750 0.00000000

15 Nonsense point EZH2 0.0312500 0.00000000

16 Nonsense point ASXL1 0.0781250 0.00000000

17 Nonsense point CSF3R 0.0468750 0.00000000

18 Pattern NRAS_xor_KRAS 0.0937500 0.00000000

19 Pattern SF3B1_xor_ASXL1 0.2343750 0.00000000

20 Pattern TET2_xor_IDH2 0.2656250 0.00000000

21 Pattern TET2_or_IDH2 0.2812500 0.00000000

22 Pattern XOR_TET2 0.2500000 0.00000000

23 Pattern XOR_EZH2 0.1562500 0.00000000

24 Pattern XOR_CBL 0.1015625 0.01104854

25 Pattern XOR_ASXL1 0.2187500 0.00000000

26 Pattern OR_CSF3R 0.1093750 0.00000000

as.kfold.posterr(model.boot)

$capri_bic

SELECTS SELECTED MEAN.POSTERR SD.POSTERR

1 Missense point SETBP1 Nonsense point ASXL1 0.0781250 0.00000000

2 Missense point TET2 Ins/Del EZH2 0.0156250 0.00000000

3 Missense point TET2 Ins/Del CBL 0.0156250 0.00000000

4 Nonsense point ASXL1 Pattern XOR_CBL 0.0859375 0.01104854

5 Pattern XOR_ASXL1 Missense point CBL 0.0468750 0.00000000

##

$capri_aic

SELECTS SELECTED MEAN.POSTERR SD.POSTERR

1 Ins/Del ASXL1 Missense point KRAS 0.015625 0

2 Missense point SETBP1 Nonsense point ASXL1 0.078125 0

3 Missense point SETBP1 Nonsense point CSF3R 0.046875 0

4 Missense point TET2 Ins/Del EZH2 0.015625 0

5 Missense point TET2 Ins/Del CBL 0.015625 0

6 Nonsense point TET2 Missense point NRAS 0.078125 0

7 Nonsense point TET2 Pattern NRAS_xor_KRAS 0.093750 0

8 Nonsense point ASXL1 Pattern XOR_CBL 0.078125 0

9 Pattern TET2_xor_IDH2 Ins/Del ASXL1 0.140625 0

10 Pattern XOR_TET2 Missense point EZH2 0.109375 0

11 Pattern XOR_ASXL1 Missense point CBL 0.046875 0

Notice that these can be combined to create a nice table with all these statistics – we make here the example of a
table with all the BIC statistics. This format can be readily exported to external spreadsheets for further visualization.

tabular = function(obj, M){
tab = Reduce(

function(...) merge(..., all = TRUE),

list(as.selective.advantage.relations(obj, models = M),

as.bootstrap.scores(obj, models = M),

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 39

as.kfold.prederr(obj, models = M),

as.kfold.posterr(obj,models = M)))

merge reverses first with second column

tab = tab[, c(2,1,3:ncol(tab))]

tab = tab[order(tab[, paste(M, '.NONPAR.BOOT', sep='')], na.last = TRUE, decreasing = TRUE),]

return(tab)

}

head(tabular(model.boot, 'capri_bic'))

capri_bic.SELECTS capri_bic.SELECTED capri_bic.OBS.SELECTS

1 Missense point TET2 Ins/Del CBL 5

2 Missense point TET2 Ins/Del EZH2 5

3 Pattern XOR_ASXL1 Missense point CBL 14

12 Missense point SETBP1 Nonsense point ASXL1 14

22 Nonsense point ASXL1 Pattern XOR_CBL 5

4 <NA> Missense point CSF3R NA

capri_bic.OBS.SELECTED capri_bic.TEMPORAL.PRIORITY capri_bic.PROBABILITY.RAISING

1 1 5.138164e-07 4.930027e-06

2 1 3.042779e-07 1.981523e-04

3 3 1.432328e-07 5.704252e-08

12 5 3.586517e-07 1.575005e-07

22 4 4.969218e-03 1.868612e-04

4 NA NA NA

capri_bic.HYPERGEOMETRIC capri_bic.NONPAR.BOOT capri_bic.STAT.BOOT

1 0.0000000000 66.66667 100

2 0.0781250000 66.66667 100

3 0.0087365591 66.66667 100

12 0.0049513989 66.66667 100

22 0.0009364534 66.66667 100

4 NA NA NA

capri_bic.MEAN.PREDERR capri_bic.SD.PREDERR capri_bic.MEAN.POSTERR

1 NA NA 0.0156250

2 NA NA 0.0156250

3 0.0468750 0.00000000 0.0468750

12 0.0781250 0.00000000 0.0781250

22 0.0859375 0.01104854 0.0859375

4 0.0781250 0.00000000 NA

capri_bic.SD.POSTERR

1 0.00000000

2 0.00000000

3 0.00000000

12 0.00000000

22 0.01104854

4 NA

We finally show the plot of the model with the confidences by cross-validation.

tronco.plot(model.boot,

fontsize = 12,

scale.nodes = .6,

confidence=c('npb', 'eloss', 'prederr', 'posterr'),

height.logic = 0.25,

legend.cex = .35,

pathways = list(priors= gene.hypotheses),

label.edge.size=10)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 40

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: npb, eloss, prederr, posterr

RGraphviz object prepared.

