Package 'reconsi'

October 17, 2020

Type Package
Title Resampling Collapsed Null Distributions for Simultaneous Inference
Version 1.0.0
Author Stijn Hawinkel <stijn.hawinkel@ugent.be></stijn.hawinkel@ugent.be>
Maintainer Joris Meys <joris.meys@ugent.be></joris.meys@ugent.be>
Description Improves simultaneous inference under dependence of tests by estimating a collapsed null distribution through resampling. Accounting for the dependence between tests increases the power while reducing the variability of the false discovery proportion. This dependence is common in genomics applications, e.g. when combining flow cytometry measurements with microbiome sequence counts.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports phyloseq, KernSmooth, reshape2, ggplot2, stats, methods, MASS, graphics, grDevices
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
biocViews Metagenomics, Microbiome, MultipleComparison, FlowCytometry
BugReports https://github.com/CenterForStatistics-UGent/reconsi/issues git_url https://git.bioconductor.org/packages/reconsi git_branch RELEASE_3_11 git_last_commit 3c145ed
git_last_commit_date 2020-05-19
Date/Publication 2020-10-16
R topics documented:
calcWeights

2 calcWeights

	Weights	Obta																			
Index																					16
	1																				
	Vandeputte																				
	testDAA																				
	stabExp		 		 																14
	rowMultiply		 		 																13
	reconsi		 		 																11
	quantCorrect		 		 																10
	qtEdit		 		 																10
	ptEdit		 		 																9
	plotNull		 		 																8
	plotApproxCovar		 		 																7
	getTstat		 		 																7
	getTestStats		 		 																6
	getG0		 		 				•												5
	getFdr		 		 																4
	getApproxCovar		 	•	 	•	 •	٠.	•	•	 •	•	 •	•	•	 •	•	•	•	•	4

Description

Obtain weights as posterior probabilities to calculate the consensus null

null

Usage

```
calcWeights(logDensPerm, fdr)
```

Arguments

logDensPerm	A matrix with B rows of logged density estimates of the B permutation distributions, and p columns for the p observed test statistics
fdr	A vector of local false discovery rates for the observed tests statistics of length p

Value

A vector of weights of length B

estNormal 3

estNormal	Fast estimation of mean and standard deviation of a normal distrbution, optionally with weights

Description

Fast estimation of mean and standard deviation of a normal distribution, optionally with weights

Usage

```
estNormal(y, w = NULL, p)
```

Arguments

У	vector of observations
W	optional weight vector
р	The number of features

Value

A vector of length 2 with mean and standard deviation

estP0	Estimate the fraction of true null hypotheses.	

Description

Estimate the fraction of true null hypotheses.

Usage

```
estP0(statObs, nullDensCum, zSeq, z0quantRange, smooth.df)
```

Arguments

stat0bs A vector of observed z-values

nullDensCum A smoothed cumulative distribution function of the observed z-values

zSeq The support of the kernel smoother
z0quantRange a number of quantiles between 0 and 0.5
smooth.df degrees of freedom for the spline smoother

Details

A natural spline is used over a range of intervals. Based on the qvalue::qvalue() function and Storey and Tibshirani, 2003

Value

The estimated null fraction, the value of the spline evaluated at the first element of z0quantRange

4 getFdr

getApproxCovar

Obtain a null covariance matrix of binned test statistics

Description

Obtain a null covariance matrix of binned test statistics

Usage

```
getApproxCovar(statsPerm, nBins = 82L, binEdges = c(-4.1, 4.1))
```

Arguments

statsPerm The pxB matrix of permutation z-values in the columns

nBins an integer, the number of bins

binEdges A vector of length 2 with the outer bin edges

Value

The covariance matrix of binned z-values

Note

This is not the covariance matrix of the p test statistic, nor of the data! It is an approximate covariance matrix of binned test statistics for visualization purposes.

