This vignette aims to help developers migrate from the now defunct cgdsr
CRAN package. Note that the cgdsr package code is shown for comparison but it
is not guaranteed to work. If you have questions regarding the contents,
please create an issue at the GitHub repository:
https://github.com/waldronlab/cBioPortalData/issues
library(cBioPortalData)
cBioPortalData setupHere we show the default inputs to the cBioPortal function for clarity.
cbio <- cBioPortal(
hostname = "www.cbioportal.org",
protocol = "https",
api. = "/api/api-docs"
)
getStudies(cbio)
FALSE # A tibble: 365 × 13
FALSE name descr…¹ publi…² groups status impor…³ allSa…⁴ readP…⁵ studyId cance…⁶
FALSE <chr> <chr> <lgl> <chr> <int> <chr> <int> <lgl> <chr> <chr>
FALSE 1 Adreno… "TCGA … TRUE "PUBL… 0 2022-1… 92 TRUE acc_tc… acc
FALSE 2 Acute … "Compr… TRUE "PUBL… 0 2022-1… 93 TRUE all_st… bll
FALSE 3 Hypodi… "Whole… TRUE "" 0 2022-1… 44 TRUE all_st… myeloid
FALSE 4 Adenoi… "Whole… TRUE "ACYC… 0 2022-1… 12 TRUE acbc_m… acbc
FALSE 5 Adenoi… "Targe… TRUE "ACYC… 0 2022-1… 28 TRUE acyc_f… acyc
FALSE 6 Adenoi… "Whole… TRUE "ACYC… 0 2022-1… 25 TRUE acyc_j… acyc
FALSE 7 Adenoi… "WGS o… TRUE "ACYC… 0 2022-1… 102 TRUE acyc_m… acyc
FALSE 8 Adenoi… "Whole… TRUE "ACYC" 0 2022-1… 10 TRUE acyc_m… acyc
FALSE 9 Adenoi… "Whole… TRUE "ACYC… 0 2022-1… 24 TRUE acyc_s… acyc
FALSE 10 Acute … "Whole… TRUE "PUBL… 0 2022-1… 73 TRUE all_st… bll
FALSE # … with 355 more rows, 3 more variables: referenceGenome <chr>, pmid <chr>,
FALSE # citation <chr>, and abbreviated variable names ¹description, ²publicStudy,
FALSE # ³importDate, ⁴allSampleCount, ⁵readPermission, ⁶cancerTypeId
Note that the studyId column is important for further queries.
head(getStudies(cbio)[["studyId"]])
## [1] "acc_tcga" "all_stjude_2015" "all_stjude_2013" "acbc_mskcc_2015"
## [5] "acyc_fmi_2014" "acyc_jhu_2016"
cgdsr setuplibrary(cgdsr)
cgds <- CGDS("http://www.cbioportal.org/")
getCancerStudies.CGDS(cgds)
cBioPortalData (Cases)patientId.sampleListId identifies groups of patientId based on profile typesampleLists function uses studyId input to return sampleListIdFor the sample list identifiers, you can use sampleLists and inspect the
sampleListId column.
samps <- sampleLists(cbio, "gbm_tcga_pub")
samps[, c("category", "name", "sampleListId")]
## # A tibble: 15 × 3
## category name sampl…¹
## <chr> <chr> <chr>
## 1 all_cases_in_study All samples gbm_tc…
## 2 other Expression Cluster Classical gbm_tc…
## 3 all_cases_with_cna_data Samples with CNA data gbm_tc…
## 4 all_cases_with_mutation_and_cna_data Samples with mutation and CNA d… gbm_tc…
## 5 all_cases_with_mrna_array_data Samples with mRNA data (Agilent… gbm_tc…
## 6 other Expression Cluster Mesenchymal gbm_tc…
## 7 all_cases_with_methylation_data Samples with methylation data gbm_tc…
## 8 all_cases_with_methylation_data Samples with methylation data (… gbm_tc…
## 9 all_cases_with_microrna_data Samples with microRNA data (mic… gbm_tc…
## 10 other Expression Cluster Neural gbm_tc…
## 11 other Expression Cluster Proneural gbm_tc…
## 12 other Sequenced, No Hypermutators gbm_tc…
## 13 other Sequenced, Not Treated gbm_tc…
## 14 other Sequenced, Treated gbm_tc…
## 15 all_cases_with_mutation_data Samples with mutation data gbm_tc…
## # … with abbreviated variable name ¹sampleListId
It is possible to get case_ids directly when using the samplesInSampleLists
function. The function handles multiple sampleList identifiers.
