Package 'CountClust'

October 12, 2016

Type Package

Title Clustering and Visualizing RNA-Seq Expression Data using Grade of Membership Models

Version 1.0.2

Date 2016-03-13

Maintainer Kushal Dey <kkdey@uchicago.edu>

Description Fits grade of membership models (GoM, also known as admixture models) to cluster RNA-seq gene expression count data, identifies characteristic genes driving cluster memberships, and provides a visual summary of the cluster memberships.

Depends R (>= 3.3.0), ggplot2 (>= 2.1.0)

URL https://github.com/kkdey/CountClust

License GPL (>= 2)

LazyData true

Encoding UTF-8

- **Imports** maptpx, slam, plyr(>= 1.7.1), cowplot, gtools, flexmix, picante, limma, parallel, reshape2, stats, utils, graphics, grDevices
- Suggests knitr, BiocStyle, Biobase, roxygen2, RColorBrewer, devtools, xtable

VignetteBuilder knitr

biocViews RNASeq, GeneExpression, Clustering, Sequencing, StatisticalMethod, Software, Visualization

RoxygenNote 5.0.1

NeedsCompilation no

Author Kushal Dey [aut, cre], Joyce Hsiao [aut], Matthew Stephens [aut]

15

R topics documented:

AbundanceGoM	2
BatchCorrectedCounts	3
cg_topics	4
compare_omega	5
ex.counts	6
ExtractTopFeatures	6
FitGoM	7
GTExV6Brain.FitGoM	8
handleNA	9
MouseDeng2014.FitGoM	10
MouseJaitinSpleen.FitGoM	10
nullmodel_GoM	11
RemoveSparseFeatures	12
StructureGGplot	12

Index

AbundanceGoM

GoM model fit for abundance data

Description

GoM model fit for abundance data

Usage

AbundanceGoM

Format

A list of GoM model output

Value

A list of GoM model output

BatchCorrectedCounts Obtain Batch effect Corrected counts

Description

This function first converts counts data to log CPM data, then apply a linear model with the batch effect as a factor. We take the sum of intercept, residuals and mean batch effect across all the batches and then inverse transform it back to counts to get rid of batch effects.

Usage

```
BatchCorrectedCounts(data, batch_lab, use_parallel = TRUE)
```

Arguments

data	count matrix, with samples along the rows and features along the columns.
batch_lab	batch label vector.
use_parallel	if TRUE, we do a parallel analysis over features, else serial application.

Value

Returns a counts data. with same dimension as the input data, but which is corrected for batch_lab.

```
# Simulation example
N=500;
K=4;
G=100;
Label.Batch=c(rep(1,N/4),rep(2,N/4),rep(3,N/4),rep(4,N/4));
alpha_true=matrix(rnorm((K)*G,0.5,1),nrow=(K));
library(gtools)
tt <- 10;
omega_true = matrix(rbind(rdirichlet(tt*10,c(3,4,2,6)),
             rdirichlet(tt*10,c(1,4,6,3)),
             rdirichlet(tt*10,c(4,1,2,2)),
             rdirichlet(tt*10,c(2,6,3,2)),
             rdirichlet(tt*10,c(3,3,5,4))), nrow=N);
B=max(Label.Batch);
sigmab_true=2;
beta_true=matrix(0,B,G);
for(g in 1:G)
{
   beta_true[,g]=rnorm(B,mean=0,sd=sigmab_true);
}
read_counts=matrix(0,N,G);
for(n in 1:N){
   for(g in 1:G)
     {
```

cg_topics

```
read_counts[n,g]=rpois(1, omega_true[n,]%*%exp(alpha_true[,g]
 + beta_true[Label.Batch[n],g]));
 }
}
batchcorrect.counts <- BatchCorrectedCounts(read_counts,
 Label.Batch, use_parallel=FALSE);
```

cg_topics

Compute the center of gravity of the clusters

Description

This function computes the center of gravity for each cluster by taking weighted mean of each component of features where the weights are determined from the theta matrix of the topic model fit.

