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The ChAMP package is a pipeline that integrates currently available 450k
and EPIC analysis methods and also offers its own novel functionality. It
utilises the data import, quality control and SWAN (Maksimovic, 2012) nor-
malization functions offered by the minfi (Hansen and Ayree, 2011) package.
In addition, the ChAMP package includes the Peak Based Correction (PBC)
method (Dedeurwaerder, 2011) and the BMIQ normalization (Teschendorff,
2013) is set as the default method.
A number of other pipelines and packages are available for 450k analysis
including IMA (Wang, 2012), minfi (Hansen and Ayree, 2011), methylumi
(Davis et al., 2013), R n Beads (Assenov et al., 2012) and watermelon (Pid-
sley et al., 2013). However, ChaMP includes several analysis options that
are not available in other packages. First of all ChAMP is both available for
both 450k or EPIC array. Also this package contains multiple novel func-
tions. The singular value decomposition (SVD) method (Teschendorff, 2009)
allows an in-depth look at batch effects and for correction of batch related to
slide number the ComBat method (Johnson, 2007) has been implemented.
For the identification of differentially methylated regions (DMRs) ChAMP
offers the new Probe Lasso method. Also another effective DMR detection
function Bumphunter is also integrated and set default option (Jaffe AE,
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2012). For the purpose of dealing with cell heterogeneity problem, we in-
cluded two functions RefFreeEWAS (Houseman, 2014) and RefbaseEWAS
(Houseman, 2012) into ChAMP. Finally, ChAMP has an additional function
to analyse 450k or EPIC for copy number alterations (Feber et al., 2014).

1 Installation

It is essential that you have R already installed on your computer. ChAMP
is a pipeline that utilises many Bioconductor packages that are currently
available from CRAN and Bioconductor. For all of the steps of the pipeline
to work make sure that you have ungraded Bioconductor to newest version
(3.2) and installed minfi , DNAcopy , impute, marray , limma, preprocess-
Core, RPMM , sva, IlluminaHumanMethylation450kmanifest , plyr , Genom-
icRanges, RefFreeEWAS , qvalue, doParallel , bumphunter , quadprog , isva
and wateRmelon.

This can be done in one go using the following commands:

> source("http://bioconductor.org/biocLite.R")

> biocLite(c('minfi', 'DNAcopy', 'impute', 'marray', 'limma',
+ 'preprocessCore', 'RPMM', 'sva', 'IlluminaHumanMethylation450kmanifest',
+ 'wateRmelon','isva','quadprog','bumphunter','doParallel',
+ 'qvalue','RefFreeEWAS','GenomicRanges','plyr'))

Load the ChAMP package.

> library(ChAMP)

It is then easier to set your working directory to the folder containing your
.idat files and sample sheet. There can only be one sample sheet in this
folder.

2 Test Dataset

The package contains a test dataset of HumanMethylation450 data which
can be used to test functions available in ChAMP .
This can be loaded by pointing the directory to the testDataSet:
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> testDir=system.file("extdata",package="ChAMPdata")

Also a pre-filtered saved version can be loaded using

> data(testDataSet)

> myLoad=testDataSet

3 Full Pipeline

Figure 1 outlines the steps in the ChAMP pipeline. Each step can be run
individually as a separate function. This allows integration with other anal-
ysis pipelines. It also enables the user to save the results of each step for
future reference or further analysis. Alternatively the full pipeline can be
run at once with one command:

> champ.process(directory = testDir)

When running the full pipeline through the champ.process() function a num-
ber of parameters can be adjusted.

4 A note on computational requirements

The ability to run the pipeline on a large number of samples depends some-
what on the memory available. The ChAMP pipeline runs 200 samples
successfully on a computer with 8GB of memory. Beyond this it may be
necessary to find a server/cluster to run the analysis on.
The champ.load() function uses the most memory. If you plan to run the
analysis more than once it is recommended to to run myLoad=champ.load()
and save this list for future analyses. In this case, when the list of load ob-
jects is saved to the variable ’myLoad’ you can simply run champ.process(fromIDAT=F).
In champ.DMR() function, if Bumphunter DMR detection method is as-
signed, user may use parallel method to accelerate the speed. If your server
or computer has more cores, you may specify more threads at the same time
to make function faster, but which may cost more memory.