Examples

```
p = 200; n = 50; B = 5e1
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence
fdrRes = reconsi(mat, x, B = B)
corMat = getApproxCovar(fdrRes$statsPerm)
```

getFdr

Calculate tail-area (Fdr) and local (fdr) false discovery rates, based on a certain null distribution

Description

Calculate tail-area (Fdr) and local (fdr) false discovery rates, based on a certain null distribution

Usage

```
getFdr(statObs, fitAll, fdr, zSeq, p, p0, zValsDensObs, smoothObs, ...)
```

getG0 5

Arguments

stat0bs Vector of observed z-values

fitAll The parameters of the estimated random null fdr local false discovery rate, already estimated

zSeq Support of the density estimation

p the number of hypotheses

p0 The estimated fraction of null hypotheses zValsDens0bs estimated densities of observed test statistics

smoothObs A boolean, should estimated observed densities of the test statistics be used in

estimating the Fdr

.. more arguments, ignored

Value

A list with components

Fdr Tail are false discovery rate fdr Local false discovery rate

p0 The proportion of true null hypotheses

getG0 Obtain the consensus null

Description

Obtain the consensus null

Usage

```
getG0(statObs, statsPerm, z0Quant, gridsize, maxIter, tol, estP0args,
  quantileFun, testPargs, B, p, warnConvergence)
```

Arguments

statObs A vector of lenght p with observed test statistics

statsPerm A pxB matrix with permuation z-values

z0Quant a vector of length of quantiles defining the central part R of the distribution. If a

single number is supplied, then (z0quant, 1-z0quant) will be used

gridsize An integer, the gridsize for the density estimation

maxIter An integer, the maximum number of iterations in determining R

tol The convergence tolerance.

estP0args A list of arguments passed on to the estP0args() function

quantileFun The quantile function of the test statistic, either as a function or as a character

string

testPargs A list of arguments passed on to quantileFun

6 getTestStats

B an integer, the number of permutations
p an integer, the number of hypotheses

warnConvergence

Should a warning be thrown when the estimation of the random null does not converge?

Value

A list with following entries

PermDensFits The permutation density fits

zSeq The support of the kernel for density estimation zValsDensObs The estimated densities of the observed z-values

convergence A boolean, has the algorithm converged?

weights Vector of length B with weights for the permutation distributions fdr Estimated local false discovery rate along the support of the kernel

p0 The estimated fraction of true null hypotheses

iter The number of iterations fitAll The consensus null fit

getTestStats A function to calculate observed and permuation z-statistics on a n-

by-p matrix of observations

Description

A function to calculate observed and permuation z-statistics on a n-by-p matrix of observations

Usage

```
getTestStats(Y, center, test = "wilcox.test", x, B, argList,
   tieBreakRan = FALSE, replace = FALSE)
```

Arguments

Y The nxp data matrix

center a boolean, should data be centered prior to permuation test A function name, possibly user defined. See details.

x A vector defining the groups. Will be coerced to factor.

B an integer, the number of permuations

argList A list of further arguments passed on to the test function

tieBreakRan A boolean, should ties of permutation test statistics be broken randomly? If not,

midranks are used

replace A boolean. If FALSE, samples are permuted (resampled without replacement),

if TRUE the samples are bootstrapped (resampled with replacement)

getTstat 7

Details

For test "wilcox.test" and "t.test", fast custom implementations are used. Other functions can be supplied but must accept a y outcome variable, a x as grouping variable, and possibly a list of other arguments. It must return all arguments needed to evaluate its quantile function if z-values are to be used.

Value

A list with components

statObs A vector of length p of observed test statistics statsPerm A p-by-B matrix of permutation test statistics

getTstat

A function to obtain a t-test statistic efficiently. For internal use only

Description

A function to obtain a t-test statistic efficiently. For internal use only

Usage

```
getTstat(y1, y2, mm, nn)
```

Arguments

y1, y2 vectors of observed values in the two groups

mm, nn number of observations in the corresponding groups

Value

A list with items

tstat The t-test statistic

df The degrees of freedom (Welch approximation)

plotApproxCovar

Plot an approximatio of the correlation structure of the test statistics

Description

Plot an approximatio of the correlation structure of the test statistics

Usage

```
plotApproxCovar(reconsiFit, col = colorRampPalette(c("yellow", "blue"))(12), x = seq(-4.2, 4.2, 0.1), y = seq(-4.2, 4.2, 0.1), xlab = "Z-values", ylab = "Z-values", nBins = 82L, binEdges = c(-4.1, 4.1), ...)
```

