Package 'cytofkit'

October 12, 2016

Type Package

Title cytofkit: an integrated mass cytometry data analysis pipeline

Version 1.4.10

Date 2016-09-27

Author Jinmiao Chen, Hao Chen

Description An integrated mass cytometry data analysis pipeline that enables simultaneous illustration of cellular diversity and progression.

License Artistic-2.0

Maintainer

Jinmiao Chen <Chen_Jinmiao@immunol.a-star.edu.sg>, Hao Chen <chen_hao@immunol.a-star.edu.sg>

biocViews FlowCytometry, GUI, CellBiology, Clustering, DimensionReduction, BiomedicalInformatics

Depends R (>= 2.10.0), ggplot2, plyr

VignetteBuilder knitr

Suggests knitr, RUnit, testthat, BiocGenerics

Imports tcltk, stats, Rtsne, e1071, flowCore, gplots, VGAM, reshape2, ggrepel, shiny, vegan, Biobase, doParallel, parallel, pdist, methods, destiny, FlowSOM(>= 1.4.0), igraph(>= 1.0.1), RANN(>= 2.5), Rcpp (>= 0.12.0)

LinkingTo Rcpp

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

cytofkit-package	2
ClusterX	4
cytofkit	5
cytofkitNews	7
cytofkitShinyAPP	7
cytofkit_GUI	8

cytofkit-package

cytof_addToFCS	8
cytof_cluster	
cytof_clusterPlot	
cytof_clusterStat	11
cytof_colorPlot	12
cytof_dimReduction	12
cytof_exprsExtract	13
cytof_exprsMerge	15
cytof_heatmap	16
cytof_progression	17
cytof_progressionPlot	18
cytof_writeResults	19
DensVM	
getParameters_GUI	21
launchShinyAPP_GUI	21
Rphenograph	
	24

Index

cytofkit-package cytofkit: an integrated mass cytometry data analysis pipeline

Description

This package is designed to facilitate the analysis workflow of mass cytometry data with automatic subset identification and mapping of cellular progression. Both command line and a GUI client are provided for executing the workflow easily.

Details

This package integrates merging methods of multiple FCS files, dimension reduction methods (PCA, t-SNE and ISOMAP) and clustering methods (DensVM, ClusterX, and Rphenograph) for rapid subset detection. Analysis reuslts can be visualized and explored interactively using a specially designed shiny web APP, see cytofkitShinyAPP. Moreover, the method isomap is provided to map the cellular progression. This workflow can be easily executed with the main function cytofkit or through the GUI client cytofkit_GUI.

Pre-processing

Using function cytof_exprsMerge, one or multiple FCS files will be loaded via the *read.FCS* function in the *flowCore* package. Then transformation was applied to the expression value of selected markers of each FCS file. Transformation methods include autoLgcl, cytofAsinh, logicle and arcsinh, where cytofAsinh is the default.Then multiple FCS files are merged using one of the merging methods all, min, fixed or ceil.

Dimensionality reduction

Using function cytof_dimReduction, t-Distributed Stochastic Neighbor Embedding (tsne) is suggested for dimensionality reduction although we also provide methods like isomap and pca.

Cluster

cytofkit-package

Using function cytof_cluster, three cluster method are provided, DensVM, ClusterX Rphenograph and FlowSOM. DensVM, densityClustX are performend on the dimension reduced data, while Rphenograph works directed on the high dimensional expression data. Method FlowSOM is integrated from Flow-SOM package (https://bioconductor.org/packages/release/bioc/html/FlowSOM.html).

Post-processing

- Using function cytof_clusterPlot to visualize the cluster results in a catter plot, in which dots represent cells, colours indicate their assigned clusters and point shapes represent their belonging samples.

- Using function cytof_heatmap to generate heat map to visualize the mean expression of every marker in every cluster. This heat maps is useful to interrogate marker expression to identify each cluster's defining markers.

- Using function cytof_progressionPlot to visualize the expression patter of selected markers against the estimated cellular progression order.

- Using function cytof_addToFCS to add any dimension reduced data, cluster results, progression data into the original FCS files, new FCS files will be saved for easy checking with other softwares like FlowJo.