> save(myLoad,file="currentStudyloadedData.RData")

> load("currentStudyloadedData.RData")

> champ.process(fromIDAT=FALSE)
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Figure 1: An overview of the ChAMP pipeline showing all major steps avail-
able in the pipeline. This steps can be run as a full pipeline or individually
as functions combined with other packages. This vignette will explain in
detail how to proceed.
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Another option if you have time or space constraints or if you are combining
ChAMP with other analysis pipelines is to run the analysis step by step and
not use the champ.process() function. Each separate function is described
in detail below, but the full pipeline in a step-wise process would go:

> myLoad <- champ.load(directory = testDir)

> myNorm <- champ.norm()

> champ.SVD()

> batchNorm <- champ.runCombat()

> limma <- champ.MVP()

> myDMR <- champ.DMR()

> myRefBase <- champ.refbase()

> myRefFree <- champ.reffree()

> champ.CNA()

Also we included a Simulation EPIC dataset in ChAMPdata package, which
contains 16 simulation samples and manually modified CpGs and DMRs. We
simply use this this dataset to show our EPIC array pipeline, which is also
very easy to use.

> # myLoad <- champ.load(directory = testDir,arraytype="EPIC")

> # We simulated EPIC data from beta value instead of .idat file,

> # but user may use above code to read .idat files directly.

> # Here we we started with myLoad.

> data(EPICSimData)

> myNorm <- champ.norm(arraytype="EPIC")

> champ.SVD()

> batchNorm <- champ.runCombat()

> myrefbase <- champ.refbase()

> myreffree <- champ.reffree()

> limma <- champ.MVP(arraytype="EPIC")

> myDMR <- champ.DMR(arraytype="EPIC")

>

> # champ.CNA(arraytype="EPIC")

> # champ.CNA() function call for intensity data, which is not included in

> # out Simulation data.

Thus, it’s very easy to use ChAMP on EPIC dataset as well, users just need
to specify the ’arraytype’ parameter as ’EPIC’ in champ.load(), champ.norm(),
champ.MVP(), champ.DMR(), champ.CNA() functions, then ChAMP will
automatically perfor analysis with EPIC annotation.
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5 Description of ChAMP functions

As previously mentioned, the user has the option to run each of the ChAMP
functions individually to allow integration with other pipelines or to save
the results of each step. Here each function is described in detail.

5.1 Load

5.1.1 Load Data from idat files

The champ.load() function utilises minfi to load data from .idat files. By
default this loads data from the current working directory, in this directory
you should have all .idat files and a sample sheet. The sample sheet currently
needs to be a .csv file as came with your results following hybridization. You
can choose whether you want M-values or beta-values. For small datasets
M-values are recommended (Zhuang, 2012).
The minfi function used to load the data from the idat files automatically
filters out the 65 SNP probes that were included on the chip as internal con-
trols which can useful for identifying sample mixups. As such, for 450k bead
array data, before filtering for low quality probes the dataset will include
485,512 probes. And for EPIC bead array data, before filtering probes the
dataset will include 867,531 probes.

> myLoad$pd

Sample_Name Sample_Plate Sample_Group Pool_ID Project Sample_Well Array Slide

C1 C1 NA C NA NA E09 R03C02 7990895118

C2 C2 NA C NA NA G09 R05C02 7990895118

C3 C3 NA C NA NA E02 R01C01 9247377086

C4 C4 NA C NA NA F02 R02C01 9247377086

T1 T1 NA T NA NA B09 R06C01 7766130112

T2 T2 NA T NA NA C09 R01C02 7766130112

T3 T3 NA T NA NA E08 R01C01 7990895118

T4 T4 NA T NA NA C09 R01C02 7990895118

Basename

C1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R03C02

C2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R05C02

C3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R01C01

C4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R02C01

T1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R06C01

T2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R01C02
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T3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C01