8 plotNull

Arguments

```
\begin{tabular}{lll} reconsifit & The reconsi fit \\ col, x, y, xlab, ylab, ... & A list of arguments for the image() function. \\ nBins, binEdges & passed on to the getApproxCovar function \\ \end{tabular}
```

Details

By default, yellow indicates negative correlation between bin counts, blue positive correlation

Value

invisible()

Note

This is not the covariance matrix of the p test statistic, nor of the data! It is an approximate covariance matrix of binned test statistics for visualization purposes.

Examples

```
p = 200; n = 50; B = 5e1 \\ x = rep(c(0,1), each = n/2) \\ mat = cbind( \\ matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA \\ matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA ) \\ mat = mat = mat + rnorm(n, sd = 0.3) #Introduce some dependence fdrRes = reconsi(mat, x, B = B) \\ plotApproxCovar(fdrRes)
```

plotNull

Plot the obtained null distribution along with a histogram of observed test statistics

Description

Plot the obtained null distribution along with a histogram of observed test statistics

Usage

```
plotNull(fit, lowColor = "yellow", highColor = "blue", dens = TRUE,
  idDA = NULL, nResampleCurves = length(fit$weights), hSize = 0.5)
```

Arguments

```
fit an object returned by the reconsi() (or testDAA()) function lowColor, highColor

The low and high ends of the colour scale dens a boolean, should fdr and Fdr be plotted?
```

ptEdit 9

idDA indices of known null taxa nResampleCurves

The number of resampling null distributions to plot

hSize A double, the size of the line of the collapsed null estimate

Value

```
a ggplot2 plot object
```

Examples

```
p = 175; n = 50; B = 1e2
#Low number of resamples keeps computation time down
x = rep(c(0,1), each = n/2)
mat = cbind(
matrix(rnorm(n*p/10, mean = 5+x),n,p/10), #DA
matrix(rnorm(n*p*9/10, mean = 5),n,p*9/10) #Non DA
)
fdrRes = reconsi(mat, x, B = B)
plotNull(fdrRes)
```

ptEdit

A custom function to calculate the distribution function of the t-test statistic. For internal use only

Description

A custom function to calculate the distribution function of the t-test statistic. For internal use only

Usage

```
ptEdit(q)
```

Arguments

q a vector with t-statistic and degrees of freedom

Value

A value between 0 and 1, the evaluation of the cdf

10 quantCorrect

qtEdit

A custom function to calculate the quantile function of the t-test statistic. For internal use only

Description

A custom function to calculate the quantile function of the t-test statistic. For internal use only

Usage

```
qtEdit(p)
```

Arguments

р

a vector with quantile and degrees of freedom

Value

the corresponding quantile

quantCorrect

Correct quantiles by not returning 0 or 1

Description

Correct quantiles by not returning 0 or 1

Usage

```
quantCorrect(quants)
```

Arguments

quants

A vector of quantiles

Value

The same vector of quantiles but without 0 or 1 values

reconsi 11

reconsi	Perform simultaneous inference through collapsed resampling null distributions

Description

Perform simultaneous inference through collapsed resampling null distributions

Usage

```
reconsi(Y, x = NULL, B = 1000L, test = "wilcox.test",
   argList = list(), distFun = "pnorm", quantileFun = "qnorm",
   densFun = NULL, zValues = TRUE, testPargs = list(),
   z0Quant = pnorm(c(-1, 1)), gridsize = 801L, maxIter = 1000L,
   tol = 1e-08, center = FALSE, replace = is.null(x), zVals = NULL,
   estP0args = list(z0quantRange = seq(0.05, 0.45, 0.0125), smooth.df =
   3), permZvals = FALSE, smoothObs = TRUE,
   tieBreakRan = identical(test, "wilcox.test"), warnConvergence = TRUE)
```