Plotting graph and adding legends.

Warning in strwidth(legend, units = "user", cex = cex, font = text.font): font metrics unknown

for character 0xa

Warning in strheight(legend, units = "user", cex = cex): font metrics unknown for character

0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

CAPRI − aCML

●●

●

CSF3R
4% (3)

SETBP1
20% (14)

NRAS
8% (5)

KRAS
2% (1)

TET2
8% (5)

EZH2
10% (7)

CBL
4% (3)

IDH2
5% (3)

TET2
6% (4)

EZH2
1% (1)

CBL
2% (1)

ASXL1
13% (9)

TET2
11% (7)

ASXL1
8% (5)

0.33
0.11
0.11

0.33
0.14
0.14

0.67
0.05
0.05

1
0.05
0.05

0.67
0.08
0.08

0.67
0.02
0.02

0.67
0.02
0.02

0.33
0.02
0.02

0.33
0.09
0.09

0.33
0.08
0.08

0.67
0.09
0.09

●

●

●

●

Events type

Ins/Del
Missense point
Nonsense point

Patterns
Exclusivity (hard)

Pathways
priors

●

●

●

●

Edge confidence
Non Parametric Bootstrap
Prediction Error
Posterior Classification Error
p−value cutoff < 0.05

Sample size
n = 64, m = 26
|G| = 10, |P| = 9

Algorithm:
capri bic − eloss: 8.36366
capri aic − eloss: 8.30263

Figure 15: aCML model reconstructed by CAPRI with AIC/BIC as regolarizators and annotated with non-parametric,
as well as with entropy loss, prediction and posterior classification errors computed via cross-validation. Edge thickness
is proportional to the non-parametric scores.

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 41

8 Import/export to other tools

We implemented the interface of TRONCO with other tools to support the Pipeline for Cancer Inference PiCnIc,
our attempt at devise an effective pipeline to extract ensemble-level cancer progression models from cross-sectional
data (see 2).

PiCnIc is versatile, modular and customizable and exploits state-of-the-art data processing and machine learning tools
to:

1. identify tumor subtypes and then in each subtype;
2. select (epi)genomic events driving the progression;
3. identify groups of events that are likely to be observed as mutually exclusive;
4. infer progression models from groups and such data, and annotate them with associated statistical confidence.

The algorithms for cancer progression inference exploited by PicNiC are implemented within TRONCO, the other
steps of the pipeline rely on dedicated tools (for clustering, drivers selection and exclusiviyt groups detection). The
tools that PicNiC can exploit are of different nature, and we plan to interface them with TRONCO as far as our case
studies are developed.

The current version of TRONCO supports input/output towards these tools:

1. Network Based Stratification (NBS), a method for stratification (clustering) of patients in a cancer cohort
based on genome scale somatic mutations measurements and a gene interaction network. You can export a
TRONCO object in the NBS input format with function export.nbs.input, clustering outputs can be handled
with standard TRONCO functions.

2. MUTEX, a method for the identification of sets of mutually exclusive gene alterations in a given set of genomic
profiles by scanning the groups of genes with a common downstream effect on the signaling network. You can
export a TRONCO object in the MUTEX input format with function export.mutex, and output results can
be imported with function import.mutex.groups.

Finally we also privede the possibility of exporting the inferred model to graphML format, which can be subsequently
imported to Cytoscape. We now provide an example of such function.

export.graphml(model.boot,

file = 'graph.gml',

fontsize = 12,

scale.nodes = .6,

height.logic = 0.25)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Set automatic fontsize for edge labels: 6

RGraphviz object prepared.

Plotting graph and adding legends.

Warning in strwidth(legend, units = "user", cex = cex, font = text.font): font metrics unknown

for character 0xa

Warning in strheight(legend, units = "user", cex = cex): font metrics unknown for character

0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Warning in text.default(x, y, ...): font metrics unknown for character 0xa

Follows an example of file generated by such function. Futhermore on the TRONCO website a Cytoscape style to
visualize the progressions is available.