T4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C02

filenames

C1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R03C02

C2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R05C02

C3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R01C01

C4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R02C01

T1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R06C01

T2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R01C02

T3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C01

T4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C02

5.1.2 Filtering for failed probes

By default ChAMP filters the data for detection p-value (< 0.01). This
utilises minfi method for calculating the detection p-value which differs from
the method used in Genome Studio. A file failedSamples.txt is saved (see
Figure 2) and also printed to the screen showing the fraction of failed probes
per sample. If any of these values is high (>0.05) you may want to consider
removing that sample from the analysis and rerunning.
By default ChAMP will filter out probes with <3 beads in at least 5% of
samples per probe. This default can changed with the filterBeads parameter
or the frequency can be adjusted with the beadCutoff parameter.

Figure 2: An example of the output showing the portion of probes with a
detection p-value above the specified cutoff (default is 0.01) for each sample.
Users may want to consider removing samples above 0.05.

> myLoad=champ.load(directory = testDir, filterBeads=TRUE)
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5.1.3 Output

The load function saves 3 quality control images (see Figures 3, 5 and 6.
The clustering image will not be saved if there are more than 65 samples in
the dataset.

Figure 3: An example of a density plot showing the density of unnormalised
beta values for all the samples that have been uploaded. They are coloured
based on the Sample Group as defined in the sample sheet (Figure 4). This
plot may identify potential outliers that have significantly different profiles.

Figure 4: An example of the sample sheet.
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Figure 5: An example of a MDS (multidimensional scaling) plot. This plot
allows a visualisation of the similarity of samples based on the top 1000
most variable probes amongst all samples. The samples are coloured by
Sample Group (as defined in the sample sheet Figure 4.)

5.1.4 Usage

> myLoad = champ.load(directory=testDir)

[read.450k.sheet] Found the following CSV files:

[1] "/home/pogb.cancer.ucl.ac.uk/regmtyu/R/x86_64-redhat-linux-gnu-library/3.2/ChAMPdata/extdata/lung_test_set.csv"

C1 C2 C3 C4 T1 T2 T3 T4

0.0013429122 0.0022162171 0.0003563249 0.0002842360 0.0003831007 0.0011946152 0.0014953286 0.0015447610

5.2 Normalization for adjustment of type-2 bias

There are several normalization methods available: BMIQ (Teschendorff,
2013), SWAN (Maksimovic, 2012), PBC (Dedeurwaerder, 2011) or NONE.

The default method is BMIQ. It will save three quality control images to
the folder ’/Normalization’ for each sample (see Figures 7, 8 and 9). These
images show the fit that the normalization is applying to each probe type.
After normalization a second set of quality control images will be saved
similar to pre-normalization (see Figures 3, 5 and 6). The clustering image
will not be saved if there are more than 65 samples in the dataset.
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Figure 6: An example of a cluster plot. This offers a second way to visualise
the similarity of samples based on all probes using hierarchical clustering.

5.2.1 Usage

> myNorm=champ.norm()

5.3 SVD for identification of components of variation (batch
effects)

The singular value decomposition method (SVD) implemented by Teschen-
dorff (Teschendorff, 2009) for 27k data is used to identify the most significant
components of variation. These components of variation would ideally be
biological factors of interest, but it may be technical variation (batch ef-
fects). To get the most from this analysis it is useful to include as much
information as possible. If samples have been loaded from .idat files then
the 18 internal controls on the bead chip (including bisulphite conversion
efficiency) are included as well as any study details defined in the sample
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Figure 7: An example of the Type 1 fit with BMIQ.