samplesInSampleLists(
api = cbio,
sampleListIds = c(
"gbm_tcga_pub_expr_classical", "gbm_tcga_pub_expr_mesenchymal"
)
)
## CharacterList of length 2
## [["gbm_tcga_pub_expr_classical"]] TCGA-02-0001-01 ... TCGA-12-0615-01
## [["gbm_tcga_pub_expr_mesenchymal"]] TCGA-02-0004-01 ... TCGA-12-0620-01
To get more information about patients, we can query with getSampleInfo
function.
getSampleInfo(api = cbio, studyId = "gbm_tcga_pub", projection = "SUMMARY")
## # A tibble: 206 × 6
## uniqueSampleKey uniqu…¹ sampl…² sampl…³ patie…⁴ studyId
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 VENHQS0wMi0wMDAxLTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 2 VENHQS0wMi0wMDAzLTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 3 VENHQS0wMi0wMDA0LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 4 VENHQS0wMi0wMDA2LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 5 VENHQS0wMi0wMDA3LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 6 VENHQS0wMi0wMDA5LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 7 VENHQS0wMi0wMDEwLTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 8 VENHQS0wMi0wMDExLTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 9 VENHQS0wMi0wMDE0LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## 10 VENHQS0wMi0wMDE1LTAxOmdibV90Y2dhX3B1… VENHQS… Primar… TCGA-0… TCGA-0… gbm_tc…
## # … with 196 more rows, and abbreviated variable names ¹uniquePatientKey,
## # ²sampleType, ³sampleId, ⁴patientId
cgdsr (Cases)case_id.cancerStudy identifiercase_list_description describes the assaysgetCaseLists and getClinicalDataWe obtain the first case_list_id in the cgds object from above and the
corresponding clinical data for that case list (gbm_tcga_pub_all as the case
list in this example).
clist1 <-
getCaseLists.CGDS(cgds, cancerStudy = "gbm_tcga_pub")[1, "case_list_id"]
getClinicalData.CGDS(cgds, clist1)
cBioPortalData (Clinical)Note that a sampleListId is not required when using the
fetchAllClinicalDataInStudyUsingPOST internal endpoint. Data for all
patients can be obtained using the clinicalData function.
clinicalData(cbio, "gbm_tcga_pub")
## # A tibble: 206 × 24
## patie…¹ DFS_M…² DFS_S…³ KARNO…⁴ OS_MO…⁵ OS_ST…⁶ PRETR…⁷ PRIOR…⁸ SAMPL…⁹ SEX
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 TCGA-0… 4.5041… 1:Recu… 80.0 11.605… 1:DECE… YES NO 1 Fema…
## 2 TCGA-0… 1.3150… 1:Recu… 100.0 4.7342… 1:DECE… NO NO 1 Male
## 3 TCGA-0… 10.323… 1:Recu… 80.0 11.342… 1:DECE… NO NO 1 Male
## 4 TCGA-0… 9.9287… 1:Recu… 80.0 18.345… 1:DECE… NO NO 1 Fema…
## 5 TCGA-0… 17.030… 1:Recu… 80.0 23.178… 1:DECE… YES NO 1 Fema…
## 6 TCGA-0… 8.6794… 1:Recu… 80.0 10.586… 1:DECE… NO NO 1 Fema…
## 7 TCGA-0… 11.539… 1:Recu… 80.0 35.408… 1:DECE… YES NO 1 Fema…
## 8 TCGA-0… 4.7342… 1:Recu… 80.0 20.712… 1:DECE… NO NO 1 Fema…
## 9 TCGA-0… <NA> <NA> 100.0 82.553… 1:DECE… NO NO 1 Male
## 10 TCGA-0… 14.991… 1:Recu… 80.0 20.613… 1:DECE… NO NO 1 Male
## # … with 196 more rows, 14 more variables: sampleId <chr>, ACGH_DATA <chr>,
## # CANCER_TYPE <chr>, CANCER_TYPE_DETAILED <chr>, COMPLETE_DATA <chr>,
## # FRACTION_GENOME_ALTERED <chr>, MRNA_DATA <chr>, MUTATION_COUNT <chr>,
## # ONCOTREE_CODE <chr>, SAMPLE_TYPE <chr>, SEQUENCED <chr>,
## # SOMATIC_STATUS <chr>, TMB_NONSYNONYMOUS <chr>, TREATMENT_STATUS <chr>, and
## # abbreviated variable names ¹patientId, ²DFS_MONTHS, ³DFS_STATUS,
## # ⁴KARNOFSKY_PERFORMANCE_SCORE, ⁵OS_MONTHS, ⁶OS_STATUS, …
You can use a different endpoint to obtain data for a single sample.
