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1 Introduction

1.1 General information

Protein Array Analyzer (PAA, Turewicz et al. [1]) is a package for protein microarray data analysis (esp., ProtoArray data).
It imports single color (protein) microarray data that has been saved in ’gpr’ file format. After preprocessing (background
correction, batch filtering, normalization) univariate feature preselection is performed (e.g., using the ”minimum M
statistic”approach - hereinafter referred to as ”mMs”, [2]). Subsequently, a multivariate feature selection is conducted to
discover biomarker candidates. For this purpose, either a frequency-based backwards elimination approach or ensemble
feature selection can be used. PAA provides a complete toolbox of analysis tools including several different plots for
results examination and evaluation.
In this vignette the general workflow of PAA will be outlined by analyzing an exemplary data set that accompanies this
package.

1.2 Installation

The recommended way to install PAA is to type the commands described below in the R console (note: an active internet
connection is needed):

> # only if you install a Bioconductor package for the first time

> source("http://www.bioconductor.org/biocLite.R")

> # else

> library("BiocInstaller")

> biocLite("PAA", dependencies=TRUE)

This will install PAA including all dependencies.

Furthermore, PAA has an external dependency that is needed to provide full functionality. This external dependency is the
free C++ software package“Random Jungle” that can be downloaded from http://www.randomjungle.de/. Note: PAA
will be usable without Random Jungle. However, it needs this package for random jungle recursive feature elimination
(RJ-RFE ) provided by the function selectFeatures(). Please follow the instructions for your OS in the README file
to install Random Jungle properly on your machine.

http://bioconductor.org/packages/release/bioc/html/PAA.html
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2 Loading PAA and importing data

After launching R, the first step of the exemplary analysis is to load PAA.

> library(PAA)

New microarray data should be imported using the function loadGPR() which is mainly a wrapper to limma’s function
read.maimages() featuring optional duplicate aggregation for ProtoArray data. PAA supports the import of files in
’gpr’ file format. The imported data is stored in an expression list object (EList, respectively, EListRaw, see Bioconductor
package limma). Paths to a targets file and to a folder containing ’gpr’ files (all ’gpr’ files in this folder that are
listed in the targets file will be read) are mandatory arguments. The folder that can be obtained by the command
system.file("extdata", package = "PAA") contains an exemplary targets file that can be used as a template.
Below, the first 3 rows of this targets file are shown.

> targets <- read.table(file=list.files(system.file("extdata", package="PAA"),

+ pattern = "^targets", full.names = TRUE), header=TRUE)

> print(targets[1:3,])

ArrayID FileName Group Batch Date Array SerumID

1 AD1 GSM734833_PA41992_-_AD1.gpr AD Batch1 10.11.2010 41992 AD1

2 AD2 GSM734834_PA41994_-_AD2.gpr AD Batch2 10.11.2010 41994 AD2

3 AD3 GSM734835_PA42006_-AD3.gpr AD Batch1 12.11.2010 42006 AD3

The columns“ArrayID”,“FileName”, and“Group”are mandatory. “Batch” is mandatory for microarray data that has been
processed in batches. The remaining three columns as well as custom columns containing further information (e.g.,
clinical data) are optional.

If array.type is set to "ProtoArray" duplicate spots can be aggregated. After importing, the object can be saved in
a ’.RData’ file for further sessions. In the following code chunk, loadGPR() is demonstrated using an exemplary dummy
data set that comes with PAA and has been created from the real data set analyzed in this vignette.

> gpr <- system.file("extdata", package="PAA")

> targets <- list.files(system.file("extdata", package="PAA"),

+ pattern = "dummy_targets", full.names=TRUE)

> dummy.elist <- loadGPR(gpr.path=gpr, targets.path=targets,

+ array.type="ProtoArray")

> save(dummy.elist, file=paste(gpr, "/DummyData.RData",

+ sep=""), compress="xz")

In many gpr files the mandatory column “Description” is not available and the needed information is stored in another
column. In order to process such gpr files loadGPR() constructs a makeshift“Description”column. If array.type is set
to "ProtoArray" this is performed automatically. Otherwise, loadGPR() provides the arguments description, de-
scription.features and description.discard to pass the information needed for the construction of the makeshift
“Description” column. In the following code chunk these arguments are demonstrated.