All the above post processing can be automatically implemented and saved using one function cytof_writeResults.

Author(s)

Hao Chen, Jinmiao Chen

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit, cytofkit_GUI

```
## Run on GUI
#cytofkit_GUI() # remove the hash symbol to launch the GUI
```

```
## Run on command
dir <- system.file('extdata',package='cytofkit')
file <- list.files(dir, pattern='.fcs$', full=TRUE)
parameters <- list.files(dir, pattern='.txt$', full=TRUE)
## remove the hash symbol to run the following command
#cytofkit(fcsFile = file, markers = parameters)
```

```
## Checking the vignettes for more details
if(interactive()) browseVignettes(package = 'cytofkit')
```

ClusterX

Description

This package implement the clustering algorithm described by Alex Rodriguez and Alessandro Laio (2014) with improvements of automatic peak detection and parallel implementation

Usage

```
ClusterX(data, dimReduction = NULL, outDim = 2, dc, gaussian = TRUE,
alpha = 0.001, detectHalos = FALSE, SVMhalos = FALSE,
parallel = FALSE, nCore = 4)
```

Arguments

data	A data matrix for clustering.
dimReduction	Dimenionality reduciton method.
outDim	Number of dimensions will be used for clustering.
dc	Distance cutoff value.
gaussian	If apply gaussian to esitmate the density.
alpha	Signance level for peak detection.
detectHalos	If detect the halos.
SVMhalos	Run SVM on cores to assign halos.
parallel	If run the algorithm in parallel.
nCore	Number of cores umployed for parallel compution.

Details

ClusterX works on low dimensional data analysis (Dimensionality less than 5). If input data is of high diemnsional, t-SNE is conducted to reduce the dimensionality.

Value

a list

Author(s)

Chen Hao

```
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
ClusterXRes <- ClusterX(data)</pre>
```

cytofkit

Description

The main function to drive the cytofkit workflow.

Usage

```
cytofkit(fcsFiles = getwd(), markers = "parameter.txt",
    projectName = "cytofkit", ifCompensation = FALSE,
    transformMethod = c("autoLgcl", "cytofAsinh", "logicle", "arcsinh", "none"),
    mergeMethod = c("ceil", "all", "min", "fixed"), fixedNum = 10000,
    dimReductionMethod = c("tsne", "pca", "isomap"),
    clusterMethods = c("Rphenograph", "ClusterX", "DensVM", "FlowSOM", "NULL"),
    visualizationMethods = c("tsne", "pca", "isomap", "NULL"),
    progressionMethod = c("NULL", "diffusionmap", "isomap"), FlowSOM_k = 40,
    clusterSampleSize = 500, resultDir = getwd(), saveResults = TRUE,
    saveObject = TRUE, ...)
```

Arguments

fcsFiles	It can be either the path where stores your FCS files or a vector of FCS file names.
markers	It can be either a text file where contains the makers to be used for analysis or a vector of the marker names.
projectName	A prefix that will be added to the names of all result files.
ifCompensation	Either boolean value tells if do compensation (compensation matrix contained in FCS), or a compensation matrix to be applied.
transformMethod	d
	Data Transformation method, including autoLgcl, cytofAsinh, logicle and arcsinh, or none to avoid transformation.
mergeMethod	When multiple fcs files are selected, cells can be combined using one of the four different methods including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sampled without replacement from each fcs file and combined for analysis. all: all cells from each fcs file are combined for analysis. min: The minimum number of cells among all the selected fcs files are sampled from each fcs file and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each fcs file and combined for analysis.
fixedNum dimReductionMe	
	The method used for dimensionality reduction including type pca and i some

The method used for dimensionality reduction, including tsne, pca and isomap.