First, obtain a single sampleId with the samplesInSampleLists function.
clist1 <- "gbm_tcga_pub_all"
samplist <- samplesInSampleLists(cbio, clist1)
onesample <- samplist[["gbm_tcga_pub_all"]][1]
onesample
## [1] "TCGA-02-0001-01"
Then we use the API endpoint to retrieve the data. Note that you would run
httr::content on the output to extract the data.
cbio$getAllClinicalDataOfSampleInStudyUsingGET(
sampleId = onesample, studyId = "gbm_tcga_pub"
)
## Response [https://www.cbioportal.org/api/studies/gbm_tcga_pub/samples/TCGA-02-0001-01/clinical-data]
## Date: 2023-01-04 21:24
## Status: 200
## Content-Type: application/json
## Size: 3.31 kB
cgdsr (Clinical)getClinicalData uses case_list_id as input without specifying the
study_id as case list identifiers are unique to each study.We query clinical data for the gbm_tcga_pub_expr_classical case list
identifier which is part of the gbm_tcga_pub study.
getClinicalData.CGDS(x = cgds,
caseList = "gbm_tcga_pub_expr_classical"
)
cgdsr allows you to obtain clinical data for a case list subset
(54 cases with gbm_tcga_pub_expr_classical) and cBioPortalData provides
clinical data for all 206 samples in gbm_tcga_pub using the clinicalData
function.
cgdsr returns a data.frame with sampleId (TCGA.02.0009.01) but not
patientId (TCGA.02.0009)cBioPortalData returns sampleId (TCGA-02-0009-01) and patientId
(TCGA-02-0009).cgdsr provides case_ids with . and cBioPortalData returns patientIds
with -.You may be interested in other clinical data endpoints. For a list, use
the searchOps function.
searchOps(cbio, "clinical")
## [1] "getAllClinicalAttributesUsingGET"
## [2] "fetchClinicalAttributesUsingPOST"
## [3] "fetchClinicalDataUsingPOST"
## [4] "getAllClinicalAttributesInStudyUsingGET"
## [5] "getClinicalAttributeInStudyUsingGET"
## [6] "getAllClinicalDataInStudyUsingGET"
## [7] "fetchAllClinicalDataInStudyUsingPOST"
## [8] "getAllClinicalDataOfPatientInStudyUsingGET"
## [9] "getAllClinicalDataOfSampleInStudyUsingGET"
cBioPortalData (molecularProfiles)molecularProfiles(api = cbio, studyId = "gbm_tcga_pub")
## # A tibble: 10 × 8
## molecularAlterationType datat…¹ name descr…² showP…³ patie…⁴ molec…⁵ studyId
## <chr> <chr> <chr> <chr> <lgl> <lgl> <chr> <chr>
## 1 COPY_NUMBER_ALTERATION DISCRE… Puta… Putati… TRUE FALSE gbm_tc… gbm_tc…
## 2 COPY_NUMBER_ALTERATION DISCRE… Puta… Putati… TRUE FALSE gbm_tc… gbm_tc…
## 3 MUTATION_EXTENDED MAF Muta… Mutati… TRUE FALSE gbm_tc… gbm_tc…
## 4 METHYLATION CONTIN… Meth… Methyl… FALSE FALSE gbm_tc… gbm_tc…
## 5 MRNA_EXPRESSION CONTIN… mRNA… mRNA e… FALSE FALSE gbm_tc… gbm_tc…
## 6 MRNA_EXPRESSION Z-SCORE mRNA… 18,698… TRUE FALSE gbm_tc… gbm_tc…
## 7 MRNA_EXPRESSION Z-SCORE mRNA… Log-tr… TRUE FALSE gbm_tc… gbm_tc…
## 8 MRNA_EXPRESSION CONTIN… micr… expres… FALSE FALSE gbm_tc… gbm_tc…
## 9 MRNA_EXPRESSION Z-SCORE micr… microR… FALSE FALSE gbm_tc… gbm_tc…
## 10 MRNA_EXPRESSION Z-SCORE mRNA… mRNA a… TRUE FALSE gbm_tc… gbm_tc…
## # … with abbreviated variable names ¹datatype, ²description,
## # ³showProfileInAnalysisTab, ⁴patientLevel, ⁵molecularProfileId
Note that we want to pull the molecularProfileId column to use in other
queries.