Arguments

Υ	the matrix of sequencing counts
X	a grouping factor. If provided, this grouping factor is permuted. Otherwise a bootstrap procedure is performed
В	the number of resampling instances
test	Character string, giving the name of the function to test for differential absolute abundance. Must accept the formula interface. Features with tests resulting in observed NA test statistics will be discarded
argList	A list of arguments, passed on to the testing function
distFun, quanti	leFun, densFun
	the distribution, quantile and density functions of the test statistic, or its name. Must at least accept an argument named \dot{q} , \dot{p} and \dot{x} respectively.
zValues	A boolean, should test statistics be converted to z-values. See details
testPargs	A list of arguments passed on to distFun/quantileFun/densFun
z0Quant	A vector of length 2 of quantiles of the null distribution, in between which only null values are expected $$
gridsize	The number of bins for the kernel density estimates
maxIter	An integer, the maximum number of iterations in the estimation of the null distribution
tol	The tolerance for the infinity norm of the central borders in the iterative procedure
center	A boolean, should observations be centered in each group prior to permuations? See details.
replace	A boolean. Should resampling occur with replacement (boostrap) or without replacement (permutation)
zVals	An optional list of observed (statObs) and resampling (statsPerm) z-values. If supplied, the calculation of the observed and resampling test statistics is skipped and the algorithm proceeds with calculation of the consensus null distribution

12 reconsi

permZvals A boolean, should resampling rather than theoretical null distributions be used? smoothObs A boolean, should the fitted rather than estimated observed distribution be used

in the Fdr calculation?

tieBreakRan A boolean, should ties of resampling test statistics be broken randomly? If not,

midranks are used

warnConvergence

Should a warning be thrown when the estimation of the random null does not

converge?

Details

Efron (2007) centers the observations in each group prior to permutation. As permutations will remove any genuine group differences anyway, we skip this step by default. If zValues = FALSE, the density is fitted on the original test statistics rather than converted to z-values. This unlocks the procedure for test statistics with unknown distributions, but may be numerically less stable.

Value

A list with entries

statsPerm Resampling Z-values
statObs Observed Z-values
weightsStrat Weighting strategy used

densFun, distFun, quantileFun

Density, distribution and quantile function as given

testPargs Same as given

weightStrat The weighting strategy

zValues z-values

permZvals z-values from resampling null distribution

cdfValObs Cumulative distribution function evaluation of observed test statistics

Note

Ideally, it would be better to only use unique resamples, to avoid unnecesarry replicated calculations of the same test statistics. Yet this issue is almost always ignored in practice; as the sample size grows it also becomes irrelevant. Notice also that this would require to place weights in case of the bootstrap, as some bootstrap samples are more likely than others.

Examples

```
#Important notice: low number of resamples B necessary to keep # computation time down, but not recommended. Pray set B at 200 or higher. p = 80; n = 20; B = 2e1 x = rep(c(0,1), each = n/2) mat = cbind( matrix(rnorm(n*p/10, mean = 5+x), n, p/10), #DA matrix(rnorm(n*p*9/10, mean = 5), n, p*9/10) #Non DA ) fdrRes = reconsi(mat, x, B = B) fdrRes$p0
```

rowMultiply 13

```
#Indeed close to 0.9
estFdr = fdrRes$Fdr
#The estimated tail-area false discovery rates.
#With another type of test. Need to supply quantile function in this case
fdrResLm = reconsi(mat, x, B = B,
test = function(x, y){
fit = lm(y^x)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q)\{pt(q = q[1], df = q[2])\})
#With a test statistic without known null distribution(for small samples)
fdrResKruskal = reconsi(mat, x, B = B,
test = function(x, y){
kruskal.test(y~x)$statistic}, zValues = FALSE)
#Provide an additional covariate through the 'argList' argument
z = rpois(n , lambda = 2)
fdrResLmZ = reconsi(mat, x, B = B,
test = function(x, y, z){
fit = lm(y\sim x+z)
c(summary(fit)$coef["x","t value"], fit$df.residual)},
distFun = function(q){pt(q = q[1], df = q[2])},
argList = list(z = z))
#When nog grouping variable is provided, a bootstrap is performed
matBoot = cbind(
matrix(rnorm(n*p/10, mean = 1), n, p/10), #DA
matrix(rnorm(n*p*9/10, mean = 0), n, p*9/10) #Non DA
fdrResBoot = reconsi(matBoot, B = B,
test = function(y, x){testRes = t.test(y, mu = 0, var.equal = TRUE);
c(testRes$statistic, testRes$parameter)},
distFun = function(q)\{pt(q = q[1], df = q[2])\},
center = TRUE, replace = TRUE)
```