clusterMethods	The clustering method(s) used for subpopulation detection, including DensVM, ClusterX, Rphenograph and FlowSOM. Multiple selection are accepted.		
visualizationMe	visualizationMethods		
	The method(s) used for visualize the cluster data, including tsne, pca and isomap. Multiple selection are accepted.		
progressionMeth	nod		
	Use the first ordination score of isomap to estimated the preogression order of cells, choose NULL to ignore.		
FlowSOM_k	Number of clusters for meta clustering in FlowSOM.		
clusterSampleSize			
	The uniform size of each cluster.		
resultDir	The directory where result files will be generated.		
saveResults	If save the results, and the post-processing results including scatter plot, heatmap, and statistical results.		
saveObject	Save the resutls into RData objects for loading back to R for further analysis		
	Other arguments passed to cytof_exprsExtract		

Details

cytofkit works as the main funciton to perform the analysis of one or multiple FCS files. The workflow contains data merging from multiple FCS file, expression data transformation, dimensionality reduction with PCA, isomap or tsne (default), clustering analysis with methods includes DensVM, ClusterX, Rphenograph) and FlowSOM for subpopulation detection, and estimation of cellular progression using isomap. The analysis results can be visualized using scatter plot, heatmap plot or progression plot. Dimension reduced data and cluster labels will be saved back to new copies of FCS files. By default the analysis results will be automatically saved under resultDir for further annotation. Moreover An interactive web application is provided for interactive exploration of the analysis results, see cytofkitShinyAPP.

Value

a list containing expressionData, dimReductionMethod, visualizationMethods, dimReducedRes, clusterRes, progressionRes, projectName, rawFCSdir and resultDir. If choose 'saveResults = TRUE', results will be saved into files under resultDir.

Author(s)

Hao Chen, Jinmiao Chen

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit, cytofkit_GUI, cytofkitShinyAPP

cytofkitNews

Examples

```
dir <- system.file('extdata',package='cytofkit')
file <- list.files(dir, pattern='.fcs$', full=TRUE)
parameters <- list.files(dir, pattern='.txt$', full=TRUE)
## remove the hash symbol to run the following command
#cytofkit(fcsFile = file, markers = parameters)</pre>
```

cytofkitNews

check the package update news

Description

check the package update news

Usage

cytofkitNews()

cytofkitShinyAPP A Shiny app to interactively visualize the analysis results

Description

Load the RData object saved by cytofkit, explore the analysis results with interactive control

Usage

```
cytofkitShinyAPP()
```

Author(s)

Hao Chen

Examples

if (interactive()) cytofkit::cytofkitShinyAPP()

```
cytofkit_GUI
```

Description

This GUI provides an easy way for CyToF data analysis using cytofkit package. Main parameters for running 'cytofkit' were integrated in this GUI, and each parameter has a help button to show the instruction. cytofkit analysis will be launched after submitting.

Usage

cytofkit_GUI()

Value

the GUI for cytofkit-package

Author(s)

Hao Chen

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit-package, cytofkit

Examples

#cytofkit_GUI() # remove the hash symbol to run

cytof_addToFCS Add data to the original FCS files

Description

Store the new dimension transformed data and cluster data into the exprs matrix in new fcs files under analyzedFCSdir

Usage

```
cytof_addToFCS(data, rawFCSdir, analyzedFCSdir, transformed_cols = c("tsne_1",
    "tsne_2"), cluster_cols = c("cluster"), inLgclTrans = TRUE)
```

cytof_cluster

Arguments

data	The new data matrix to be added in.	
rawFCSdir	The directory containing the original fcs files.	
analyzedFCSdir	The directory to store the new fcs files.	
transformed_cols		
	the column name of the dimension transformend data in data.	
cluster_cols	the column name of the cluster data in data.	
inLgclTrans	Boolean value decides if apply the inverse lgcl transformation to the data before	
	saving	

Value

new fcs files stored under analyzedFCSdir

cytof_cluster	Subset detection by clustering
---------------	--------------------------------

Description

Apply clustering algorithms to detect cell subsets. DensVM and ClusterX clustering is based on the transformend ydata and use xdata to train the model. While Rphenograph directly works on the high dimemnional xdata. FlowSOM is integrated from FlowSOM pacakge (https://bioconductor.org/packages/release/bioc/html/Flo

Usage

```
cytof_cluster(ydata = NULL, xdata = NULL, method = c("Rphenograph",
    "ClusterX", "DensVM", "FlowSOM", "NULL"), FlowSOM_k = 40)
```

Arguments

ydata	A matrix of the dimension reduced data.
xdata	A matrix of the expression data.
method	$Cluster\ method\ including\ {\tt DensVM},\ {\tt densityClustX}, {\tt Rphenograph\ and\ {\tt FlowSOM}.}$
FlowSOM_k	Number of clusters for meta clustering in FlowSOM.