cgdsr (getGeneticProfiles)getGeneticProfiles.CGDS(cgds, cancerStudy = "gbm_tcga_pub")
cBioPortalData (Indentify samples and genes)Currently, some conversion is needed to directly use the molecularData
function, if you only have Hugo symbols. First, convert to Entrez gene IDs
and then obtain all the samples in the sample list of interest.
hugoGeneSymbol to entrezGeneIdgenetab <- queryGeneTable(cbio,
by = "hugoGeneSymbol",
genes = c("NF1", "TP53", "ABL1")
)
genetab
## # A tibble: 3 × 3
## entrezGeneId hugoGeneSymbol type
## <int> <chr> <chr>
## 1 4763 NF1 protein-coding
## 2 25 ABL1 protein-coding
## 3 7157 TP53 protein-coding
entrez <- genetab[["entrezGeneId"]]
allsamps <- samplesInSampleLists(cbio, "gbm_tcga_pub_all")
In the next section, we will show how to use the genes and sample identifiers to obtain the molecular profile data.
cgdsr (Profile Data)The getProfileData function allows for straightforward retrieval of the
molecular profile data with only a case list and genetic profile identifiers.
getProfileData.CGDS(x = cgds,
genes = c("NF1", "TP53", "ABL1"),
geneticProfiles = "gbm_tcga_pub_mrna",
caseList = "gbm_tcga_pub_all"
)
cBioPortalDatacBioPortalData provides a number of options for retrieving molecular profile
data depending on the use case. Note that molecularData is mostly used
internally and that the cBioPortalData function is the user-friendly method
for downloading such data.
molecularDataWe use the translated entrez identifiers from above.
molecularData(cbio, "gbm_tcga_pub_mrna",
entrezGeneIds = entrez, sampleIds = unlist(allsamps))
## $gbm_tcga_pub_mrna
## # A tibble: 618 × 8
## uniqueSampleKey uniqu…¹ entre…² molec…³ sampl…⁴ patie…⁵ studyId value
## <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl>
## 1 VENHQS0wMi0wMDAxLTA… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.174
## 2 VENHQS0wMi0wMDAxLTA… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.297
## 3 VENHQS0wMi0wMDAxLTA… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.621
## 4 VENHQS0wMi0wMDAzLTA… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.177
## 5 VENHQS0wMi0wMDAzLTA… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.00107
## 6 VENHQS0wMi0wMDAzLTA… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.00644
## 7 VENHQS0wMi0wMDA0LTA… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.0878
## 8 VENHQS0wMi0wMDA0LTA… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.236
## 9 VENHQS0wMi0wMDA0LTA… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.305
## 10 VENHQS0wMi0wMDA2LTA… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.173
## # … with 608 more rows, and abbreviated variable names ¹uniquePatientKey,
## # ²entrezGeneId, ³molecularProfileId, ⁴sampleId, ⁵patientId
getDataByGenesThe getDataByGenes function automatically figures out all the sample
identifiers in the study and it allows Hugo and Entrez identifiers, as well
as genePanelId inputs.
