Package ‘sbgr’

January 7, 2016

Type Package

Title R Client for Seven Bridges Genomics API

Version 1.1.1

Date 2015-05-01

Author Nan Xiao <road2stat@gmail.com>, Tengfei Yin <tengfei.yin@sbgenomics.com>
Maintainer Nan Xiao <road2stat@gmail.com>

Description R client for Seven Bridges Genomics API.

License MIT + file LICENSE

VignetteBuilder knitr

URL https://www.sbgenomics.com

BugReports https://github.com/road2stat/sbgr/issues
biocViews Software, Datalmport, ThirdPartyClient

Depends methods, utils, stats

Imports httr, jsonlite, objectProperties, stringr

Suggests BiocStyle, knitr, rmarkdown, testthat
NeedsCompilation no

RoxygenNote 5.0.0

R topics documented:

sbgr-package L e e e e
Auth-class e
billing e e
billing_groups
billing_invoices
FileTypeSingleEnum-class i
file_CoOpY . . . o e e
file_delete e e
file details e e e
file_download_url e

https://www.sbgenomics.com
https://github.com/road2stat/sbgr/issues

2 sbgr-package
file_LTiSt e 10
file_meta_update e e 11
Item-class e 13
MetaSchema-class 13
misc_get_auth_token 13
misc_get_uploader 14
misc_make_metadata L. e e e e 14
misc_upload_cli. 16
pipeline_add 17
pipeline_details 18
pipeline_list_ my 19
pipeline_list_project e 19
pipeline_list_pub 20
project_delete 20
project_details L. 21
project_liSt e 22
Project_members e e e e e e e e e e e e e 22
project_member_add e 23
project_member_delete Lo 24
project_member_update 24
PIOJECI_NEW . . . o v i ittt e e e e e e e e e e 25
rate_limit e e e 26
SDEAPT e e e e e e 27
Task-class e e e e e 28
task_action e e e 29
task_details L e 30
task LISt L e 31
task_run . .. oL e e 32
upload_complete_all 33
upload_complete_part. 34
upload_delete 34
upload_info 35
upload_info_part 36
upload_init L e e 36
user_liSt e 37

Index 39

sbgr-package R Client for Seven Bridges Genomics API

Description

R Client for Seven Bridges Genomics API

Details

The vignette can be opened with vignette('sbgr').

Auth-class 3

Package: sbgr
Type: Package
License: MIT

Author(s)

Nan Xiao <<nan.xiao@sbgenomics.com>> Teng-Fei Yin <<tengfei.yin@sbgenomics.com>>

Auth-class Class Auth

Description

Auth token object

Arguments
auth_token [character] your auth token.
platform [character using, by default it is sbg us platform.
url [chracter] a URL for the API, default is NULL, will use api parameter to switch
to the right one.
version [character] default: 1.1 version used for api.
Details

Every object could be requested from this Auth object and any action could start from this object
using cascading style. Please check vignette ’easy-api’ for more information.
Fields

auth_token [character] your auth token.

url [character] basic url used for API, by default it’s https://api.sbgenomics.com/1.1/

Methods
project(name = NULL, id = NULL, index = NULL, ignore.case = TRUE, exact = TRUE,
find project
project_new(name = NULL, description = NULL, billing_group_id = NULL, ...) Create

new projects

project_owner(owner = NULL, ...) List the projects owned by and accessible to a particular
user. Each project’s ID and URL will be returned.

https://api.sbgenomics.com/1.1/

4 Auth-class

Examples

replace it with real token
token <- "aef7e9e3f6c54fb1b338ac4ecddf1a56”
a <- Auth(token)

get billing info
b <- a$billing()
create project
a$project_new(name = "API", description = "API tutorial”,
billing_group_id = b[[1]]1$id)
p <- a$project("API")
get data
fl <- system.file("extdata”, "samplel.fastq”, package = "sbgr")
create meta data
fl.meta <- list(file_type = "fastq”,
seq_tech = "Illumina”,
sample = "samplel”,
author = "tengfei")
upload data with metadata
p$upload(fl, metadata = fl.meta)
check uploading success
f.file <- p$file(basename(fl))
get the pipeline from public repos
f.pipe <- a$pipeline(pipeline_name = "FastQC")
copy the pipeline to your project
p$pipeline_add(pipeline_name = f.pipe$name)
get the pipeline from your project not public one
f.pipe <- p$pipeline(name = "FastQC")
check the inputs needed for running tasks
f.pipe$details()
Ready to run a task? go
f.task <- p$task_run(name = "my task”,
description = "A text description”,
pipeline_id = f.pipe$id,
inputs = list(
"177252" = list(f.file$id)
))
f.task$run()
or you can just run with Task constructor
f.task <- Task(auth = Auth(token),
name = "my task”,
description = "A text description”,
pipeline_id = f.pipe$id,
project_id = p$id,
inputs = list(
"177252" = list(f.file$id)
))
Monitor you task
f.task$monitor(30)

download a task output files
f.task <- p$task("my task")

billing 5

f.task$download("~/Desktop/")

Abort the task
f. task$abort()

billing Returns the list of all billing groups you have access to

Description

Returns the list of all billing groups you have access to. This is an utility method used only create
projects with appropriate billing group. Full access to billing data is not available via the SBG
public API yet.