> targets2 <- list.files(system.file("extdata", package="PAA"),

+ pattern = "dummy_no_descr_targets", full.names=TRUE)

> elist2 <- loadGPR(gpr.path=gpr, targets.path=targets2, array.type="other",

+ description="Name", description.features="^Hs~", description.discard="Empty")

PAA comes with an exemplary protein microarray data set. This 20 Alzheimer’s disease serum samples vs. 20 controls
data is a subset of a publicly available ProtoArray data set. It can be downloaded from the repository“Gene Expression
Omnibus”(GEO, http://www.ncbi.nlm.nih.gov/geo/, record“GSE29676”). It has been contributed by Nagele E et al. [3]
(note: Because a data set stored in ’gpr’ files would be too large to accompany this package the exemplary data is stored
as an ’.RData’ file).

In the following code chunk, the PAA installation path (where exemplary data is located) is localized, the new folder
’demo output’ (where all output of the following analysis will be saved) is created, and the exemplary data set is loaded
(note: here, exceptionally not via loadGPR()).

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://www.ncbi.nlm.nih.gov/geo/
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> cwd <- system.file(package="PAA")

> dir.create(paste(cwd, "/demo/demo_output", sep=""))

> output.path <- paste(cwd, "/demo/demo_output", sep="")

> load(paste(cwd, "/extdata/Alzheimer.RData", sep=""))

http://bioconductor.org/packages/release/bioc/html/PAA.html
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3 Preprocessing

Before preprocessing the microarrays should be inspected visually for any strong spatial biases. In PAA this can be done
using the function plotArray() which plots the imported microarray data in the original arrangement mimicking the
original scan image. Thus, plotArray() is a visualization tool that can be used to visualize arrays for which the original
scan image is not available. Visual inspection of the spatial expression pattern can then identify possible local tendencies
and strong spatial biases. Moreover, the array can be inspected at all stages of the preprocessing workflow in order to
check the impact of the particular methods that have been applied.

Consequently, as a first step, always the plots of the foreground signals (data.type="fg") should be compared with the
plots of the background signals (data.type="bg").

> plotArray(elist=elist, idx=3, data.type="bg", log=FALSE, normalized=FALSE,

+ aggregation="min", colpal="topo.colors")

> plotArray(elist=elist, idx=3, data.type="fg", log=FALSE, normalized=FALSE,

+ aggregation="min", colpal="topo.colors")

http://bioconductor.org/packages/release/bioc/html/PAA.html
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In the exemplary plots shown above there is a relatively strong artifact in the background signal that has a slight impact
on the foreground signal. In both figures an irregular stripe runs from the upper right part of the array to the bottom
left corner. Although in the background plot this artifact is more visible than in the foreground plot the corresponding
spatial bias is obvious.

For background correction limma’s function backgroundCorrect() can be used:

> library(limma)

> elist <- backgroundCorrect(elist, method="normexp",

+ normexp.method="saddle")

If the microarrays were manufactured or processed in lots/batches, data analysis will suffer from batch effects resulting
in wrong results. Hence, the elimination of batch effects is a crucial step of data preprocessing. A simple method to
remove the most obvious batch effects is to find features that are extremely differential in different batches. In PAA this
can be done for two batches using the function batchFilter(). This function takes an EList or EListRaw object and
the batch-specific column name vectors lot1 and lot2 to find differential features regarding the batches/lots. For this
purpose, thresholds for p-values (Student’s t-test) and fold changes can be defined. To visualize the differential features
a volcano plot is drawn. Finally, the differential features are removed and the remaining data is returned.

> lot1 <- elist$targets[elist$targets$Batch=='Batch1','ArrayID']

> lot2 <- elist$targets[elist$targets$Batch=='Batch2','ArrayID']

> elist.bF <- batchFilter(elist=elist, lot1=lot1, lot2=lot2, log=FALSE,

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
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+ p.thresh=0.001, fold.thresh=3)

For multi-batch scenarios (i.e., where the number of distinct batches is larger than two) PAA provides the function
batchFilter.anova(). This function calculates p-values via an one-way analysis of variance (ANOVA) in order to
identify features which are differential regarding at least two batches. Apart from that this function works analogously
to batchFilter() which has been designed for the scenario of two batches.