Value

a vector of the clusters assigned for each row of the ydata

```
d<-system.file('extdata', package='cytofkit')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, sep = "\t", header = TRUE)[, 1])
xdata <- cytof_exprsMerge(fcsFile, markers = markers, mergeMethod = 'fixed', fixedNum = 100)
ydata <- cytof_dimReduction(xdata, method = "tsne")
clusters <- cytof_cluster(ydata, xdata, method = "ClusterX")</pre>
```

cytof_clusterPlot Scatter plot of the cluster results

Description

Dot plot visualization of the cluster results, with color indicating different clusters, and shape of different samples.

Usage

```
cytof_clusterPlot(data, xlab, ylab, cluster, sample, title = "cluster",
  type = 1, point_size = NULL, addLabel = TRUE, labelSize = 10,
  sampleLabel = TRUE, labelRepel = FALSE, fixCoord = TRUE)
```

Arguments

data	The data frame of cluster results, which should contains at least xlab, ylab and cluster.
xlab	The column name of the x axis in input data.
ylab	The column name of the y axis in input data.
cluster	The column name of cluster in input data.
sample	the column name of the sample in input data.
title	the title of the plot.
type	plot type, 1 indicates combined plot, 2 indicated grid facet plot seperated by samples.
point_size	the size of the dot.
addLabel	Boolean, if add cluster labels.
labelSize	the size of cluster labels.
sampleLabel	If use point shapes to represent different samples.
labelRepel	If repel the cluste labels to avoid label overlapping.
fixCoord	If fix the Cartesian coordinates.

Value

the ggplot object of the scatter cluster plot.

```
x <- c(rnorm(100, mean = 1), rnorm(100, mean = 3), rnorm(100, mean = 9))
y <- c(rnorm(100, mean = 2), rnorm(100, mean = 8), rnorm(100, mean = 5))
c <- c(rep(1,100), rep(2,100), rep(3,100))
rnames <- paste(paste('sample_', c('A','B','C'), sep = ''), rep(1:100,each = 3), sep='_')
data <- data.frame(dim1 = x, dim2 = y, cluster = c)
rownames(data) <- rnames
data$sample <- "data"
cytof_clusterPlot(data, xlab="dim1", ylab="dim2", cluster="cluster", sample = "sample")</pre>
```

Description

Calculate the mean or median expression level of each marker for each cluster, or percentage of cell numbers of each cluster for each sample.

Usage

```
cytof_clusterStat(data, markers, cluster = "cluster", sample,
   statMethod = c("mean", "median", "percentage", "NULL"))
```

Arguments

data	Input data frame.
markers	The names of markers used for calcualtion.
cluster	The column name contatining cluster labels.
sample	The samples used for calculation.
statMethod	Statistics contatining mean, median or percentage.

Value

A matrix of the satatistics results

```
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1), rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''),
rep(1:250,each = 4), sep='_')
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, m5 = m5)
row.names(exprs_cluster) <- rnames
cytof_clusterStat(data = exprs_cluster, cluster = "cluster", statMethod = "mean")</pre>
```

cytof_colorPlot

Description

Plot the data with color-coded marker values

Usage

```
cytof_colorPlot(data, xlab, ylab, zlab, colorPalette = c("bluered", "topo",
    "heat", "terrain", "cm"), pointSize = 1, removeOutlier = TRUE)
```

Arguments

data	A dataframe containing the xlab, ylab and zlab.
xlab	The column name of data for x lab.
ylab	The column name of data for y lab.
zlab	The column name of data for z lab.
colorPalette	Color Palette.
pointSize	The size of the point.
removeOutlier	If remove the outliers.

Value

A ggplot object.