Usage
billing(auth_token = NULL, ...)
Arguments
auth_token auth token
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc0d18a32fb6f"
req = billing(token)

billing_groups [v2] Get a single billing group

Description
This call list all your billing groups without id provided, and will retrieves a single billing group,
specified by id.

Usage
billing_groups(auth_token = NULL, id = NULL, breakdown = FALSE, ...)

6 billing_invoices

Arguments
auth_token auth token
id billing group id
breakdown This call returns a breakdown of spending per-project for the billing group spec-
ified by specified billing group id.
Details

Billing periods:The spending will be shown for the current billing period, unless the billing group
specified is a free billing group (i.e. pilot funds that you are using the CGC with), in which case all
spending on the account will be shown.

Examples

list all groups, to check id and details

billing_groups(token, base_url = url)

check specific billing group by provide id

billing_groups(token, base_url = url, id = "2b255c92-2b54-4fc8-something")

breakdown specific group

billing_groups(token, base_url = url, id = "2b255c92-2b54-4fc8-something”, breakdown = TRUE)

billing_invoices List invoices

Description

This call returns a list of invoices, with information about each, including whether or not the invoice
is pending and the billing period it covers. The call returns information about all available invoices,
unless you use the query parameter bg_id to specify the ID of specific invoices.

Usage
billing_invoices(auth_token = NULL, id = NULL, ...)
Arguments
auth_token auth token.
id invoices id. by default is NULL, will list all invoices with ID. if id is provided,

This call retrieves information about a selected invoice, including the costs for
analysis and storage, and the invoice period.

FileTypeSingleEnum-class 7

Examples

list all invoices

billing_invoices(token, base_url = url)

check single invoice

billing_invoices(token, base_url = url, id = "some_id")

FileTypeSingleEnum-class
Metadata class

Description

Metadata class

Details

This function will help you create a Metadata object, what it does it to accept a named list or just
pass meta key-value pairs as argument one by one. Then it first matches SBG’s build-in meta field
which will be shown in the graphic interface on the platform, then save extra meta information in
extra field, but not visible on the platform yet, you can view it via the APL

There are four pre-defined fields with pre-defined levels, they are file_type, qual_scale, seq_tech,
and paired_end, those are also constructor names to construct a single Enum object, it’s different
from characters, it has validation against levels, to check their levels, you can simply create a empty
Metadata object and access the field levels. Please see examples.

References

https://docs.sbgenomics.com/display/sbg/Metadata

Examples

m <- Metadata()

to check levels

m$file_type

levels(m$file_type)

to replace a Enum class need to use constructor
m$file_type <- file_type("text")

https://docs.sbgenomics.com/display/sbg/Metadata

file_delete

file_copy Copy specified file(s) to the specified project

Description

Copy specified file(s) to the specified project

Usage

file_copy(auth_token = NULL, project_id = NULL, file_id = NULL, ...)
Arguments

auth_token auth token

project_id ID of a project you want to copy files to.

file_id Character vector. IDs of the files you wish to copy to the project.

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"
req = file_copy(token,
project_id = '7f7a72d0-da77-4f51-9416-99f14f7316ab",
file_id = c('5506a44ae4b04a4ab3ae7250',
'5506a44ae4b04a4ab3ae7254",
'5506a44ae4b04a4abl3ae7252"))

file_delete Removes a file from a project

Description

Removes a file from a project

Usage

file_delete(auth_token = NULL, project_id = NULL, file_id = NULL, ...)

file_details

Arguments
auth_token auth token
project_id ID of a project you want to access.
file_id ID of a file you want to delete.
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f"

req = file_delete(token,
project_id = '1c1d06d2-5862-48f6-b595-€0099b20937e",
file_id = '530854e2e4b036506b803c7e")

file_details Returns detailed information about a project’s files

Description

Returns detailed information about a project’s files

Usage
file_details(auth_token = NULL, project_id = NULL, file_id = NULL,

Arguments
auth_token auth token
project_id ID of a project you want to access.
file_id ID of a file you want to access.
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’

req = file_details(token,
project_id = '1c1d@6d2-5862-48f6-b595-e0099b20937¢e",
file_id = '530854e2e4b036506b803c7e")

10 file_list

file_download_url Returns a direct download URL for a project’s file

Description

Returns a direct download URL for a project’s file.

Usage
file_download_url(auth_token = NULL, project_id = NULL, file_id = NULL,
.)
Arguments
auth_token auth token
project_id ID of a project you want to access.
file_id ID of a file you want to access.

parameters passed to sbgapi function

Details

You can use any HTTP client, or library to access or download the content once you get the URL.

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’

req = file_download_url(token,
project_id = '1c1d06d2-5862-48f6-b595-e0099b20937¢e",
file_id = '530854e2e4b036506b803c7e")

file_list Returns the list of all project files for a project

Description

Returns the list of all project files for a project. If user specifies string "public” as project_id,
this will return a list of public files.

Usage
file_list(auth_token = NULL, project_id = NULL, ...)

file_meta_update 11

Arguments
auth_token auth token
project_id ID of a project you want to access. Note that specifying "public” you can list
public files.
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’
req = file_list(token,
project_id = '1c1d06d2-5862-48f6-b595-e0099b20937¢e"')

file_meta_update Update project’s file metadata

Description

This function updates project’s file metadata. You can also use this call to change filenames if you
supply the name argument.