Usage

cg_topics(theta, feature.comp)

Arguments

theta	The cluster probability distribution/theta matrix obtained from the GoM model fitting (it is a G x K matrix where G is number of features, K number of topics)
feature.comp	the numeric matrix (G x L) comprising of values for each feature g and feature metadata l.

Value

Returns a matrix of cluster centers of gravity for the L feature metadata.

```
N=360;
M=560;
lat <- rep(1:N, M);
long <- rep(1:M, each=N)
comp <- cbind(lat, long);
data(AbundanceGoM)
center_gravity <- cg_topics(AbundanceGoM$theta, comp);</pre>
```

compare_omega

Re-ordering cluster membership proportion matrices and Information calculation

Description

This function computes a re-ordering of the clusters from GoM model fit in one model to make it comparable with that from another. The two models are applied on the same set of samples with same number of clusters, but the features may change from one model to another. The two models may not be of same type as well. One could be a DAPC model, the other a standard topic model. Aids in checking for consistency in topic proportion patterns across multiple GoM methods or across different types of feature sets.

Usage

compare_omega(omega1, omega2)

Arguments

omega1	cluster membership proportion matrix (N x K) from model 1
omega2	cluster membership proportion matrix (N x K) from model 2

Value

Returns a list containing

kl.dist	A symmetric KL divergence matrix across the re-ordered clusters of two omega matrices	
kl.order_model2	2_topics	
	re-ordering of the clusters for omega2 to match the clusters for omega1 based on KL divergence	
kl.information	_content	
	A measure based on KL information to record how much information in omega2 is explained by omega1. Varies from 0 to 1	
cor.dist	A correlation matrix across the re-ordered clusters of two omega matrices	
cor.order_model2_topics		
	re-ordering of the clusters for omega2 to match the clusters for omega1 based on correlation information	
cor.information_content		
	A measure based on correlation information to record how much information in omega2 is explained by omega1. Varies from 0 to 1	

Examples

ex.counts

counts data for GTEx V6 Brain data for 200 genes

Description

counts data for GTEx V6 Brain data for 200 genes

Usage

ex.counts

Format

A data frame 1259 by 200 in dimensions

Value

A data frame 1259 by 200 in dimensions

ExtractTopFeatures Extracting top driving genes driving GoM clusters

Description

This function uses relative gene expression profile of the GoM clusters and applies a KL-divergence based method to obtain a list of top features that drive each of the clusters.

Usage

```
ExtractTopFeatures(theta, top_features = 10, method = c("poisson",
    "bernoulli"), options = c("min", "max"))
```

6

FitGoM

Arguments

theta	The cluster probability distribution/theta matrix obtained from the GoM model fitting (it is a G x K matrix where G is number of features, K number of topics).
top_features	The number of top features per cluster that drives away that cluster from others. Default value is 10.
method	The underlying model assumed for KL divergence measurement. Two choices considered are "bernoulli" and "poisson".
options	if "min", for each cluster k, we select features that maximize the minimum KL divergence of cluster k against all other clusters for each feature. If "max", we select features that maximize the maximum KL divergence of cluster k against all other clusters for each feature.

Value

A matrix (K x top_features) which tabulates in k-th row the top feature indices driving the cluster k.

Examples

FitGoM

Grade of Membership (GoM) model fit !

Description

Fits a grade of membership model to count data. Default input includes a sample-by-feature matrix, the number of clusters (topics) to fit (K). The function is a wrapper of the topics() function implemented in Matt Taddy's maptpx pacakge.

Usage

```
FitGoM(data, K, tol, path_rda = NULL, control = list())
```

Arguments

data	counts data, with samples along the rows and features along the columns.
К	the vector of clusters or topics to be fitted.
tol	Tolerance value for GoM model log posterior increase at successive iterations (set to 0.1 as default).
path_rda	The directory path for saving the GoM model output. If NULL, it will return the output to console.
control	Control parameters. Same as topics() function of maptpx package.