> elist.bF.a <- batchFilter.anova(elist=elist, log=FALSE, p.thresh=0.001,

+ fold.thresh=3)

> elist <- elist.bF

Another important step in preprocessing is normalization. To assist in choosing an appropriate normalization method for
a given data set, PAA provides two functions: plotNormMethods() and plotMAPlots(). plotNormMethods() draws
sample-wise boxplots of raw data and data after all kinds of normalization provided by PAA. For each normalization
approach a plot containing all sample-wise boxplots is created. All boxplots will be saved as a high-quality ’tiff’ file, if
an output path is specified.

> plotNormMethods(elist=elist)

plotMAPlots() draws MA plots of raw data and data after applying all kinds of normalization methods provided by
PAA. If idx="all" and an output path is defined (default), for each microarray one ’tiff’ file containing MA plots will
be created. If idx is an integer indicating the column index of a particular sample, MA plots only for this sample will be

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
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created.

> plotMAPlots(elist=elist, idx=10)

After choosing a normalization method, the function normalizeArrays() can be used in order to normalize the data.
normalizeArrays() takes an EListRaw object, normalizes the data, and returns an EList object containing normalized
data in log2 scale. As normalization methods "cyclicloess", "quantile" or "vsn" can be chosen. Furthermore, for
ProtoArrays robust linear normalization ("rlm", see Sboner A. et al. [4]) is provided.

> elist <- normalizeArrays(elist=elist, method="cyclicloess",

+ cyclicloess.method="fast")

In addition to batchFilter(), the function batchAdjust() can be used after normalization via normalizeArrays() to
adjust the data for batch effects. This is a wrapper to sva’s function ComBat() for batch adjustment using the empirical
Bayes approach [5]. To use batchAdjust() the targets file information of the EList object must contain the columns
“Batch”and“Group”.

> elist <- batchAdjust(elist=elist, log=TRUE)

Found 2 batches

Adjusting for 1 covariate(s) or covariate level(s)

Standardizing Data across genes

Fitting L/S model and finding priors

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/sva.html
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Finding parametric adjustments

Adjusting the Data

After preprocessing, the corrected data can be inspected via plotArray() again. E.g., now the plot of the ProtoArray
already plotted shows that the revealed spatial bias is less obvious after preprocessing.

> plotArray(elist=elist, idx=3, data.type="fg", log=TRUE, normalized=TRUE,

+ aggregation="min", colpal="topo.colors")

Because for further analysis also data in original scale will be needed, a copy of the EList object containing unlogged
data should be created.

> elist.unlog <- elist

> elist.unlog$E <- 2^(elist$E)

http://bioconductor.org/packages/release/bioc/html/PAA.html
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4 Differential analysis

The goal of univariate differential analysis is to detect relevant differential features. Therefore, statistical measures such
as p-values or fold changes are considered. PAA provides plotting functions in order to depict the number and the quality
of the differential features in the data set. Accordingly, the function volcanoPlot() draws a volcano plot to visualize
differential features. For this purpose, thresholds for p-values and fold changes can be defined. Furthermore, the p-value
computation method ("mMs" or "tTest") can be set. When an output path is defined (via output.path) the plot will
be saved as a ’tiff’ file. In the next code chunk, an example with method="tTest" is given.

> c1 <- paste(rep("AD",20), 1:20, sep="")

> c2 <- paste(rep("NDC",20), 1:20, sep="")

> #volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest",

> volcanoPlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest",

+ p.thresh=0.01, fold.thresh=2)

Here, an example with method="mMs" is given:

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ p.thresh=0.01, fold.thresh=2, mMs.matrix1=mMs.matrix1,

+ mMs.matrix2=mMs.matrix2, above=1500, between=400)

http://bioconductor.org/packages/release/bioc/html/PAA.html
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Another plotting function is pvaluePlot() which draws a plot of p-values for all features in the data set (sorted in
increasing order and in log2 scale). The p-value computation method ("tTest" or "mMs") can be set via the argument
method. Furthermore, when adjust=TRUE adjusted p-values (method: Benjamini & Hochberg, 1995, computed via
p.adjust()) will be used. For a better orientation, horizontal dashed lines indicate which p-values are smaller than 0.05
and 0.01. If adjust=FALSE, additionally, the respective Bonferroni significance threshold (to show p-values that would
be smaller than 0.05 after a possible Bonferroni correction) for the given data is indicated by a third dashed line. Note:
Bonferroni is not used for the adjustment. The dashed line is for better orientation only. When an output path is defined
(via output.path) the plot will be saved as a ’tiff’ file. In the next code chunk, an example with method="tTest" is
given.

> pvaluePlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest")

Here, an example with method="mMs" is given:

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400)

Here, an example with method="tTest" and adjust=TRUE is given:

http://bioconductor.org/packages/release/bioc/html/PAA.html
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> pvaluePlot(elist=elist, group1=c1, group2=c2, log=TRUE, method="tTest",

+ adjust=TRUE)

Here, an example with method="mMs" and adjust=TRUE is given:

> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, log=FALSE, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400, adjust=TRUE)

Finally, diffAnalysis() performs a detailed univariate differential analysis. This function takes an EList$E- or ELis-
tRaw$E- matrix (e.g., temp <- elist$E) extended by row names comprising “BRC”-IDs of the corresponding features.
The BRC-IDs can be created via:
brc <- paste(elist$genes[,1], elist$genes[,3], elist$genes[,2]).
Next, the row names can be assigned as follows: rownames(temp) <- brc. Furthermore, the corresponding column
name vectors, group labels and mMs- parameters are needed to perform the univariate differential analysis. This analy-
sis covers inter alia p-value computation, p-value adjustment (method: Benjamini & Hochberg, 1995), and fold change
computation. Since the results table is usually large, a path for saving the results should be defined via output.path. Op-
tionally, a vector of row indices (features) and additionally (not mandatory for subset analysis) a vector of corresponding
feature names (feature.names) can be forwarded to perform the analysis for a feature subset.

> E <- elist.unlog$E

> rownames(E) <- paste(elist.unlog$genes[,1], elist.unlog$genes[,3],

http://bioconductor.org/packages/release/bioc/html/PAA.html
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+ elist.unlog$genes[,2])

> write.table(x=cbind(rownames(E),E),

+ file=paste(cwd,"/demo/demo_output/data.txt", sep=""), sep="\t", eol="\n",

+ row.names=FALSE, quote=FALSE)

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> diff.analysis.results <- diffAnalysis(input=E, label1=c1, label2=c2,

+ class1="AD", class2="NDC", output.path=output.path,

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,

+ between=400)

> print(diff.analysis.results[1:10,])

BRC t.test FDR.t. min..M.stat...mMs. FDR.mMs.

1 1 2 11 0.352751286646465 0.65394032025644 0.243589743589744 0.835015538626552

2 1 2 13 0.15129653649193 0.501988087542919 0.0241860325286354 0.330335726331277

3 1 2 15 0.32087558901485 0.634210502468436 1 1

4 1 2 17 0.178493270666023 0.52723150928707 0.150422391245528 0.835015538626552

5 1 2 19 0.271589613948769 0.597932135616531 0.243589743589744 0.835015538626552

6 1 2 21 0.0707666042203724 0.39497036996504 0.0457380457380457 0.484098604098604

7 1 3 1 0.0284911744794211 0.268607060873834 1 1

8 1 3 3 0.0092196889487916 0.142280968989526 0.5 0.910368401063426

9 1 3 5 0.00592168460061225 0.106226964810385 0.053014553014553 0.484098604098604

10 1 3 7 0.806173147194642 0.916805614435088 0.302494802494803 0.910368401063426

fold.change mean.AD mean.NDC median.AD median.NDC

1 1.36257910953312 1384.85432520349 1016.34783295481 839.980702981773 857.735001801978

2 0.260784177611613 2189.55822304562 8396.05471121233 1305.46661974481 2548.69868040327

3 1.10224097047813 450.550786587285 408.758881818594 413.716205403229 417.428604869083

4 0.595491172830503 1518.91515397688 2550.69297964089 1215.20762270891 1689.1444916955

5 0.454051309774646 2530.1344545838 5572.35360875746 1824.40003073848 1864.76465290004

6 0.759043204421859 2636.25422481143 3473.12802414112 2248.99036532219 2924.27002197574

7 1.26294406395723 484.784697258339 383.852864979108 446.558759285452 349.263285007632

8 1.48059072464481 692.098536568906 467.447570114244 556.156389770551 455.411881000121

9 1.3602309262767 1991.44021666422 1464.045683857 1873.36646648453 1436.18751389589