getDataByGenes(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_mrna"
)
## $gbm_tcga_pub_mrna
## # A tibble: 618 × 10
## uniqueSamp…¹ uniqu…² entre…³ molec…⁴ sampl…⁵ patie…⁶ studyId value hugoG…⁷
## <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl> <chr>
## 1 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.174 ABL1
## 2 VENHQS0wMi0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.297 NF1
## 3 VENHQS0wMi0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.621 TP53
## 4 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.177 ABL1
## 5 VENHQS0wMi0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.00107 NF1
## 6 VENHQS0wMi0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.00644 TP53
## 7 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.0878 ABL1
## 8 VENHQS0wMi0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.236 NF1
## 9 VENHQS0wMi0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.305 TP53
## 10 VENHQS0wMi0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… -0.173 ABL1
## # … with 608 more rows, 1 more variable: type <chr>, and abbreviated variable
## # names ¹uniqueSampleKey, ²uniquePatientKey, ³entrezGeneId,
## # ⁴molecularProfileId, ⁵sampleId, ⁶patientId, ⁷hugoGeneSymbol
cBioPortalData: the main end-user functionIt is important to note that end users who wish to obtain the data as
easily as possible should use the main cBioPortalData function:
gbm_pub <- cBioPortalData(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"), by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_mrna"
)
assay(gbm_pub[["gbm_tcga_pub_mrna"]])[, 1:4]
## TCGA-02-0001-01 TCGA-02-0003-01 TCGA-02-0004-01 TCGA-02-0006-01
## ABL1 -0.1744878 -0.177096729 -0.08782114 -0.1733767
## NF1 -0.2966920 -0.001066810 -0.23626512 -0.1691507
## TP53 0.6213171 0.006435625 -0.30507285 0.3967758
cBioPortalData (mutationData)Similar to molecularData, mutation data can be obtained with the
mutationData function or the getDataByGenes function.
mutationData(
api = cbio,
molecularProfileIds = "gbm_tcga_pub_mutations",
entrezGeneIds = entrez,
sampleIds = unlist(allsamps)
)
## $gbm_tcga_pub_mutations
## # A tibble: 57 × 28
## uniqueSample…¹ uniqu…² molec…³ sampl…⁴ patie…⁵ entre…⁶ studyId center mutat…⁷
## <chr> <chr> <chr> <chr> <chr> <int> <chr> <chr> <chr>
## 1 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 2 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 4763 gbm_tc… genom… Somatic
## 3 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 4 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 5 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 6 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 7 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 4763 gbm_tc… genom… Somatic
## 8 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 9 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 10 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## # … with 47 more rows, 19 more variables: validationStatus <chr>,
## # startPosition <int>, endPosition <int>, referenceAllele <chr>,
## # proteinChange <chr>, mutationType <chr>, functionalImpactScore <chr>,
## # fisValue <dbl>, linkXvar <chr>, linkPdb <chr>, linkMsa <chr>,
## # ncbiBuild <chr>, variantType <chr>, keyword <chr>, chr <chr>,
## # variantAllele <chr>, refseqMrnaId <chr>, proteinPosStart <int>,
## # proteinPosEnd <int>, and abbreviated variable names ¹uniqueSampleKey, …
getDataByGenes(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_mutations"
)
## $gbm_tcga_pub_mutations
## # A tibble: 57 × 30
## uniqueSample…¹ uniqu…² molec…³ sampl…⁴ patie…⁵ entre…⁶ studyId center mutat…⁷
## <chr> <chr> <chr> <chr> <chr> <int> <chr> <chr> <chr>
## 1 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 2 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 4763 gbm_tc… genom… Somatic
## 3 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 4 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 5 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 6 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 7 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 4763 gbm_tc… genom… Somatic
## 8 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 9 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## 10 VENHQS0wMi0wM… VENHQS… gbm_tc… TCGA-0… TCGA-0… 7157 gbm_tc… genom… Somatic
## # … with 47 more rows, 21 more variables: validationStatus <chr>,
## # startPosition <int>, endPosition <int>, referenceAllele <chr>,
## # proteinChange <chr>, mutationType <chr>, functionalImpactScore <chr>,
## # fisValue <dbl>, linkXvar <chr>, linkPdb <chr>, linkMsa <chr>,
## # ncbiBuild <chr>, variantType <chr>, keyword <chr>, chr <chr>,
## # variantAllele <chr>, refseqMrnaId <chr>, proteinPosStart <int>,
## # proteinPosEnd <int>, hugoGeneSymbol <chr>, type <chr>, and abbreviated …
cgdsr (getMutationData)getMutationData.CGDS(
x = cgds,
caseList = "getMutationData",
geneticProfile = "gbm_tcga_pub_mutations",
genes = c("NF1", "TP53", "ABL1")
)
cBioPortalData (CNA)Copy Number Alteration data can be obtained with the getDataByGenes function
or by the main cBioPortal function.