Examples

```
x <- c(rnorm(100, mean = 1), rnorm(100, mean = 3), rnorm(100, mean = 9))
y <- c(rnorm(100, mean = 2), rnorm(100, mean = 8), rnorm(100, mean = 5))
c <- rnorm(300, 10, 5)
data <- data.frame(dim1 = x, dim2 = y, marker = c)
cytof_colorPlot(data = data, xlab = "dim1", ylab = "dim2", zlab = "marker")</pre>
```

cytof_dimReduction Dimension reduction for high dimensional data

Description

Apply dimension reduction on the cytof expression data, with method pca, tsne, diffusionmap or isomap.

Usage

```
cytof_dimReduction(data, method = c("tsne", "pca", "isomap", "diffusionmap",
    "NULL"), distMethod = "euclidean", out_dim = 2, tsneSeed = 42,
    isomap_k = 5, isomap_ndim = NULL, isomapFragmentOK = TRUE, ...)
```

Arguments

data	Input expression data matrix.	
method	Method chosed for dimensition reduction, must be one of isomap, pca, diffusionmap or tsne.	
distMethod	Method for distance calcualtion, default is "euclidean", other choices like "man- hattan", "cosine", "rankcor"	
out_dim	The dimensionality of the output.	
tsneSeed	Set a seed if you want reproducible t-SNE results.	
isomap_k	Number of shortest dissimilarities retained for a point, parameter for isomap method.	
isomap_ndim	Number of axes in metric scaling, parameter for isomap method.	
isomapFragmentOK		
	What to do if dissimilarity matrix is fragmented, parameter for isomap method.	
	Other parameters passed to the method, check Rtsne, DiffusionMap, isomap.	

Value

a matrix of the dimension reducted data, with colnames method_ID, and rownames same as the input data.

Examples

```
data(iris)
in_data <- iris[, 1:4]
out_data <- cytof_dimReduction(in_data, method = "tsne")</pre>
```

cytof_exprsExtract Extract the expression data from a FCS file with preprocessing

Description

Extract the FCS expression data with preprocessing of compensation (for FCM data only) and transformation. Transformation methods includes autoLgcl, cytofAsinh, logicle (customizable) and arcsinh (customizable).

Usage

```
cytof_exprsExtract(fcsFile, verbose = FALSE, comp = FALSE, markers = NULL,
  transformMethod = c("autoLgcl", "cytofAsinh", "logicle", "arcsinh", "none"),
  scaleTo = NULL, q = 0.05, l_w = 0.1, l_t = 4000, l_m = 4.5,
  l_a = 0, a_a = 1, a_b = 1, a_c = 0)
```

Arguments

fcsFile	The name of the FCS file.	
verbose	Boolean value detecides if print the massage details of FCS loading.	
comp	Either boolean value tells if do compensation (compensation matrix contained in FCS), or a compensation matrix to be applied.	
markers	Selected markers for analysis, either marker names/descriptions or marker IDs.	
transformMetho	d	
	Data Transformation method, including autoLgcl, cytofAsinh, logicle and arcsinh, or none to avoid transformation.	
scaleTo	Scale the expression to a specified range c(a, b), default is NULL.	
q	quantile of negative values removed for auto w estimation, default is 0.05, parameter for autoLgcl transformation.	
1_w	Linearization width in asymptotic decades, parameter for logicle transformation.	
l_t	Top of the scale data value, parameter for logicle transformation.	
1_m	Full width of the transformed display in asymptotic decades, parameter for log- icle transformation.	
l_a	Additional negative range to be included in the display in asymptotic decades, parameter for logicle transformation.	
a_a	Positive double that corresponds to the base of the arcsinh transformation, $\operatorname{arcsinh} = \operatorname{asinh}(a + b * x) + c)$.	
a_b	Positive double that corresponds to a scale factor of the arcsinh transformation, $arcsinh = asinh(a + b * x) + c)$.	
a_c	Positive double that corresponds to another scale factor of the arcsinh transformation, $\arcsin(a + b * x) + c)$.	