Usage

file_meta_update(auth_token = NULL, project_id = NULL, file_id = NULL,
name = NULL, file_type = c("text", "binary"”, "fasta", "csfasta”, "fastq"”,

"qual", "xsq", "sff", "bam", "bam_index", "illumina_export", "vcf", "sam",
"bed”, "archive”, "juncs", "gtf", "gff", "enlis_genome"),
qual_scale = c("sanger”, "illuminal3"”, "illuminal5"”, "illuminal8",

"solexa"), seq_tech = c("454", "Helicos"”, "Illumina”, "Solid",
"IonTorrent"), sample = NULL, library = NULL, platform_unit = NULL,

paired_end = NULL, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
file_id ID of a file you want to access.
name File name.

file_type File type. This metadata parameter is mandatory for each file.

12

qual_scale

seq_tech

sample

library

platform_unit

paired_end

Details

file_meta_update

Quality scale encoding. For FASTQ files, you must either specify the qual-
ity score encoding sch which contains the FASTQ quality scale detector wrap-
per. In that case, you can specify the quality score encoding scheme by setting
qual_scale inside the pipeline. For BAM files, this value should always be
'sanger’.

Sequencing technology. The seq_tech parameter allows you to specify the se-
quencing technology used. This metadata parameter is only required by some
the tools and pipelines; however, it is strongly recommended that you set it
whenever possible, unless you are certain that your pipeline will work without
it.

Sample ID. You can use the sample parameter to specify the sample identifier.
The value supplied in this field will be written to the read group tag (@RG: SM) in
SAM/BAM files generated from reads with the specified Sample ID. AddOrRe-
placeReadGroups will use this parameter as the value for the read group tag in
a SAM/BAM file.

Library. You can set the library for the read using the 1ibrary parameter. The
value supplied in this field will be written to the read group tag (@RG:LB) in
SAM/BAM files generated from reads with the specified Library ID. AddOrRe-
placeReadGroups will use this parameter as the value for the read group tag in
a SAM/BAM file.

Platform unit. You can set the platform unit (e.g. lane for Illumina, or slide for
SOLiD) using the platform_unit parameter. The value supplied in this field
will be written to the read group tag (@RG: PU) in SAM/BAM files generated from
the reads with the specified Platform Unit. AddOrReplaceReadGroups will use
this parameter as the value for the read group tag of a SAM/BAM file.

Paired end. With paired-end reads, this parameter indicates if the read file is left
end (1) or right end (2). For SOLiD CSFASTA files, paired end files 1 and 2
correspond to R3 and F3 files, respectively.

parameters passed to sbgapi function

For more information about file metadata, please check the File Metadata Documentation: https:
//developer.sbgenomics.com/platform/metadata.

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"

req = file_meta_update(token,
project_id = '1c1d@6d2-5862-48f6-b595-e0099b20937¢e",
file_id = '530854e2e4b036506b803c7e",
name = 'c.elegans_chr2_test.fastq',
file_type = 'fastq', qual_scale = 'illuminal3',
seq_tech = 'Illumina')

https://developer.sbgenomics.com/platform/metadata
https://developer.sbgenomics.com/platform/metadata

Item-class 13

Item-class Class Item

Description

Class Item

Details

To describe a set of objects, Project, Task, Pipeline, File etc.

Fields

response save the raw response from a request.
auth_token propagate the auth_token from parent.

href api href

MetaSchema-class Meta schema

Description

Meta schema

Details

V2 version for meta data schema

misc_get_auth_token Opens browser to copy the auth token

Description
Click ’Generate Token’ button, copy and paste the generated token string to the R console. The
function will return the token string.

Usage

misc_get_auth_token()

Value

auth token

14 misc_make_metadata

Examples

Paste the auth token into R
console then press enter:
token = NULL

token = misc_get_auth_token()

misc_get_uploader Download SBG uploader and extract to a specified directory

Description

Download SBG uploader and extract to a specified directory.

Usage
misc_get_uploader(destdir = NULL)

Arguments
destdir The directory to extract SBG uploader to. If not present, it will be created auto-
matically.
Value

oL if the SBG CLI uploader is successfully downloaded and unarchived.

Examples

dir = '~/sbg-uploader/'
misc_get_uploader(dir)

misc_make_metadata Specify the parameters of the file metadata and return a list, JSON
string, or write to a file

Description

Specify the parameters of the file metadata and return a list, JSON string, or write to a file.

Usage

misc_make_metadata(output = c("list”, "json”, "metafile"”), destfile = NULL,
name = NULL, file_type = c("text", "binary"”, "fasta", "csfasta”, "fastq"”,

"qual”, "xsq", "sff", "bam", "bam_index", "illumina_export”, "vcf"”, "sam”,
"bed"”, "archive”, "juncs”, "gtf", "gff", "enlis_genome"),
qual_scale = c("sanger”, "illuminal3”, "illuminal5"”, "illuminal8",

"solexa"), seq_tech = c("454", "Helicos"”, "Illumina”, "Solid",
"IonTorrent”), sample = NULL, library = NULL, platform_unit = NULL,
paired_end = NULL)

misc_make_metadata

Arguments

output
destfile
name
file_type

qual_scale

seq_tech

sample

library

platform_unit

paired_end

Details

15

Output format, could be 'list’, 'json', or 'metafile’.