getDataByGenes(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_cna_rae"
)
## $gbm_tcga_pub_cna_rae
## # A tibble: 609 × 10
## uniqueS…¹ uniqu…² entre…³ molec…⁴ sampl…⁵ patie…⁶ studyId value hugoG…⁷ type
## <chr> <chr> <int> <chr> <chr> <chr> <chr> <int> <chr> <chr>
## 1 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 1 ABL1 prot…
## 2 VENHQS0w… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 NF1 prot…
## 3 VENHQS0w… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 TP53 prot…
## 4 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 ABL1 prot…
## 5 VENHQS0w… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 NF1 prot…
## 6 VENHQS0w… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 TP53 prot…
## 7 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 ABL1 prot…
## 8 VENHQS0w… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 NF1 prot…
## 9 VENHQS0w… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 TP53 prot…
## 10 VENHQS0w… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0 ABL1 prot…
## # … with 599 more rows, and abbreviated variable names ¹uniqueSampleKey,
## # ²uniquePatientKey, ³entrezGeneId, ⁴molecularProfileId, ⁵sampleId,
## # ⁶patientId, ⁷hugoGeneSymbol
cBioPortalData(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_cna_rae"
)
## harmonizing input:
## removing 3 colData rownames not in sampleMap 'primary'
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] gbm_tcga_pub_cna_rae: SummarizedExperiment with 3 rows and 203 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
cgdsr (CNA)getProfileData.CGDS(
x = cgds,
genes = c("NF1", "TP53", "ABL1"),
geneticProfiles = "gbm_tcga_pub_cna_rae",
caseList = "gbm_tcga_pub_cna"
)
cBioPortalData (Methylation)Similar to Copy Number Alteration, Methylation can be obtained by
getDataByGenes function or by ‘cBioPortalData’ function.
getDataByGenes(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_methylation_hm27"
)
## $gbm_tcga_pub_methylation_hm27
## # A tibble: 174 × 10
## unique…¹ uniqu…² entre…³ molec…⁴ sampl…⁵ patie…⁶ studyId value hugoG…⁷ type
## <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 VENHQS0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.103 ABL1 prot…
## 2 VENHQS0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.112 NF1 prot…
## 3 VENHQS0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.0735 TP53 prot…
## 4 VENHQS0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.202 ABL1 prot…
## 5 VENHQS0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.161 NF1 prot…
## 6 VENHQS0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.152 TP53 prot…
## 7 VENHQS0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.179 ABL1 prot…
## 8 VENHQS0… VENHQS… 4763 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.161 NF1 prot…
## 9 VENHQS0… VENHQS… 7157 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.170 TP53 prot…
## 10 VENHQS0… VENHQS… 25 gbm_tc… TCGA-0… TCGA-0… gbm_tc… 0.176 ABL1 prot…
## # … with 164 more rows, and abbreviated variable names ¹uniqueSampleKey,
## # ²uniquePatientKey, ³entrezGeneId, ⁴molecularProfileId, ⁵sampleId,
## # ⁶patientId, ⁷hugoGeneSymbol
cBioPortalData(
api = cbio,
studyId = "gbm_tcga_pub",
genes = c("NF1", "TP53", "ABL1"),
by = "hugoGeneSymbol",
molecularProfileIds = "gbm_tcga_pub_methylation_hm27"
)