Figure 8: An example of the Type 2 fit with BMIQ.

sheet (well position, sentrix id, batch etc) (Figure 4). Additional pheno-
type/study information (age, gender, batch) can be included in a separate
file (set studyInfo=TRUE) (Figure 10). This must be a .txt file saved as
studyInfo.txt and the first column must be labelled ”Sample Name” with
the sample names as used in the sample sheet. These new covariates will
be considered categorical by default. If any are continuous it is necessary to
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Figure 9: An overview of both type 1 and 2 fit achieved with BMIQ.

include a vector in the parameter infoFactor=c() that defines them. TRUE
= categorical, FALSE=continuous. These settings will print to the screen
after the SVD analysis has been run to confirm they were correctly assigned.
It is important to realise SVD does not manipulate the data, but analyses
it to compute p-values based on the significance of each component. The
result is a heatmap (saved as SVDsummary.pdf) of the top 6 principle com-
ponents correlated to the information provided (Figure 11). The darker
colours represent a lower p-value indicating a larger component of variation.
If it becomes clear from this SVD analysis that the largest components of
variation are technical factors (batch effects) then it is worth considering the
experimental design and implementing other normalization methods that
may help remove technical variation. ComBat is included in this pipeline
to remove variation related to chip number but it or other methods may be
implemented independently to remove other sources of technical variation
revealed in the SVD analysis.

5.3.1 Usage

> champ.SVD()

[1] 4

[1] 0

[1] 4

[,1] [,2]
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Figure 10: An example of the study info file. This file must include the first
column ”Sample Name” and be identical to the first column of the sample
sheet (Figure 4). It should be saved as studyInfo.txt and can include any
addition study information including gender, age, batch, cell type, patientID
etc.

[1,] "TRUE" "Sample_Well"

[2,] "TRUE" "Sample_Group"

[3,] "TRUE" "Slide"

[4,] "TRUE" "Array"

null device

1

5.4 Correction for batch effects related to bead chip using
ComBat

This function implements the ComBat normalization method (Johnson, 2007)
that was developed for microarrays. The sva R package is used to imple-
ment this function. ComBat is specifically defined in the ChAMP package
to correct for batch effects related to the slide (Sentrix ID). More advanced
users can implement ComBat using sva documentation to adjust for other
batch effects.

5.4.1 Procedure

ComBat uses an empirical Bayes method to correct for technical variation.
If ComBat were applied directly to beta values zeros could be introduced
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Figure 11: An example of the SVD output. This heatmap shows all the
components of variation that have been included in the analysis. The first
18 are internal controls on the bead chip representing potential technical
variation, The remaining covariates are obtained from data in the sample
sheet (Figure 4) and the study info file (Figure 10).

as beta values have a range between 0 and 1. For this reason ChAMP logit
transforms beta values before ComBat adjustment and then computes the
reverse logit transformation following the ComBat adjustment. If the user
has chosen to use M-values no logit transformation will be done. If the
dataset only includes data from one slide the adjustment will abort. As
the CNA method utilises intensity values rather than beta or M -values
the ComBat adjustment will be repeated for that function. The ComBat
function can be a time consuming step in the pipeline if you have a large
number of samples.

14



5.4.2 Usage

> batchNorm=champ.runCombat()

5.5 Calling MVPs - Methylation Variable Positions

This function implements the limma package to calculate the p-value for dif-
ferential methylation using a linear model. At present, the function can only
compute differential methylation between two groups. The two groups are
determined by the Sample Group column in the sample sheet. If more than
two groups are present the function will calculate the differential methylation
between the first two unique groups in the file. As the function is running it
will print which two groups the contrast is being computed for and will then
printout how many MVPs were found for the given p-value. All probes are
saved in a file ”MVP ALL.txt” which can be filtered for a p-value of interest.
The filename also includes the two groups compared and the method used
to adjust the p-values (for example ”MVP ALL CvsT BHadjust.txt”). The
file includes the annotation for each probe, the average beta (for the sample
group) and the delta beta for the two groups used in the comparison. In
addition, a bedfile is saved with only the significant MVPs. This may be
useful for downstream pathway analysis. It is planned that a future version
of ChAMP will include the ability to compare multiple groups. However, a
more advanced user can run limma with other settings and use the output
(including all probes and their p-values) for the DMR hunter.