Filename to write to. Must be specified when output = 'metafile’.
File name.

File type. This metadata parameter is mandatory for each file.

Quality scale encoding. For FASTQ files, you must either specify the qual-
ity score encoding sch which contains the FASTQ quality scale detector wrap-
per. In that case, you can specify the quality score encoding scheme by setting
qual_scale inside the pipeline. For BAM files, this value should always be
'sanger’'.

Sequencing technology. The seq_tech parameter allows you to specify the se-
quencing technology used. This metadata parameter is only required by some
the tools and pipelines; however, it is strongly recommended that you set it
whenever possible, unless you are certain that your pipeline will work without
it.

Sample ID. You can use the sample parameter to specify the sample identifier.
The value supplied in this field will be written to the read group tag (@RG: SM) in
SAM/BAM files generated from reads with the specified Sample ID. AddOrRe-
placeReadGroups will use this parameter as the value for the read group tag in
a SAM/BAM file.

Library. You can set the library for the read using the library parameter. The
value supplied in this field will be written to the read group tag (@RG:LB) in
SAM/BAM files generated from reads with the specified Library ID. AddOrRe-
placeReadGroups will use this parameter as the value for the read group tag in
a SAM/BAM file.

Platform unit. You can set the platform unit (e.g. lane for [llumina, or slide for
SOLiD) using the platform_unit parameter. The value supplied in this field
will be written to the read group tag (@RG: PU) in SAM/BAM files generated from
the reads with the specified Platform Unit. AddOrReplaceReadGroups will use
this parameter as the value for the read group tag of a SAM/BAM file.

Paired end. With paired-end reads, this parameter indicates if the read file is left
end (1) or right end (2). For SOLiD CSFASTA files, paired end files 1 and 2
correspond to R3 and F3 files, respectively.

For more information about file metadata, please check the File Metadata Documentation: https:
//developer.sbgenomics.com/platform/metadata.

Value

list, JSON string, or a file.

References

https://developer.sbgenomics.com/platform/metadata

https://developer.sbgenomics.com/platform/metadata
https://developer.sbgenomics.com/platform/metadata
https://developer.sbgenomics.com/platform/metadata

16

misc_upload_cli

Examples
destfile = '~/c.elegans_chr2_test.fastqg.meta’
misc_make_metadata(output = 'metafile’,
destfile = destfile,
name = 'c.elegans_chr2_test.fastq',
file_type = 'fastq', qual_scale = 'illuminal3"',
seg_tech = 'Illumina')
misc_upload_cli Upload files using SBG uploader
Description

Upload files using SBG uploader.

Usage

misc_upload_cli(auth_token

NULL, uploader = NULL, file = NULL,

project_id = NULL, proxy = NULL)

Arguments

auth_token

uploader

file

project_id

proxy

Value

auth token

The directory where the SBG uploader is located (the directory that contains the
bin/ directory).

The location of the file to upload.

The project ID to upload the files to. If you do not supply this, then the uploader
will place the incoming files in your "My Files" section.

Allows you to specify a proxy server through which the uploader should con-
nect. About the details the proxy parameter format, see https://developer.
sbgenomics.com/tools/uploader/documentation.

The uploaded file’s ID number.

References

https://developer.sbgenomics.com/tools/uploader/documentation

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f
misc_upload_cli(auth_token = token,

uploader = '~/sbg-uploader/',
file = '~/example.fastq', project_id = '1234"')

https://developer.sbgenomics.com/tools/uploader/documentation
https://developer.sbgenomics.com/tools/uploader/documentation
https://developer.sbgenomics.com/tools/uploader/documentation

pipeline_add 17

pipeline_add Add a pipeline to a specified project

Description

Add a pipeline to a specified project. You can use this function to add a pipeline from your other
project or a public pipeline to a project.

Usage
pipeline_add(auth_token = NULL, project_id_to = NULL,
project_id_from = NULL, pipeline_id = NULL, revision = NULL, ...)
Arguments
auth_token auth token

project_id_to ID of a project you to copy pipeline into.

project_id_from
ID of the project you wish to add from. Specify values such as "my"” to specify a
pipeline from "My Pipelines" section or omit for a public pipeline, respectively.

pipeline_id ID of the pipeline you wish to add to project.
revision Revision of the pipeline you wish to add to the project.

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"'

req = pipeline_add(token,
project_id_to = '7f7a72d0-da77-4f51-9416-99f14f7316ab",
project_id_from = 'f@eb447f-3511-4b28-9253-ebad6191d432",
pipeline_id = '53452130d79f0049c0c94441")

18 pipeline_details

pipeline_details Returns the details of a pipeline for a project

Description

Returns the details of a pipeline (runtime and regular parameters, description etc.) for a project.

Usage
pipeline_details(auth_token = NULL, project_id = NULL, pipeline_id = NULL,
2
Arguments
auth_token auth token
project_id ID of a project you want to access.
pipeline_id ID of a pipeline you want to access.

parameters passed to sbgapi function

Details

When using the API to run a task, the user needs to set input files for all input nodes. To facilitate
this, some pipeline input nodes may contain field "suggested files", that contains files which may
be used as default input (reference genomes, SNP database, etc.).