## harmonizing input:
## removing 148 colData rownames not in sampleMap 'primary'
## A MultiAssayExperiment object of 1 listed
## experiment with a user-defined name and respective class.
## Containing an ExperimentList class object of length 1:
## [1] gbm_tcga_pub_methylation_hm27: SummarizedExperiment with 3 rows and 58 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
cgdsr (Methylation)getProfileData.CGDS(
x = cgds,
genes = c("NF1", "TP53", "ABL1"),
geneticProfiles = "gbm_tcga_pub_methylation_hm27",
caseList = "gbm_tcga_pub_methylation_hm27"
)
sessionInfo()
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] survminer_0.4.9 ggpubr_0.5.0
## [3] ggplot2_3.4.0 survival_3.4-0
## [5] cBioPortalData_2.10.3 MultiAssayExperiment_1.24.0
## [7] SummarizedExperiment_1.28.0 Biobase_2.58.0
## [9] GenomicRanges_1.50.2 GenomeInfoDb_1.34.6
## [11] IRanges_2.32.0 S4Vectors_0.36.1
## [13] BiocGenerics_0.44.0 MatrixGenerics_1.10.0
## [15] matrixStats_0.63.0 AnVIL_1.10.1
## [17] dplyr_1.0.10 BiocStyle_2.26.0
##
## loaded via a namespace (and not attached):
## [1] backports_1.4.1 BiocBaseUtils_1.0.0
## [3] BiocFileCache_2.6.0 RCircos_1.2.2
## [5] splines_4.2.2 BiocParallel_1.32.5
## [7] TCGAutils_1.18.0 digest_0.6.31
## [9] htmltools_0.5.4 magick_2.7.3
## [11] fansi_1.0.3 magrittr_2.0.3
## [13] memoise_2.0.1 tzdb_0.3.0
## [15] limma_3.54.0 Biostrings_2.66.0
## [17] readr_2.1.3 vroom_1.6.0
## [19] prettyunits_1.1.1 colorspace_2.0-3
## [21] blob_1.2.3 rvest_1.0.3
## [23] rappdirs_0.3.3 xfun_0.36
## [25] crayon_1.5.2 RCurl_1.98-1.9
## [27] jsonlite_1.8.4 RaggedExperiment_1.22.0
## [29] zoo_1.8-11 glue_1.6.2
## [31] GenomicDataCommons_1.22.0 gtable_0.3.1
## [33] zlibbioc_1.44.0 XVector_0.38.0
## [35] DelayedArray_0.24.0 car_3.1-1
## [37] abind_1.4-5 scales_1.2.1
## [39] futile.options_1.0.1 DBI_1.1.3
## [41] rstatix_0.7.1 miniUI_0.1.1.1
## [43] Rcpp_1.0.9 gridtext_0.1.5
## [45] xtable_1.8-4 progress_1.2.2
## [47] archive_1.1.5 bit_4.0.5
## [49] km.ci_0.5-6 DT_0.26
## [51] htmlwidgets_1.6.0 httr_1.4.4
## [53] ellipsis_0.3.2 farver_2.1.1
## [55] pkgconfig_2.0.3 XML_3.99-0.13
## [57] rapiclient_0.1.3 sass_0.4.4
## [59] dbplyr_2.2.1 utf8_1.2.2
## [61] RJSONIO_1.3-1.6 labeling_0.4.2
## [63] tidyselect_1.2.0 rlang_1.0.6
## [65] later_1.3.0 AnnotationDbi_1.60.0
## [67] munsell_0.5.0 tools_4.2.2
## [69] cachem_1.0.6 cli_3.5.0
## [71] generics_0.1.3 RSQLite_2.2.20
## [73] broom_1.0.2 evaluate_0.19
## [75] stringr_1.5.0 fastmap_1.1.0
## [77] yaml_2.3.6 knitr_1.41
## [79] bit64_4.0.5 survMisc_0.5.6
## [81] purrr_1.0.0 KEGGREST_1.38.0
## [83] mime_0.12 formatR_1.13
## [85] xml2_1.3.3 biomaRt_2.54.0
## [87] compiler_4.2.2 filelock_1.0.2
## [89] curl_4.3.3 png_0.1-8
## [91] ggsignif_0.6.4 tibble_3.1.8
## [93] bslib_0.4.2 stringi_1.7.8
## [95] highr_0.10 futile.logger_1.4.3
## [97] GenomicFeatures_1.50.3 lattice_0.20-45
## [99] Matrix_1.5-3 commonmark_1.8.1
## [101] markdown_1.4 KMsurv_0.1-5
## [103] RTCGAToolbox_2.28.0 vctrs_0.5.1
## [105] pillar_1.8.1 lifecycle_1.0.3
## [107] BiocManager_1.30.19 jquerylib_0.1.4
## [109] data.table_1.14.6 bitops_1.0-7
## [111] httpuv_1.6.7 rtracklayer_1.58.0
## [113] R6_2.5.1 BiocIO_1.8.0
## [115] bookdown_0.31 promises_1.2.0.1
## [117] gridExtra_2.3 codetools_0.2-18
## [119] lambda.r_1.2.4 assertthat_0.2.1
## [121] rjson_0.2.21 withr_2.5.0
## [123] GenomicAlignments_1.34.0 Rsamtools_2.14.0
## [125] GenomeInfoDbData_1.2.9 ggtext_0.1.2
## [127] parallel_4.2.2 hms_1.1.2
## [129] grid_4.2.2 tidyr_1.2.1
## [131] rmarkdown_2.19 carData_3.0-5
## [133] shiny_1.7.4 restfulr_0.0.15