10 0.908397966805546 818.482441505167 901.017474074085 730.232223314622 469.463840773123

sd.AD sd.NDC

1 1643.99677640782 564.4302706304

2 2970.84080119717 18364.0058765935

3 165.734824607582 82.0150145643134

4 1062.44868297829 3151.76500089472

5 2444.44412207378 11793.108729466

6 1276.31835442119 1553.96096388882

7 154.993619177929 122.909766431917

8 339.123207021637 93.5019966245782

9 718.441427077343 323.488045744025

10 433.002023903253 1422.22599366313

Subsequently, the most relevant differential features (i.e., features having low p-values and high absolute fold changes)
can be extracted as a univariate feature selection. Nevertheless, it is recommended to perform also multivariate feature
selection and to consider feature panels obtained from both approaches.

http://bioconductor.org/packages/release/bioc/html/PAA.html
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5 Feature preselection

Before multivariate feature selection will be performed, it is recommended to discard features that are obviously not
differential. Discarding them will accelerate runtimes without any negative impact on results. In PAA, this task is called
“feature preselection” and it is performed by the function preselect(). This function iterates all features of the data
set to score them via mMs, Student’s t-test, or mRMR. If discard.features is TRUE (default), all features that are
considered as obviously not differential will be collected and returned for discarding. Which features are considered as
not differential depends on the parameters method, discard.threshold, and fold.thresh.

� If method = "mMs" features having an mMs value larger than discard.threshold (here: numeric between 0.0
and 1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.

� If method = "tTest" features having a p-value larger than discard.threshold (here: numeric between 0.0 and
1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.

� If method = "mrmr" mRMR scores for all features will be computed as scoring method (using the function
mRMR.classic() of the R package mRMRe). Subsequently, features that are not the discard.threshold (here:
integer indicating a number of features) features having the best mRMR scores are considered as not differential.

> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)

> pre.sel.results <- preselect(elist=elist.unlog, columns1=c1, columns2=c2,

+ label1="AD", label2="NDC", log=FALSE, discard.threshold=0.5,

+ fold.thresh=1.5, discard.features=TRUE, mMs.above=1500, mMs.between=400,

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2,

+ method="mMs")

> elist <- elist[-pre.sel.results$discard,]

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
http://cran.fhcrc.org/web/packages/mRMRe/index.html


Protein Microarray Data Analysis using the PAA Package 15

6 Feature selection

For multivariate feature selection PAA provides the function selectFeatures(). It performs a multivariate feature
selection using “frequency-based” feature selection (based on RF-RFE, RJ-RFE or SVM-RFE ) or “ensemble” feature
selection (based on SVM-RFE ).

Frequency-based feature selection (method="frequency"): The whole data is splitted in k cross validation training
and test set pairs. For each training set a multivariate feature selection procedure is performed. The resulting k feature
subsets are tested using the corresponding test sets (via classification). As a result, selectFeatures() returns the
average k-fold cross validation classification accuracy as well as the selected feature panel (i.e., the union set of the k
particular feature subsets). As multivariate feature selection methods random forest recursive feature elimination (RF-
RFE ), random jungle recursive feature elimination (RJ-RFE ) and support vector machine recursive feature elimination
(SVM-RFE ) are supported. To reduce running times, optionally, an additional univariate feature preselection can be
performed (control via preselection.method). As univariate preselection methods mMs ("mMs"), Student’s t-test
("tTest") and mRMR ("mrmr") are supported. Alternatively, no preselection can be chosen ("none"). This approach
is similar to the method proposed in Baek et al. [6].

Ensemble feature selection (method="ensemble"): From the whole data a previously defined number of subsamples
is drawn defining pairs of training and test sets. Moreover, for each training set a previously defined number of bootstrap
samples is drawn. Then, for each bootstrap sample SVM-RFE is performed and a feature ranking is obtained. To obtain
a final ranking for a particular training set, all associated bootstrap rankings are aggregated to a single ranking. To score
the cutoff best features, for each subsample a classification of the test set is performed (using a svm trained with the
cutoff best features from the training set) and the classification accuracy is determined. Finally, the stability of the
subsample-specific panels is assessed (via Kuncheva index, Kuncheva LI, 2007 [7]), all subsample-specific rankings are
aggregated, the top n features (defined by cutoff) are selected, the average classiification accuracy is computed, and
all these results are returned in a list. This approach has been proposed in Abeel et al. [8].