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f"’

req = pipeline_details(token,
project_id = 'b@Ob3a611-6bb0-47e5-add7-a83402cf7858",
pipeline_id = '55606ad4896a5d524656afdo")

pipeline_list_my

19

pipeline_list_my Returns the list of pipelines in user’s "My Pipelines" section

Description

Returns the list of pipelines in user’s "My Pipelines" section.

Usage
pipeline_list_my(auth_token = NULL, ...)
Arguments
auth_token auth token
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f
req = pipeline_list_my(token)

pipeline_list_project Returns a list of all the pipelines in project

Description

Returns a list of all the pipelines in project.

Usage

pipeline_list_project(auth_token = NULL, project_id = NULL,

Arguments
auth_token auth token
project_id ID of a project you want to access.
parameters passed to sbgapi function
Value

parsed list of the returned json

.2

20 project_delete

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’
req = pipeline_list_project(token,
project_id = 'b@b3a611-6bb0-47e5-add7-a83402cf7858")

pipeline_list_pub Returns the list of all public pipelines

Description

Returns the list of all public pipelines.

Usage
pipeline_list_pub(auth_token = NULL, ...)
Arguments
auth_token auth token
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f"
req = pipeline_list_pub(token)

project_delete Delete a project

Description

Note that this deletes all files, tasks which belong to a project.

Usage

project_delete(auth_token = NULL, project_id = NULL, ...)
Arguments

auth_token auth token

project_id ID of a project you want to delete.

parameters passed to sbgapi function

project_details

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"
req = project_delete(token,
project_id = '3a2lade8-ef3e-41f8-8ac2-1dc3b434ac77')

project_details Returns the details of the project

Description

Returns the details of the project.

Usage
project_details(auth_token = NULL, project_id = NULL, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"
req = project_details(token,
project_id = 'b@b3a611-6bb0-47e5-add7-a83402cf7858")

22 project_members

project_list Returns the list of all projects you have access to

Description

Returns the list of all projects you have access to.

Usage
project_list(auth_token = NULL, ...)
Arguments
auth_token auth token
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc0d18a32fb6f
req = project_list(token)

project_members Returns a list of all users invited to the project and their privileges

Description

Returns a list of all users invited to the project and their privileges. Project ID is specified as path
parameter. Call returns ID and username of the user with privileges.

Usage
project_members(auth_token = NULL, project_id = NULL, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
parameters passed to sbgapi function
Value

parsed list of the returned json

project_member_add 23

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"
req = project_members(token,
project_id = 'b@b3a611-6bb0-47e5-add7-a83402cf7858")

project_member_add Add a user to the project with appropriate permissions

Description

You can use this call to add specific users to a project and set their privileges. Note that you need to
specify user’s SBG platform username when adding to the project.

Usage

project_member_add(auth_token = NULL, project_id = NULL, username = NULL,

copy = FALSE, write = FALSE, execute = FALSE, admin = FALSE, ...)

Arguments

auth_token auth token

project_id Name of the project you wish to add user to.

username SBG platform username for a user you wish to add to the project.

copy Logical. Ability to download or copy files.

write Logical. Ability to create/edit/delete project objects.

execute Logical. Ability to run tasks.

admin Logical. User has all rights on the project (including changing).

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"

req = project_member_add(token,
project_id = '88fc89cl1-cfcd-46ed-a830-6a2fc110c628',
username = 'testuser', write = TRUE)

24 project_member_update

project_member_delete Removes a member from a project

Description

Note that user_id parameter is not username, but user ID parameter that you can receive from GET
members call.

Usage
project_member_delete(auth_token = NULL, project_id = NULL,
user_id = NULL, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
user_id ID of the user you wish to remove.

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc0d18a32fb6f"

req = project_member_delete(token,
project_id = '7f7a72d0-da77-4f51-9416-99f14f7316ab",
user_id = '08890148-6d9e-4a10-b284-924228d3f99a")

project_member_update Set permissions for a user to a project

Description

This call will set project’s member privileges. Privileges you do not explicitly set to "true" will be
automatically set to "false". Project ID and user ID are specified in path parameters. Note that you
must get the user IDs by performing the project_members() call and gathering id of the user with a
specific permission.

Usage

project_member_update(auth_token = NULL, project_id = NULL,
user_id = NULL, write = FALSE, copy = FALSE, execute = FALSE,
admin = FALSE, ...)

project_new 25

Arguments
auth_token auth token
project_id ID of a project you want to access.
user_id ID of a user whose permissions you with to set
write Logical. Ability to create/edit/delete project objects.
copy Logical. Ability to download or copy files.
execute Logical. Ability to run tasks.
admin Logical. User has all rights on the project (including changing).
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"'

req = project_member_update(token,
project_id = '7f7a72d0-da77-4f51-9416-99f14f7316ab",
user_id = '08890148-6d9e-4a10-b284-924228d3f99a"')

project_new Create new project

Description

You can use this call to create a project. All details, including project name, description and funding
source are specified as part of the JSON, sent as the body of the request. This call returns details of
the project.