5.5.1 Usage

> limma=champ.MVP()

> head(limma)

5.6 DMR Hunter - Bumphunter and ProbeLasso

This function computes and returns a data frame of probes binned into dis-
creet differentially methylated regions (DMRs), with accompanying p-valuei.
There are two algotithms integrated to do this job, Bumphunter and Pro-
beLasso. For Bumphunter algotithms, it would firstly cluster all probes into
small clusters, then apply random permulation method to estimate candi-
date DMRs. This method is very user friendly and is not relying on any
output of previous functions. The permulation steps in Bumphunter algo-
tithms may be a little bit slow, but user may assign more core to accelerate it
by parallel more threads. The result of bumphunter algotithm is a dataframe

15



contain all detected DMRs, with their length, clusters, number of CpGs.e.g
annotated. Also, Bumphunter algotithm will return the annotation of all
DMR contained CpGs.

For ProbeLasso method, the final data frame is distilled from a limma out-
put of probes and their association statistics. It additionally writes three
informative images as pdfs: 1) a box plot of probe spacing for the input data
as a function of genomic feature/CGI relation (see Figure 13); 2) a cumu-
lative quantile plot illustrating how the user-specified parameters affect the
sizes of all windows employed for DMR-calling (see Figure 14) and; 3) a dot
plot with size-scaled dots to further illustrate the resulting window sizes for
each genomic feature that follows from the user-specified parameters (see
Figure 15).

Differentially methylated regions (DMRs) are extended and discreet seg-
ments of the genome that show a quantitative alteration in DNA methy-
lation levels between two groups. A number of different approaches to the
identification of DMRs have been implemented, most notably ”windows”
in which differential methylation is sought over a stretch of DNA of pre-
defined - and often fixed - size. This approach is utilitarian and effective
but is confounded by the fluctuating CpG density throughout a genome; it
is further limited when using microarrays, in that coverage is often incom-
plete and non-uniform. Consequently, DMR identification is likely to be
biased towards regions of densely tiled probes.To compensate for this the
ProbeLasso DMR Hunter is based on a feature-oriented dynamic window
(”lasso”), which aims to capture neighbouring, significant probes and bundle
them into DMRs.

5.6.1 Procedure

For Bumphunter algotithm, it will replying on no previous output. Firstly,
Bumphunter all cluster all probes into small clusters. The size and distances
between CpGs could be specified by users. Then Bumphunter will filter all
clusters contain too few CpGs in it, the default threshold is 7, but can be
specified by user as well. After filtering, Bumphunter will select candidate
DMRs based on probes’ differential t value between two groups of samples,
and their location in one cluster. Finally random permulation technic will
return significance of each candidate DMR and p value will be returned. For
more information, user may turn to Bumphunter package.
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Figure 12: This image is one example of DMR generated from Bumphunter
algotithm via champ.DMR() function. This DMR is located on chromosom
7. Totally there are 49 CpGs contained in this cluster, but real DMR stars
from index 18 to the end of this cluster, thus totally this is a DMR with 32
probes. As we can see the DMR probes are marked as blue circle. Case and
control are separatly plotted as red and black. Two loess lines are drawed
across two points. Obviously, the last part of the cluster is a DMR between
case and control.

For ProbeLasso algotithm, because the ProbeLasso DMR Hunter takes into
account probe spacing, the first step to identify DMRs is to calculate a
dataset-specific record of probe spacing. Although it is tempting to cal-
culate probe spacing based on all probes on the Infinium 450k or EPIC
BeadChip, the Probe Lasso DMR Hunter requires input for a number of
user-specified parameters (e.g., filtering of X-chromosome probes and pu-
tatively polymorphic probes) that can truncate the dataset; additionally,
probe failures are inevitable and will differ between experiments. As such,
each dataset is bestowed a unique set of probes, which underscores the need
for an experiment-specific catalogue of probe-spacing. Once the dataset has
been defined, the nearest neighbouring probe is calculated for all available
probes; this data is then partitioned into one of 28 different categories com-
prising information on the genomic feature (1st exon, 3′UTR, 5′UTR, body,
intergenic region, TSS200, or TSS1500) and that features relation (if any)
to a nearby CpG island (island, shore, shelf, or not associated).
Figure 13 illustrates the wildly variable probe spacing as a function of ge-
nomic feature on the Infinium 450k BeadChip. Data were derived from an
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experiment in which the X-chromosome was omitted, polymorphic probes
were included, and >98% of probes were detected across all samples.