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

http://bioconductor.org/packages/TRONCO
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/
http://www.ncbi.nlm.nih.gov/pubmed/25887147

Using the TRONCO package 42

<!-- Created by igraph -->

<key id="g_name" for="graph" attr.name="name" attr.type="string"/>

<key id="g_models" for="graph" attr.name="models" attr.type="string"/>

<key id="g_informations" for="graph" attr.name="informations" attr.type="string"/>

<key id="v_name" for="node" attr.name="name" attr.type="string"/>

<key id="v_label" for="node" attr.name="label" attr.type="string"/>

<key id="v_type" for="node" attr.name="type" attr.type="string"/>

<key id="v_fillcolor" for="node" attr.name="fillcolor" attr.type="string"/>

<key id="v_fontcolor" for="node" attr.name="fontcolor" attr.type="string"/>

<key id="v_bordercolor" for="node" attr.name="bordercolor" attr.type="string"/>

<key id="v_shape" for="node" attr.name="shape" attr.type="string"/>

<key id="v_width" for="node" attr.name="width" attr.type="double"/>

<key id="v_height" for="node" attr.name="height" attr.type="double"/>

<key id="v_fontsize" for="node" attr.name="fontsize" attr.type="double"/>

<key id="v_borderwidth" for="node" attr.name="borderwidth" attr.type="double"/>

<key id="e_weight" for="edge" attr.name="weight" attr.type="double"/>

<key id="e_line" for="edge" attr.name="line" attr.type="string"/>

<key id="e_arrow" for="edge" attr.name="arrow" attr.type="string"/>

<key id="e_color" for="edge" attr.name="color" attr.type="string"/>

<graph id="G" edgedefault="directed">

<data key="g_name">CAPRI - aCML</data>

<data key="g_models">CAPRI capri_bic - CAPRI capri_aic</data>

<data key="g_informations">Generated with TRONCO v2.3.0</data>

<node id="n0">

<data key="v_name">CSF3R</data>

<data key="v_label">CSF3R 4% (3)</data>

<data key="v_type">Nonsense point</data>

<data key="v_fillcolor">#FAB3D8</data>

<data key="v_fontcolor">#000000</data>

<data key="v_bordercolor">#000000</data>

<data key="v_shape">ellipse</data>

<data key="v_width">109.2</data>

<data key="v_height">72.8</data>

<data key="v_fontsize">18</data>

<data key="v_borderwidth">1</data>

</node>

[...]

<edge source="n1" target="n0">

<data key="e_weight">1</data>

<data key="e_line">Solid</data>

<data key="e_arrow">True</data>

<data key="e_color">#A9A9A9</data>

</edge>

[...]

</graph>

</graphml>

9 sessionInfo()

toLatex(sessionInfo())

• R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: TRONCO 2.4.3, gridExtra 2.2.1, knitr 1.14

http://bioconductor.org/packages/TRONCO

Using the TRONCO package 43

• Loaded via a namespace (and not attached): BiocGenerics 0.18.0, BiocStyle 2.0.3, GlobalOptions 0.0.10,
Matrix 1.2-7.1, R.matlab 3.6.0, R.methodsS3 1.7.1, R.oo 1.20.0, R.utils 2.4.0, RColorBrewer 1.1-2,
Rcpp 0.12.7, Rgraphviz 2.16.0, bnlearn 4.0, cgdsr 1.2.5, circlize 0.3.8, codetools 0.2-14, colorspace 1.2-6,
compiler 3.3.1, doParallel 1.0.10, evaluate 0.9, foreach 1.4.3, formatR 1.4, gRapHD 0.2.4, graph 1.50.0,
grid 3.3.1, gtable 0.2.0, gtools 3.5.0, highr 0.6, igraph 1.0.1, iterators 1.0.8, lattice 0.20-34, magrittr 1.5,
munsell 0.4.3, parallel 3.3.1, plyr 1.8.4, scales 0.4.0, shape 1.4.2, stats4 3.3.1, stringi 1.1.1, stringr 1.1.0,
tools 3.3.1, xtable 1.8-2

http://bioconductor.org/packages/TRONCO

	1 Changelog
	2 Algorithms and useful links
	3 Loading data
	3.1 Mutations annotated in a MAF format
	3.2 Copy Number Variants annotated in the GISTIC format
	3.3 Custom alterations annotated in a boolean matrix
	3.4 Downloading data from the cBio portal for cancer genomics

	4 Data visualisation
	4.1 Summary report for a dataset and boolean queries
	4.2 Creating views with the ``as'' functions
	4.3 Dataset size
	4.4 Oncoprints
	4.5 Groups visualization (e.g., pathways)

	5 Data manipulation
	5.1 Modifying events and samples
	5.2 Modifying patterns
	5.3 Subsetting a dataset

	6 Model inference
	6.1 CAPRI
	6.1.1 Testable hypotheses via logical formulas (i.e., patterns)
	6.1.2 Model reconstruction

	6.2 CAPRESE
	6.3 Directed Minimum Spanning Tree with Mutual Information
	6.4 Partially Directed Minimum Spanning Tree with Mutual Information
	6.5 Undirected Minimum Spanning Tree with Likelihood-Fit
	6.6 Undirected Minimum Spanning Tree with Mutual Information

	7 Post-reconstruction
	7.1 Visualizing a reconstructed model
	7.2 Accessing information within a model (e.g., confidence)
	7.3 Confidence via non-parametric and statistical bootstrap
	7.4 Confidence via cross-validation (entropy loss, prediction and posterior classification errors)

	8 Import/export to other tools
	9 sessionInfo()