Usage
project_new(auth_token = NULL, name = NULL, description = NULL,
billing_group_id = NULL, ...)
Arguments
auth_token auth token
name Name of the project you wish to create.
description Description of the project you wish to create.

billing_group_id
ID of the billing group you wish to use for this project.

parameters passed to sbgapi function

26 rate_limit

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f’
req = project_new(token, name = 'Test API project',
description = 'My first API project',
billing_group_id = '5b6d5e71-dff8-42fc-8583-500d858f1093")

rate_limit Rate Limit (V2)

Description

Rate Limit

Usage

rate_limit(auth_token = NULL, ...)

Arguments

auth_token auth token.

parameters passed to sbgapi function

Details

The following API call allows you to get your rate limit. This call returns information about your
current rate limit. This is the number of API calls you can make in one hour. Note: that making this
API call does not count against your rate limit.

Value

parsed list of the returned json

Examples

req <- rate_limit(token)

sbgapi 27

sbgapi wrapper of http logic for SBG API

Description

wrapper of http logic for SBG API

Usage

sbgapi(auth_token = NULL, version = "1.1", path, method = c("GET", "POST",
"PUT", "DELETE"), query = NULL, body = list(),
base_url = paste@("https://api.sbgenomics.com/", version, "/"))

Arguments
auth_token authenticate token string.
version API version number, default 1.1.
path path connected with base_url.
method one of 'GET’, "POST’, ’PUT”’, ’Delete’
query Passed to httr package GET/POST call.
body Passed to httr package GET/POST/PUT/DELETE call.
base_url defeault is *https://api.sbgenomics.com/1.1’
Details

Used for advanced users and the core method for higher level API in this package, please refer to
the easy api manual and the two vignettes pages for more convenient usage.

Value

returned request list of httr

References

https://docs.sbgenomics.com/display/developerhub/API

Examples

token <- "fake_token”

list projects
sbgapi(auth_token = token, path = 'project', method = "GET")

https://docs.sbgenomics.com/display/developerhub/API

28 Task-class

Task-class Task class

Description

Task class

Details

A task execution require auth, project_id, pipeline_id and inputs parameters, there are two ways to
execute a task, the recommended way is to use a cascading method to create a project object called
p then just call p$task_run() to pass your parameters. This way you save your time passing auth
and project_id. The other way is to create a Task object with all required fields and call run method.
Please check example in the end or tutorial for easy API.

Fields

id [characterORNULL] The task ID number, used when referring to the task in other Seven Bridges
API calls

name [characterORNULL] Name of the task you wish to execute. If this is not specified, the task
will be named automatically.

description [characterORNULL] Description of the task you wish to execute.
pipeline_id [characterORNULL] ID of the pipeline you wish to execute.

pipeline_revision [characterORNULL] Revision number of the pipeline you wish to execute.
If this is not specified, the latest pipeline revision is used.

start_time [numericORNULL] start time.

status [characterORNULL] 1) active: task is currently running. 2) completed: task has finished
successfully. 3) aborted: task was aborted by user. 4) failed: task has failed to finish due to
either bad inputs and/or parameters, or because of the internal infrastructure failures.

message [characterORNULL] task message
jobs_completed [numericORNULL] completed jobs
jobs_total [numericORNULL] total jobs.

inputs [listORNULL] required for task execution. List of key-value pairs containing mappings
of pipeline input node ID to file IDs. Note that you must supply an array of file IDs for each
input nodes, even if the array is empty.

parameters [listORNULL] required for task execution. List of key-value pairs containing map-
pings of node IDs to apps specific parameters. Note that you must supply some value for
parameters, even if this an empty list of key-value pairs.

project_id [characterORNULL] required for task execution. ID of the project you want to exe-
cute the task in.

task_action

Examples

token <- "aef7e9e3f6c54fb1b338ac4ecddf1a56”
a <- Auth(token)
A task constructor
Task(auth = Auth(token),
name = "my task”,
description = "A text description”,
pipeline_id = "fake_pipeline_id",
project_id = "fake_project_id",
inputs = list(
"177252" = list("fake_id")
D)

replace with real token then follow the examples here
get billing info
b <- a$billing()
p <- a$project("API")
get the pipeline from your project not public one
f.pipe <- p$pipeline(name = "FastQC")
check the inputs needed for running tasks
f.pipe$details()
Ready to run a task? go
f.task <- p$task_run(name = "my task”,
description = "A text description”,
pipeline_id = f.pipe$id,
inputs = list(
"177252" = list(f.file$id)
))
f.task$run()
or you can just run with Task constructor
f.task <- Task(auth = Auth(token),
name = "my task”,
description = "A text description”,
pipeline_id = f.pipe$id,
project_id = p$id,
inputs = list(
"177252" = list(f.file$id)
)
Monitor you task
f.task$monitor(30)

download a task output files
f.task <- p$task("my task”)
f.task$download("~/Desktop/")

Abort the task
f. task$abort()

task_action Performs action on the task

30 task_details

Description

Performs action on the task.

Usage
task_action(auth_token = NULL, project_id = NULL, task_id = NULL,
action = "abort"”, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
task_id ID of a task you want to access.
action Character string specifying the action. Currently, only supported action is 'abort'.