Figure 13: A study specific plot showing the number of probes found in
each feature. Note the different spacing on the 450k or EPIC array between
neighbouring probes for different features (1st exon, 3′UTR, 5′UTR, gene
body, intergenic region, transcription start sites) and their relation to the
nearest CpG island (in the island, in a shore, in a shelf, not associated).
Intergenic regions, 3′UTRs and gene bodies with no CGI relation are very
sparsely spaced; whereas probes in the 1st exon and TSSs are very closely
spaced.

The user then specifies a maximum (or minimum) lasso size (bp) and the
Probe Lasso DMR Hunter determines which feature/CGI category fulfils
this criterion first and what quantile of the relevant feature/CGI category
it corresponds to. This quantile is applied to all feature/CGI categories to
define feature/CGI category-specific lasso sizes (see Figures 14 and 15).*Note
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a minimum lasso size would rarely be appropriate.

Figure 14: Defining the lasso for each feature type. This illustrates when
someone has specified a minimum lasso of 10bp and how this sets the quantile
for all feature/CGI relation-specific lassos to 4̃8%. These lassos are then cast
out (centred on each probe) to capture a minimum number of significant
probes. Probes that fulfil this are set aside.

Next, operating solely on the significant probes in the dataset, an appropriately-
sized lasso is thrown around each probe; if the lasso captures a user-specified
number of significant probes (including itself), that probe (and the probes
captured by its lasso) is set aside, in essence, a ”mini-DMR”. Next, Pro-
beLasso DMR Hunter attempts to close-up gaps between neighbouring mini-
DMRs whose lasso boundaries are either overlapping or less than a user-
specified distance apart (e.g., 1000bp), effectively defining a ”final DMR”.
The coordinates for each DMR are calculated by throwing an appropriately-
sized lasso around each probe in the DMR and taking the minimum and
maximum genomic coordinates.
Finally, ProbeLasso DMR Hunter pulls back all probes within the DMR
coordinates and returns them as data frame containing genomic annotation
and association statistics of each MVP. Additionally, a p-value for each DMR
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Figure 15: This image shows the radius size for each feature.

is calculated using Stouffler’s method. This method combines the p-values
of individual probes within a DMR by weighting them according to the
underlying correlation structure of methylation scores between probes; p-
values of probes whose methylation scores are correlated are down-weighted,
while independent probes are not penalised. The concept of the probe lasso
is visualized as a cartoon in Figure 16.

5.6.2 Output

5.6.3 Usage

> lasso <- champ.DMR(resultFiles=limma,method="ProbeLasso",arraytype="450K")

> bump <- champ.DMR(method="Bumphunter",arraytype="450K")

> if(!is.null(lasso))

+ {

+ head(lasso)
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Figure 16: The details on calling a DMR with ProbeLasso Method. This
shows the application of feature/CGI relation-specific lassos to the dataset.
In the above example, six probes are ’successful’ in capturing the minimum
number of probes (e.g., 3) in their lasso; however, because there is less than
(the user-specified) 1kb separating the first and last ’successful’ probes, the
DMR boundaries are defined between these (+/- their lassos!). Note that
’unsuccessful’ probes are now included in the DMR.

Figure 17: This is an example of the champ.DMR() output on ProbeLasso
algotithm that is saved if the dataset has produced a DMR list. The columns
show the probeID, adjusted p-value, chromosome, map info, chromosome
arm, feature relation, SNP allele frequency for the forward strand for the
selected population (pol.af.f), SNP allele frequency for the reverse strand
for the selected population (pol.af.r), the distance in base pairs to the next
nearest significant probe (nrst.probe), the size in base pairs of the lasso used
to capture this DMR (lasso.radii), the DMR number (dmr.no), the DMR
start location (dmr.start), the DMR end location (dmr.end), the DMR size
(dmr.size) and the p-value of significance for the DMR (dmr.p)

+ }
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Figure 18: This is an example of the champ.DMR() output on Bumphunter
algotithm that is saved if the dataset has produced a DMR list. The columns
show the DMR located chromosome, start site and end site, average beta
value, cluster index, start CpG index, end CpG index, number of CpG
Probes in each DMR, total number of probes in each cluster, and p value
calculated for each DMR.