selectFeatures() takes an EListRaw or EList object, group-specific sample numbers, group labels and parameters
choosing and configuring a multivariate feature selection method (frequency-based or ensemble feature selection) to select
a panel of differential features. When an output path is defined (via output.path) results will be saved on the hard disk
and when verbose is TRUE additional information will be printed to the console. Depending on the selection method,
one of two different results lists will be returned:

1. If method is "frequency", the results list contains the following elements:
� accuracy: average k-fold cross validation accuracy.
� sensitivity: average k-fold cross validation sensitivity.
� specificity: average k-fold cross validation specificity.
� features: selected feature panel.
� all.results: complete cross validation results.

2. If method is "ensemble", the results list contains the following elements:
� accuracy: average accuracy regarding all subsamples.
� sensitivity: average sensitivity regarding all subsamples.
� specificity: average specificity regarding all subsamples.
� features: selected feature panel.
� all.results: all feature ranking results.
� stability: stability of the feature panel (i.e., Kuncheva index for the subrun-specific panels).

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
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In the following two code chunks first“frequency-based” feature selection and then“ensemble” feature selection is demon-
strated.

> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",

+ label2="NDC",log=TRUE,selection.method="rf.rfe",subruns=2,

+ candidate.number=1000,method="frequency")

> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",

+ label2="NDC",log=TRUE,subsamples=10,bootstraps=10,method="ensemble")

Because runtimes would take too long for this vignette PAA comes with precomputed selectFeatures.results objects
stored in ’.RData’ files. These objects can be loaded as follows:

> # results of frequency-based feature selection:

> load(paste(cwd, "/extdata/selectFeaturesResultsFreq.RData", sep=""))

> # or results of ensemble feature selection:

> load(paste(cwd, "/extdata/selectFeaturesResultsEns.RData", sep=""))

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://bioconductor.org/packages/release/bioc/html/PAA.html
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7 Results inspection

After the selection of a feature panel, these features should be validated by manual inspection and evaluation for further
research. To aid results inspection, PAA provides several functions. The function plotFeatures() plots the intensities
of all features (represented by BRC-IDs) that have been selected by selectFeatures() (one sub-plot per feature) in
group-specific colors. All sub-plots are aggregated in one figure. If output.path is not NULL, this figure will be saved
as a ’tiff’ file in output.path.

> plotFeatures(features=selectFeatures.results$features, elist=elist, n1=20,

+ n2=20, group1="AD", group2="NDC")

Alternatively, the function plotFeaturesHeatmap() plots intensities of all features given in the vector features (rep-
resented by BRC-IDs) as a heatmap. If description is TRUE (default: FALSE), features will be described via protein
names instead of UniProtKB accessions. Again, if output.path is not NULL, the heatmap will be saved as a ’tiff’ file in
output.path.

> plotFeaturesHeatmap(features=selectFeatures.results$features, elist=elist,

+ n1=20, n2=20, description=TRUE)

http://bioconductor.org/packages/release/bioc/html/PAA.html
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As an alternative to plotFeaturesHeatmap() the function plotFeaturesHeatmap.2() which is based on the gplots
function heatmap.2() gives similar plots with some additional information. Apart from that both functions plotFea-

turesHeatmap() and plotFeaturesHeatmap.2() are analogous.

> plotFeaturesHeatmap.2(features=selectFeatures.results$features, elist=elist,

+ n1=20, n2=20, description=TRUE)

http://bioconductor.org/packages/release/bioc/html/PAA.html
http://cran.fhcrc.org/web/packages/gplots/index.html
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Finally, the function printFeatures() creates a table containing the selected biomarker candidate panel as well as
additional information for results inspection. If output.path is defined, this table will be saved in a ’txt’ file (’candi-
dates.txt’).