Value

Saves the GoM model fit output for each cluster in vector K at the directory path in path_rda.

References

Matt Taddy. On Estimation and Selection for Topic Models. AISTATS 2012, JMLR W\&CP 22.

Pritchard, Jonathan K., Matthew Stephens, and Peter Donnelly. Inference of population structure using multilocus genotype data. Genetics 155.2 (2000): 945-959.

Examples

GTExV6Brain.FitGoM GoM model fit for GTEx V6 Brain bulk-RNA data

Description

GoM model fit for GTEx V6 Brain bulk-RNA data

Usage

```
GTExV6Brain.FitGoM
```

Format

A list of GoM model output for k=7

Value

A list of GoM model output for k=7

handleNA

Description

This function handles the NA values in the count data. If for a feature, the proportion of NAs is greater than threshold proportion, then we remove the feature, otherwise we use MAR substitution scheme using the distribution of the non NA values for the feature. If threshold proportion is 0, it implies removal of all features with NA values. Default value of threshold proportion is 0.

Usage

handleNA(data, thresh_prop = 0)

Arguments

data	count data in a sample by feature matrix.
thresh_prop	threshold proportion of NAs for removal of feature or replacing the NA values.

Details

This function removes NAs from the counts data

Value

Returns a list with

data	The modified data with NA substitution and removal
na_removed_col	S
	The columns in the data with NAs that were removed
na_sub_cols	The columns in the data with NAs that were substituted

```
mat <- rbind(c(2,4,NA),c(4,7,8),c(3,NA,NA));
handleNA(mat,thresh_prop=0.5)
handleNA(mat)
```

MouseDeng2014.FitGoM GoM model fit for Deng et al 2014 single cell RNA-seq data on mouse

Description

GoM model fit for Deng et al 2014 single cell RNA-seq data on mouse

Usage

MouseDeng2014.FitGoM

Format

A list of GoM model output for 6 clusters (k=2:7)

Value

A list of GoM model output for 6 clusters (k=2:7)

MouseJaitinSpleen.FitGoM

GoM model fit for Jaitin et al 2014 single cell RNA-seq data on mouse

Description

GoM model fit for Jaitin et al 2014 single cell RNA-seq data on mouse

Usage

MouseJaitinSpleen.FitGoM

Format

A list of GoM model output for k=7

Value

A list of GoM model output for k=7

nullmodel_GoM

Description

Use null models (popular in ecology) to generate randomized matrix of counts given the observed data matrix, fit the GoM model to these null matrices and compare the fit on null model data with that on the observed data. Used for validating the GoM clusters

Usage

```
nullmodel_GoM(counts, K, tol = 0.1, null.model = c("frequency", "richness",
    "independentswap", "trialswap"), iter_fill = 1000, iter_randomized = 100,
    plot = TRUE)
```

Arguments

counts	The counts matrix (N x G): N- the number of samples, G- number of features	
К	The number of clusters to fit	
tol	The tolerance of the GoM model fitted	
null.model	The type of nullmodel used (similar to the randomizeMatrix() function argument in picante package)	
iter_fill	The number of swaps/fills in each randomized matrix build	
iter_randomized		
	The number of randomization matrices generated	
plot	If TRUE, plots density of log Bayes factor	

Value

Returns a list with

GoMBF.obs	log BF for the observed counts with K=2 against the null with no clusters
GoMBF.rand	a vector of log BF for each randomized count matrix with K=2 against the null with no clusters
pval	the p-value of the observed log Bayes factor against the ones from randomized matrices

RemoveSparseFeatures *Removes features with a lot of 0 counts*

Description

This function deals with zero counts in the counts dataset. If for a feature, the proportion of zeros across the samples is greater than filter_prop, then we remove the feature.

Usage

```
RemoveSparseFeatures(data, filter_prop = 0.9)
```

Arguments

data	count data in a sample by feature matrix.
filter_prop	threshold proportion. If the proportion of zeros for the feature exceeds this
	threshold then we remove the feature altogether. Default is 0.9.