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f"

req = task_action(token,
project_id = '7f7a72do-da77-4f51-9416-99f14f7316ab’,
task_id = '5506a44ae4b04adab3ae7250",
action = 'abort')

task_details Returns information about the task

Description

Returns information about the task.

Usage
task_details(auth_token = NULL, project_id = NULL, task_id = NULL,
download.url = FALSE, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
task_id ID of a task you want to access.

download.url Logical. Return the download URL or not.

parameters passed to sbgapi function

task_list 31

Details

Each task has a status and status message, containing the more detailed information about the task
status, associated with it. This is a list of all values that task status can have:

* active - Task is currently running.

» completed - Task has finished successfully.

* aborted - Task was aborted by user.

» failed - Task has failed to finish due to either bad inputs and/or parameters, or because of the
internal infrastructure failures.

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc0d18a32fb6f"
reql = task_details(token,
project_id = '1¢c1d06d2-5862-48f6-b595-€0099b20937e",
task_id = '22237')
req2 = task_details(token,
project_id = '1¢c1d06d2-5862-48f6-b595-€0099b20937¢e",
task_id = '22237', download.url = TRUE)

task_list Returns the list of all the tasks for a project

Description

Returns the list of all the tasks for a project.

Usage
task_list(auth_token = NULL, project_id = NULL, ...)
Arguments
auth_token auth token
project_id ID of a project you want to access.
parameters passed to sbgapi function
Details

This function returns general information and status of a task, in case you want to get a details,
including the inputs, outputs and parameters set for that task, you will have to use task details
resource referencing the task_id of a task that you want to get information about.

32

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f
req = task_list(token,
'1¢1d06d2-5862-48f6-b595-€0099b20937e ")

task _run

task_run Runs a task as a part of a project

Description

Runs a task as a part of a project.

Usage
task_run(auth_token = NULL, project_id = NULL, task_details = NULL,

Arguments
auth_token auth token
project_id ID of a project you want to access.

task_details A list with the following components:

* pipeline_id - ID of the pipeline you wish to execute

* pipeline_revision - Revision of the pipeline you wish to execute. If not

specified, latest revision is used.
* name - Name of the task you wish to execute
* description - Description of the task you wish to execute

* inputs - Named list containing mappings of pipeline input node ID to file
IDs. Note that file IDs always need to be specified as an list, even if empty

or with one element.

* parameters - Named list containing mappings of node IDs to apps specific
parameters. Note that parameters are always specified as an list, even if

empty or with one element.

parameters passed to sbgapi function

Details

All the details, including the pipeline ID and runtime parameters, are specified via a list. See the

example for details.

Value

parsed list of the returned json

upload_complete_all 33

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"'
details = list(
'name' = 'Test 2 of C. Elegans VC',

'description' = 'Testing Caenorhabditis elegans Exome Variant Calling',
'pipeline_id' = '422',
"inputs' = list('309485' = 13645,

'317344' = 13646,

'318662' = 13645,

'699018' = 13647),
'parameters' = list('393463' = list('read_trimming_qual' = 30,
'rg_seq_tech' = 'Illumina'),
'677492' = list()))

req = task_run(token,
project_id = '7f7a72d0-da77-4f51-9416-99f14f7316ab",
task_details = details)

upload_complete_all Reports the complete file upload

Description

If the whole parts are uploaded, and the provided ETags are correct, then the file is assembled and
made available on the SBG platform.

Usage
upload_complete_all (auth_token = NULL, upload_id = NULL, ...)
Arguments
auth_token auth token
upload_id ID of the upload
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"'
req = upload_complete_all(token,
upload_id = '8D7sQJxQk14ubsEnKaoeQZ1RvV60uQtMzBWaQNJIdxPDLypUC3WogwtJdncevHxnT")

34 upload_delete

upload_complete_part Reports the completion of the part upload

Description

The ETag is provided for the correctness check upon completion of the whole upload. Value for the
ETag is provided by AWS S3 service when uploading the file in the ETag header.

Usage
upload_complete_part(auth_token = NULL, upload_id = NULL,
part_number = NULL, e_tag = NULL, ...)
Arguments
auth_token auth token
upload_id ID of the upload
part_number ID of the part you wish to report as completed
e_tag Value of the ETag header returned by AWS S3 when uploading part of the file.

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"
req = upload_complete_part(token,
upload_id = '8D7sQJxQk14ubsEnKaoeQZ1RvV60uQtMzBWaQNJdxPDLypUC3WogwtJIdncevHxnT',
part_number = '1",
e_tag = 'd41d8cd98f00b204e9800998ecf8427e")

upload_delete Aborts the upload

Description

All upload records and the file are deleted.

Usage

upload_delete(auth_token = NULL, upload_id = NULL, ...)

upload_info 35

Arguments
auth_token auth token
upload_id ID of the upload
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’

req = upload_delete(token,
upload_id = '8D7sQJxQk14ubsEnKaoeQZ1RvV60uQtMzBWaQNJIdxPDLypUC3WogwtJIdncevHxnT")

upload_info Returns upload information for the ongoing upload

Description

Returns the upload information for the ongoing upload.