Value

A transformend expression data matrix with selected markers, row names added as filename_cellID, column mamed added as name<desc>.

```
d <- system.file('extdata',package='cytofkit')
fcsFile <- list.files(d,pattern='.fcs$',full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, sep = "\t", header = TRUE)[, 1])
transformed <- cytof_exprsExtract(fcsFile, markers = markers)</pre>
```

cytof_exprsMerge

Description

Apply preprocessing on each FCS file including compensation (for FCM data only) and transformation with selected markers, then expression matrix are extracted and merged using one of the methods, all, min, fixed or ceil

Usage

```
cytof_exprsMerge(fcsFiles, comp = FALSE, markers = NULL,
  transformMethod = c("autoLgcl", "cytofAsinh", "logicle", "arcsinh", "none"),
  scaleTo = NULL, mergeMethod = c("ceil", "all", "fixed", "min"),
  fixedNum = 10000, sampleSeed = 123, ...)
```

Arguments

fcsFiles	A vector of FCS file names.
comp	Either boolean value tells if do compensation (compensation matrix contained in FCS), or a compensation matrix to be applied.
markers	Selected markers for analysis, either marker names/descriptions or marker IDs.
transformMetho	d
	Data Transformation method, including autoLgcl, cytofAsinh, logicle and arcsinh, or none to avoid transformation.
scaleTo	Scale the expression to a specified range c(a, b), default is NULL.
mergeMethod	Merge method for mutiple FCS expression data. cells can be combined using one of the four different methods including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sam- pled without replacement from each fcs file and combined for analysis. all: all cells from each fcs file are combined for analysis. min: The minimum num- ber of cells among all the selected fcs files are sampled from each fcs file and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each fcs file and combined for analysis.
fixedNum	The fixed number of cells to be extracted from each FCS file.
sampleSeed	A sampling seed for reproducible expression matrix merging.
	Other arguments passed to cytof_exprsExtract

Value

A matrix containing the merged expression data, with selected markers, row names added as filename_cellID, column mamed added as name<desc>.

See Also

cytof_exprsExtract

Examples

```
d<-system.file('extdata',package='cytofkit')
fcsFiles <- list.files(d,pattern='.fcs$',full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, sep = "\t", header = TRUE)[, 1])
merged <- cytof_exprsMerge(fcsFiles, markers = markers)</pre>
```

cytof_heatmap

```
Heatmap plot of cluster mean value results
```

Description

Heatmap plot of cluster mean value results

Usage

```
cytof_heatmap(data, baseName = "Cluster", scaleMethod = "none",
    cex_row_label = NULL, cex_col_label = NULL, key.par = list(mgp = c(1.5,
    0.5, 0), mar = c(2.5, 2.5, 3, 1.5)), keysize = 1.4, margins = c(5, 5))
```

Arguments

data	a matrix with rownames and colnames
baseName	The name as a prefix in the title of the heatmap.
scaleMethod	Method indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default is 'none'.
cex_row_label	Text size for row labels.
cex_col_label	Text size for column labels.
key.par	graphical parameters for the color key.
keysize	numeric value indicating the size of the key.
margins	numeric vector of length 2 containing the margins (see par(mar= *)) for column and row names, respectively.

Value

a heatmap object from gplots

16

cytof_progression

Examples

```
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1), rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''),
rep(1:250,each = 4), sep='_')
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, m5 = m5)
row.names(exprs_cluster) <- sample(rnames, 1000)
cluster_mean <- aggregate(. ~ cluster, data = exprs_cluster, mean)
rownames(cluster_mean) <- paste("cluster_", cluster_mean$cluster, sep = "")
cytof_heatmap(cluster_mean[, -which(colnames(cluster_mean) == "cluster")])</pre>
```

cytof_progression Progression estimation of cytof expression data

Description

Infer the progression based on the relationship of cell subsets estimated using ISOMAP or Diffusion map.