rowMultiply

A function to efficiently row multiply a a-by-b matrix by a vector of length b. More memory intensive but that does not matter with given matrix sizes

Description

A function to efficiently row multiply a a-by-b matrix by a vector of length b. More memory intensive but that does not matter with given matrix sizes

Usage

```
rowMultiply(matrix, vector)
```

Arguments

```
matrix a numeric matrix of dimension a-by-b vector a numeric vector of length b
```

14 testDAA

Details

```
t(t(matrix)*vector) but then faster
```

Value

a matrix, row multplied by the vector

stabExp

A function to numerically stabilize an exponentiation. For internal use only

Description

A function to numerically stabilize an exponentiation. For internal use only

Usage

```
stabExp(exps)
```

Arguments

exps

the vector to be exponentiated

Value

the vector with the maximum subtracted

testDAA

A function to test for differential absolute abundance on a phyloseq object

Description

A function to test for differential absolute abundance on a phyloseq object

Usage

```
testDAA(Y, ...)
## S4 method for signature 'phyloseq'
testDAA(Y, groupName, FCname, ...)
## S4 method for signature 'matrix'
testDAA(Y, FC, x, S = rowSums(Y), ...)
```

Vandeputte 15

Arguments

Y A phyloseq object, or a data matrix with samples in the rows and OTUs in the

columns

... passed on to the reconsi() function

groupName A character string, the name of a variable in physeq indicating the grouping

factor

FCname A character string, the name of a variable in physeq containing the total cell

count

FC a vector of length n with total flow cytometry cell counts

x a grouping factor of length n

S a vector of library sizes. Will be calculated f

Value

See the reconsi() function

Examples

```
#Test for phyloseq object
library(phyloseq)
VandeputtePruned = prune_samples(Vandeputte,
samples = sample_names(Vandeputte)[20:40])
testVanDePutte = testDAA(VandeputtePruned, "Health.status", "absCountFrozen",
B = 15)
#Test for matrix
testMat = testDAA(as(otu_table(VandeputtePruned), "matrix"),
get_variable(VandeputtePruned, "Health.status"),
get_variable(VandeputtePruned, "absCountFrozen"), B = 15)
```

Vandeputte

Microbiomes of Crohn's disease patients and healthy controls

Description

Microbiome sequencing data of Crohn's disease patients, and healthy controls, together with other baseline covariates. Both sequencing and flow cytometry data are available.

Usage

Vandeputte

Format

```
A phyloseq object with an OTU-table and sample data 
otu_table Count data matrix of 234 taxa in 135 samples
```

sample_data Data frame of patient covariates

Source

https://www.ncbi.nlm.nih.gov/pubmed/29143816

Index

```
* datasets
     Vandeputte, 15
{\tt calcWeights}, {\color{red} 2}
estNormal, 3
estP0, 3
getApproxCovar, 4
getFdr, 4
getG0, 5
{\tt getTestStats}, {\color{red} 6}
getTstat, 7
plotApproxCovar, 7
plotNull, 8
\mathsf{ptEdit}, 9
\mathsf{qtEdit}, \textcolor{red}{10}
{\tt quantCorrect},\, \underline{10}
reconsi, 11
rowMultiply, 13
stabExp, 14
testDAA, 14
testDAA, matrix-method (testDAA), 14
testDAA, phyloseq-method (testDAA), 14
Vandeputte, 15
```