Usage
upload_info(auth_token = NULL, upload_id = NULL, ...)
Arguments
auth_token auth token
upload_id ID of the upload
parameters passed to sbgapi function
Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dc@d18a32fb6f"’

req = upload_info(token,
upload_id = '8D7sQJxQk14ubsEnKaoeQZ1RvV60ouQtMzBWaQNJdxPDLypUC3WogwtJIdncevHxnT")

36 upload_init

upload_info_part Returns AWS S3 signed URL for a part of the file upload

Description

Gets the signed URL for the upload of the specified part. Note that URLs are valid for 60 seconds
only and that you should initiate upload to the signed URL in this time frame.

Usage
upload_info_part(auth_token = NULL, upload_id = NULL, part_number = NULL,
.)
Arguments
auth_token auth token
upload_id ID of the upload
part_number Number of the upload file part that you wish to access

parameters passed to sbgapi function

Value

parsed list of the returned json

Examples

token = '420b4672ebfc43bab48dcod18a32fb6f"
req = upload_info_part(token,
upload_id = 'aV1uXRgSX2bse6va3AFFgVAppOCQIIABeA8HNyyiEw85]j6pNyV989H4xvIpr53xa’,
part_number = 1)

upload_init Initializes the upload of the specified file

Description

This is the first operation performed when you wish to upload a file. Operation is initialized by
providing file name, project id where you wish the file to be uploaded to (if not specified, defaults
to user’s stash) and optionally by providing wanted part size. You may wish to set your part size
to a low value if you experience problems with uploading large file parts, although default value of
5MB should be good enough for most users.

Usage

upload_init(auth_token = NULL, project_id = NULL, name = NULL,
size = NULL, part_size = NULL, ...)

user_list

Arguments
auth_token
project_id
name
size

part_size

Details

Limits:

37

auth token

ID of the project you wish to upload to
Name of the file you wish to upload
Size of the file you wish to upload

Requested part size. Note that API may reject your requested part size and return
proper one in response.

parameters passed to sbgapi function

* Maximum number of parts is 10000

e Maximum file size is 5STB

* Maximum part size is SGB
* Default part size is SMB

Value

parsed list of the returned json

Examples

token = '58aeb140-1970-0130-6386-001f5b34aa78"'
req = upload_init(token,

project_id = 'f0eb447f-3511-4b28-9253-eba96191d432",
name = 'Samplel1_RNASeq_chr20.pe_1.fastq', size = 5242880)

user_list

List user resources (V2)

Description

List user resources

Usage

user_list(auth_token = NULL, username = NULL, ...)
Arguments

auth_token auth token.

username NULL or character.

parameters passed to sbgapi function

38 user_list

Details

This call returns a list of the resources, such as projects, billing groups, and organizations, that are
accessible to you.

The call will only return a successful response if username is replaced with your own username,
unless you are an administrator. If you are an administrator, you can replace username with the
username of any CGC user, to return information on their resources.

Value

parsed list of the returned json

Examples

req <- user_list(token)
req <- user_list(token, username = "test")

Index

Auth (Auth-class), 3
Auth-class, 3

billing, 5
billing_groups, 5
billing_invoices, 6

file_copy, 8

file_delete, 8

file_details, 9

file_download_url, 10

file_list, 10

file_meta_update, 11

file_type (FileTypeSingleEnum-class), 7
FileTypeSingleEnum-class, 7

Item (Item-class), 13
Item-class, 13

Metadata (FileTypeSingleEnum-class), 7
Metadata-class
(FileTypeSingleEnum-class), 7
MetaSchema (MetaSchema-class), 13
MetaSchema-class, 13
misc_get_auth_token, 13
misc_get_uploader, 14
misc_make_metadata, 14
misc_upload_cli, 16

paired_end (FileTypeSingleEnum-class), 7

pipeline_add, 17
pipeline_details, 18
pipeline_list_my, 19
pipeline_list_project, 19
pipeline_list_pub, 20
project_delete, 20
project_details, 21
project_list, 22
project_member_add, 23
project_member_delete, 24
project_member_update, 24

project_members, 22
project_new, 25

qual_scale (FileTypeSingleEnum-class), 7
rate_limit, 26

sbgapi, 27
sbgr-package, 2
seq_tech (FileTypeSingleEnum-class), 7

Task (Task-class), 28
Task-class, 28
task_action, 29
task_details, 30
task_list, 31
task_run, 32

upload_complete_all, 33
upload_complete_part, 34
upload_delete, 34
upload_info, 35
upload_info_part, 36
upload_init, 36
user_list, 37

	sbgr-package
	Auth-class
	billing
	billing_groups
	billing_invoices
	FileTypeSingleEnum-class
	file_copy
	file_delete
	file_details
	file_download_url
	file_list
	file_meta_update
	Item-class
	MetaSchema-class
	misc_get_auth_token
	misc_get_uploader
	misc_make_metadata
	misc_upload_cli
	pipeline_add
	pipeline_details
	pipeline_list_my
	pipeline_list_project
	pipeline_list_pub
	project_delete
	project_details
	project_list
	project_members
	project_member_add
	project_member_delete
	project_member_update
	project_new
	rate_limit
	sbgapi
	Task-class
	task_action
	task_details
	task_list
	task_run
	upload_complete_all
	upload_complete_part
	upload_delete
	upload_info
	upload_info_part
	upload_init
	user_list
	Index