Usage

```
cytof_progression(data, cluster, method = c("diffusionmap", "isomap", "NULL"),
  distMethod = "euclidean", out_dim = 2, clusterSampleMethod = c("ceil",
    "all", "fixed", "min"), clusterSampleSize = 500, sampleSeed = 123)
```

Arguments

data	Expression data matrix.	
cluster	A vector of cluster results for the data.	
method	Method for estimation of cell progression, isomap or diffusionmap.	
distMethod	Method for distance calcualtion, default is "euclidean", other choices like "manhattan", "cosine", "rankcor".	
out_dim	Number of transformed dimenions choosed for output.	
clusterSampleMethod		
	Cluster sampling method including ceil, all, min, fixed. The default option	

Cluster sampling method including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sampled without replacement from each cluster and combined for analysis. all: all cells from each cluster are combined for analysis. min: The minimum number of cells among all clusters are sampled from cluster and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each cluster and combined for analysis.

clusterSampleSize	
	The number of cells to be sampled from each cluster.
sampleSeed	The seed for random down sample of the clusters.

Value

a list includes sampleData, sampleCluster and progressionData.

Examples

```
d<-system.file('extdata', package='cytofkit')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, sep = "\t", header = TRUE)[, 1])
xdata <- cytof_exprsMerge(fcsFile, markers = markers, mergeMethod = 'fixed', fixedNum = 2000)
clusters <- cytof_cluster(xdata = xdata, method = "Rphenograph")
prog <- cytof_progression(data = xdata, cluster = clusters, clusterSampleSize = 100)
d <- as.data.frame(cbind(prog$progressionData, cluster = factor(prog$sampleCluster)))
cytof_clusterPlot(data =d, xlab = "diffusionmap_1", ylab="diffusionmap_2", cluster = "cluster", sampleLabel = FA</pre>
```

cytof_progressionPlot Progression plot

Description

Plot the expression trend along the estimated cell progressing order

Usage

```
cytof_progressionPlot(data, markers, clusters, orderCol = "isomap_1",
    clusterCol = "cluster", reverseOrder = FALSE, addClusterLabel = TRUE,
    clusterLabelSize = 5, segmentSize = 0.5, min_expr = NULL,
    trend_formula = "expression ~ sm.ns(Pseudotime, df=3)")
```

Arguments

data	The data frame for progression plot.
markers	The column names of the selected markers for visualization.
clusters	Selecte clusters for plotting, defauls select all.
orderCol	The column name of the estimated cell progression order.
clusterCol	The column name of the cluster results.
reverseOrder If reverse the value of orderCol. addClusterLabel	
	If add the cluster label on the plot.
clusterLabelSize	

The size of the cluster label.

segmentSize	The size of the cluster label arrow.
min_expr	the threshold of the minimal expression value for markers.
trend_formula	a symbolic description of the model to be fit.

Value

a ggplot2 object

Examples

```
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1), rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''),
rep(1:250,each = 4), sep='_')
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, isomap_1 = m5)
row.names(exprs_cluster) <- sample(rnames, 1000)
cytof_progressionPlot(exprs_cluster, markers = c("m1","m2","m3","m4"))</pre>
```

cytof_writeResults Save the cytofkit analysis results

Description

Save analysis results from cytofkit main function to RData, csv files and PDF files and add them to a new copy of FCS files.

Usage

```
cytof_writeResults(analysis_results, projectName, saveToRData = TRUE,
saveToFCS = TRUE, saveToFiles = TRUE, resultDir, rawFCSdir,
inverseLgclTrans = TRUE)
```

Arguments

analysis_results

	result data from output of cytofkit
projectName	a prefix that will be added to the names of result files.
saveToRData	boolean value determines if save the results object into RData file, for loading back to R and to shiny APP.
saveToFCS	boolean value determines if save the results back to the FCS files, new FCS files will be generated under folder XXX_analyzedFCS.
saveToFiles	boolean value determines if parse the results and automatically save to csv files and pdf figures.

resultDir	the directory where result files will be generated.	
rawFCSdir	the directory that contains fcs files to be analysed.	
inverseLgclTrans		
	boolean if inverse logicle transform the cluster cor1 and cor2 channels.	