Value

Returns a list with

data	filtered data with sparse features removed
sparse_features	
	the feature names of the features found sparse and removed

Examples

```
mat <- rbind(c(2,0,3,0,4),c(4,5,5,0,0),c(30,34,63,25,0),c(0,0,0,0,0));
RemoveSparseFeatures(mat, filter_prop = 0.5)
RemoveSparseFeatures(mat)
```

StructureGGplot Struture plot with ggplot2 package

Description

Make the traditional Structure histogram plot of GoM model using ggplot2

Usage

```
StructureGGplot(omega, annotation, palette = RColorBrewer::brewer.pal(8,
    "Accent"), figure_title = "", yaxis_label = "Tissue type",
    order_sample = TRUE, sample_order_decreasing = TRUE,
    split_line = list(split_lwd = 1, split_col = "white"),
    axis_tick = list(axis_ticks_length = 0.1, axis_ticks_lwd_y = 0.1,
    axis_ticks_lwd_x = 0.1, axis_label_size = 3, axis_label_face = "bold"))
```

Arguments

omega	Cluster membership probabilities of each sample. Usually a sample by cluster matrix in the Topic model output. The cluster weights sum to 1 for each sample.
annotation	A data.frame of two columns: sample_id and tissue_label. sample_id is the unique identifying number of each sample (alphanumeric). tissue_lable is a factor of tissue labels, with levels of the factor arranged in the order of the tissues in the Structure (left to right).
palette	A vector of colors assigned to the clusters. First color in the vector is assigned to the cluster labeled as 1, and second color in the vector is assigned to the cluster labeled as 2, etc. The number of colors must be the same or greater than the number of clusters. The clusters not assigned a color are filled with white in the figure. In addition, the recommended choice of color palette here is RColorBrewer, for instance RColorBrewer::brewer.pal(8, "Accent") or RColorBrewer::brewer.pal(9, "Set1").
figure_title	Title of the plot.
yaxis_label	Axis label for the samples.
order_sample	if TRUE, we order samples in each annotation batch sorted by membership of most representative cluster. If FALSE, we keep the order in the data.
sample_order_decreasing	
	if order_sample TRUE, then this input determines if the ordering due to main cluster is in ascending or descending order.
<pre>split_line</pre>	Control parameters for line splitting the batches in the plot.
axis_tick	Control parameters for x-axis and y-axis tick sizes.

Value

Plots the Structure plot visualization of the GoM model

```
data("MouseDeng2014.FitGoM")
```

```
# extract the omega matrix: membership weights of each cell
names(MouseDeng2014.FitGoM$clust_6)
omega <- MouseDeng2014.FitGoM$clust_6$omega</pre>
```

Index

*Topic Structure FitGoM, 7 *Topic **batch** BatchCorrectedCounts, 3 *Topic clustering, FitGoM, 7 *Topic clustering handleNA, 9 *Topic counts BatchCorrectedCounts, 3 FitGoM, 7 handleNA, 9 RemoveSparseFeatures, 12 *Topic data, BatchCorrectedCounts, 3 FitGoM, 7 handleNA, 9 RemoveSparseFeatures, 12 *Topic **datasets** AbundanceGoM, 2 ex.counts, 6 GTExV6Brain.FitGoM, 8 MouseDeng2014.FitGoM, 10 MouseJaitinSpleen.FitGoM, 10 *Topic **effect** BatchCorrectedCounts, 3 *Topic extraction RemoveSparseFeatures, 12 *Topic **feature** RemoveSparseFeatures, 12 *Topic **plot** FitGoM, 7 AbundanceGoM, 2 BatchCorrectedCounts, 3 cg_topics, 4 compare_omega, 5

ex.counts, 6

ExtractTopFeatures, 6 FitGoM, 7 GTExV6Brain.FitGoM, 8 handleNA, 9 MouseDeng2014.FitGoM, 10 MouseJaitinSpleen.FitGoM, 10 nullmodel_GoM, 11 RemoveSparseFeatures, 12 StructureGGplot, 12

15