5.7 Copy Number Alterations

This function uses the HumanMethylation450 data to identify copy number
alterations (Feber et al., 2014). The function utilises the intensity values for
each probe to count copy number and determine if copy number alterations
are present. Copy number is determined using the CopyNumber package.

5.7.1 Procedure

Intensity values are quantile normalized and by default the ComBat normal-
ization is run for correction of batch effects related to the slide before the
copy number is calculated.
Feber (Feber et al., 2014) compared the results obtained using this method
to copy number data from Illumina CytoSNP array and Affymetrix SNP
6.0 arrays and found that using this method for 450k data was effective in
identifying regions of gain and loss.

5.7.2 Usage

> CNA=champ.CNA()

5.8 Cell type heterogeneity correction

While many methylation sample are collected from whole blood, their methy-
lation status actually are combination of various cell types. These cell-type
specified methylation may cover ture epigenome signals as well as true rela-
tionships between CpGs sites and phenotypes, or themsleves are the reason
of some diseases. Thus many methods have be invented to deal with cell
heterogeneity problem, like RefbaseEWAS and RefFreeEWAS incoporated
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Figure 19: This is an example of the champ.CNA() output that is saved for
each sample. The columns show the sample name, chromosome, segment
start, segment end, the number of probes in the segment and the segment
mean. Typically 0.3 is used as a cut-off for the segment mean to call gains
and losses.

in ChAMP.

RefbaseEWAS method is a method similar to regression calibration, for in-
ferring changes in the distribution of white blood cells between different
subpopulations (e.g. cases and controls) using DNA methylation signatures,
in combination with a previously obtained external validation set consisting
of signatures from purified leukocyte samples.

We integrates another cell type heterogeneity correction method, RefFreeE-
WAS in ChAMP . The new RefFreeEWAS method is similar to non-negative
matrix factorization, with additional constraints and additional utilities.
This function is specifically suitable for tissue datasets such as placenta,
saliva, adipose or tumor tissue. This method closely related to surrogate
variable analysis, relies on a simple projection based on singular value de-
composition (SVD), as does SVA. In SVA, the residuals of a linear model
are decomposed into a factor-analytic structure and the factors are used
subsequently in a regression model, with iteration resulting in a final set of
surrogate variables.

5.8.1 Procedure

Here we prepared two cell-type purified methylation reference, one for 27K
and the other for 450K, user may use any of them to do cell heterogeneity
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Figure 20: This image shows all the data for a single sample. Chromosomes
are shown alternating green and black.

correction even for EPIC bead array, because the first step of the function is
to extract common CpG sites between reference dataset and inputted beta
valued dataset. Then by applying quadratic programming, cell propotions
for each sample could be detected out. Then, linear regression will be ap-
plied to correct heterogeneity based on cell propotions of each sample.

However, though RefbaseEWAS method would return fairly accurate cell
propotion, this method can ONLY be applied for whole blood samples,
which contain cells in the reference. After champ.refbase() function, cell
type heterogeneity corrected beta matrix, and cell-type specific propotions
in each sample will be returned.

On the other hand, RefFreeEWAS method requires two parameters in champ.reffree()
function, one is the covariates matrix for inputted dataset, which could be
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a matrix or a vector. containing various phenotypes of each sample. The
other important parameter is number of latent variable K, which represent
numbers of latent cell type mixed in the dataset. If users don’t know the cor-
rect number of latent variable (cell types), they could ignore this parameter,
and champ.reffree() will apply Random Matrix Theory from isva package to
estimate number of latent variables.

5.8.2 Usage

> refbase <- champ.refbase()

> reffree <- champ.reffree()

6 Further analysis

Additional options for downstream analysis are available using other pack-
ages. It is recommended that DMRs be investigated using pathway analysis
software and Encode data. In addition data from previously published 450k
datasets can be downloaded using marmal-aid and combined with study
data for meta-analysis.
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