Value

save all results in the resultDir

See Also

cytofkit

Examples

```
d <- system.file('extdata',package='cytofkit')
f <- list.files(d, pattern='.fcs$', full=TRUE)
p <- list.files(d, pattern='.txt$', full=TRUE)
#tr <- cytofkit(fcsFile=f,markers=p,projectName='t',saveResults=FALSE)
#cytof_write_results(tr,projectName = 'test',resultDir=d,rawFCSdir =d)</pre>
```

DensVM

Density-based local maxima cluster with SVM

Description

Density-based local maxima peak finding, subpopulation assigning with the power of SVM

Usage

```
DensVM(ydata, xdata)
```

Arguments

ydata	a matrix of the dimension reduced(transformed) data
xdata	a matrix of the expression data

Value

a list contains a matrix peakdata of the peak numbers with different kernel bandwidth, and a matrix clusters of the cluster results

Author(s)

Chen Jinmiao

getParameters_GUI

Examples

```
d<-system.file('extdata',package='cytofkit')
fcsFile <- list.files(d,pattern='.fcs$',full=TRUE)
xdata <- cytof_exprsMerge(fcsFile, mergeMethod = 'fixed', fixedNum = 100)
ydata <- cytof_dimReduction(xdata)
#clusters <- DensVM(ydata, xdata)</pre>
```

getParameters_GUI GUI for marker selection

Description

Extract the markers from the fcsfiles

Usage

```
getParameters_GUI(fcsFile, rawFCSdir)
```

Arguments

fcsFile	The name of the FCS file
rawFCSdir	The path of the FCS file

Examples

#getParameters_GUI()

launchShinyAPP_GUI GUI for launching shiny APP

Description

A shiny APP for interactive exploration of the analysis results

Usage

```
launchShinyAPP_GUI(message = "cytofkit", dir = getwd())
```

Arguments

message	A message to determine if open the shiny APP
dir	Result direcroty.

Examples

launchShinyAPP_GUI()

Rphenograph

Description

R implementation of the phenograph algorithm

Usage

Rphenograph(data, k = 30)

Arguments

data	Input data matrix.
k	Number of nearest neighbours, default is 30.

Details

A simple R implementation of the phenograph [PhenoGraph](http://www.cell.com/cell/abstract/S0092-8674(15)00637-6) algorithm, which is a clustering method designed for high-dimensional singlecell data analysis. It works by creating a graph ("network") representing phenotypic similarities between cells by calclating the Jaccard coefficient between nearest-neighbor sets, and then identifying communities using the well known [Louvain method](https://sites.google.com/site/findcommunities/) in this graph.

Value

a communities object, the operations of this class contains:

print	returns the communities object itself, invisibly.
length	returns an integer scalar.
sizes	returns a numeric vector.
membership	returns a numeric vector, one number for each vertex in the graph that was the input of the community detection.
modularity	returns a numeric scalar.
algorithm	returns a character scalar.
crossing	returns a logical vector.
is_hierarchical	
	returns a logical scalar.
merges	returns a two-column numeric matrix.
cut_at	returns a numeric vector, the membership vector of the vertices.
as.dendrogram	returns a dendrogram object.
show_trace	returns a character vector.
code_len	returns a numeric scalar for communities found with the InfoMAP method and NULL for other methods.
plot	for communities objects returns NULL, invisibly.

Rphenograph

Author(s)

Chen Hao

References

Jacob H. Levine and et.al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 2015.

```
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
Rphenograph_out <- Rphenograph(data, k = 45)</pre>
```

Index

ClusterX,4 cytof_addToFCS, 3, 8 cytof_cluster, 3, 9 cytof_clusterPlot, 3, 10 cytof_clusterStat, 11 cytof_colorPlot, 12 cytof_dimReduction, 2, 12 cytof_exprsExtract, 13, 16 cytof_exprsMerge, 2, 15 cytof_heatmap, 3, 16 cytof_progression, 17 cytof_progressionPlot, 3, 18 cytof_writeResults, 3, 19 cytofkit, 2, 3, 5, 6, 8, 19, 20 cytofkit-package, 2 cytofkit_GUI, 2, 3, 6, 8 cytofkitNews, 7 cytofkitShinyAPP, 2, 6, 7

DensVM, 20 DiffusionMap, *13*

getParameters_GUI, 21

isomap, 13

launchShinyAPP_GUI, 21

Rphenograph, 22 Rtsne, *13*