> elist$E <- round(elist$E,2)

> printFeatures(features=selectFeatures.results$features, elist=elist)[,-2]

BRC AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13

1 3 14 13 9.59 9.53 8.98 9.52 9.96 8.95 9.64 9.16 9.23 9.23 8.94 9.04 8.9

2 11 3 15 10.73 10.55 10.57 10.64 10.85 10.93 10.53 10.81 11.1 11.22 10.54 10.88 11.12

3 14 4 3 11.83 11.3 10.83 10.72 10.59 10.43 11.19 12.2 10.5 10.62 11.1 10.69 11.37

4 15 12 9 9.68 10.04 10.57 10.4 10.03 9.9 9.61 10.24 10.19 10.83 10.67 10.85 10.95

5 17 9 11 12.52 12.49 12.6 12.68 12.05 12.04 14.02 13.22 12.19 12.35 12.84 12.36 12.46

6 24 17 3 9.26 8.74 9.66 9.32 9.3 9.1 10 10.04 10.15 9.89 10.03 9.63 10.14

7 25 3 7 11.85 12.99 12.25 11.57 11.8 11.71 11.59 11.81 11.53 12.01 11.88 11.61 12.09

8 25 11 21 11.31 11.2 11.73 11.71 11.18 11.14 11.25 11.67 11.48 11.58 11.78 11.47 12.45

9 29 4 13 12.52 12.26 12.63 12.65 12.67 12.8 12.78 12.67 13.15 13.05 12.6 12.86 12.99

10 48 19 11 8.89 9.88 8.17 9.49 9.29 9.52 9.4 9.03 9.5 9.38 10.68 9.69 10.19

AD14 AD15 AD16 AD17 AD18 AD19 AD20 NDC1 NDC2 NDC3 NDC4 NDC5 NDC6 NDC7

1 9.22 9.65 8.86 8.8 9.27 9.01 8.99 9.58 10.13 9.44 9.64 9.57 9.91 10.76

2 11.03 10.82 10.63 10.9 9.91 10.02 11.51 9.84 9.91 9.41 9.83 10.14 9.85 9.69

http://bioconductor.org/packages/release/bioc/html/PAA.html
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3 10.66 11.39 11.03 10.43 11.08 11.6 10.42 10.52 10.23 10.65 9.47 9.94 10.71 9.63

4 10.26 10.3 10.65 10.41 10.5 10.52 10.08 9.68 9.82 9.1 9.9 9.12 8.68 9.53

5 12.15 12.08 12.48 12.48 12.84 13.35 11.86 11.53 11.39 11.33 11.87 11.88 11.41 11.07

6 9.58 10.51 9.98 9.64 10.68 10.64 9.54 8.4 8.92 8.23 8.94 8.24 9.06 8.35

7 12.24 11.69 11.73 12.62 11.49 12.43 14.09 13.56 13.02 12.68 12.93 12.97 12.83 12.69

8 11.56 11.76 11.55 10.92 11.47 11.15 11.57 10.31 10.63 10.21 9.98 10.19 10.27 10.62

9 13.05 13.17 12.72 12.07 13.34 11.4 12.71 11.24 10.58 11.67 12.03 11.56 10.6 11.89

10 9.45 9.4 9.57 10.02 9.29 9.64 9.29 7.51 8.63 7.83 6.52 8.48 8.42 8.76

NDC8 NDC9 NDC10 NDC11 NDC12 NDC13 NDC14 NDC15 NDC16 NDC17 NDC18 NDC19 NDC20

1 10.16 9.39 9.5 9.97 8.9 9.19 9.66 9.36 10.3 9.96 11.14 10.22 9.51

2 9.91 10.35 9.91 9.91 9.63 10.17 10 10.05 10.28 10.38 10.1 9.87 9.96

3 9.64 10.64 10.23 9.48 10.43 10.28 10.2 11.15 9.75 9.58 10.04 10.16 10.39

4 9.42 8.88 9.6 9.21 9.91 9.91 10.44 8.78 9.55 9.84 8.96 9.27 9.99

5 13.23 11.02 11.18 11.04 11.66 11.61 12.08 11.25 11.14 11.42 11.19 11.56 11.82

6 8.63 8.38 8.82 7.85 8.66 5.92 8.47 8.36 6.42 8.55 8.22 8.41 8.05

7 13.15 13.91 12.84 14.21 13.89 13.85 13.29 13.35 13.31 14.4 12.61 12.87 12.92

8 10.12 10.37 10.23 10.72 10.28 10.18 10.97 10.27 10.44 10.36 11.57 10.32 10.07

9 11.39 11.8 11.26 11.24 10.72 11.35 11.06 11.62 11.53 11.75 12.26 11.32 10.58

10 7.82 7.97 8.7 8.35 8.55 8.28 8.58 8.86 8.76 8.68 8.62 8.71 8.41
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