NestLink 1.2.0
The following content is described in more detail in Egloff et al. (2018), (under review NMETH-A35040).
library(NestLink)
library(ExperimentHub)
eh <- ExperimentHub()
## snapshotDate(): 2019-10-22
query(eh, "NestLink")
## ExperimentHub with 8 records
## # snapshotDate(): 2019-10-22 
## # $dataprovider: Functional Genomics Center Zurich (FGCZ)
## # $species: NA
## # $rdataclass: data.frame, DNAStringSet
## # additional mcols(): taxonomyid, genome, description,
## #   coordinate_1_based, maintainer, rdatadateadded, preparerclass,
## #   tags, rdatapath, sourceurl, sourcetype 
## # retrieve records with, e.g., 'object[["EH2063"]]' 
## 
##            title                                 
##   EH2063 | Sample NGS NB FC linkage data         
##   EH2064 | Flycodes tryptic digested             
##   EH2065 | Nanobodies tryptic digested           
##   EH2066 | FASTA as ground-truth for unit testing
##   EH2067 | Known nanobodies                      
##   EH2068 | Quantitaive results for SMEG and COLI 
##   EH2069 | F255744 Mascot Search result          
##   EH2070 | WU160118 Mascot Search results
# dataFolder <- file.path(path.package(package = 'NestLink'), 'extdata')
# expFile <- list.files(dataFolder, pattern='*.fastq.gz', full.names = TRUE)
expFile <- query(eh, c("NestLink", "NL42_100K.fastq.gz"))[[1]]
## see ?NestLink and browseVignettes('NestLink') for documentation
## loading from cache
scratchFolder <- tempdir()
setwd(scratchFolder)
For data QC some known NB were spiked in. Here, we load the NB DNA sequences and translate them to the corresponding AA sequences.
# knownNB_File <- list.files(dataFolder,
#      pattern='knownNB.txt', full.names = TRUE)
knownNB_File <- query(eh, c("NestLink", "knownNB.txt"))[[1]]
## see ?NestLink and browseVignettes('NestLink') for documentation
## loading from cache
knownNB_data <- read.table(knownNB_File, sep='\t',
      header = TRUE, row.names = 1, stringsAsFactors = FALSE)
knownNB <- Biostrings::translate(DNAStringSet(knownNB_data$Sequence))
names(knownNB) <- rownames(knownNB_data)
knownNB <- sapply(knownNB, toString)
The workflow uses the first 100 reads only for a rapid processing time.
param <- list()
param[['nReads']] <- 100 #Number of Reads from the start of fastq file to process
param[['maxMismatch']] <- 1 #Number of accepted mismatches for all pattern search steps
param[['NB_Linker1']] <- "GGCCggcggGGCC" #Linker Sequence left to nanobody
param[['NB_Linker2']] <- "GCAGGAGGA" #Linker Sequence right to nanobody
param[['ProteaseSite']] <- "TTAGTCCCAAGA" #Sequence next to flycode
param[['FC_Linker']] <- "GGCCaaggaggcCGG" #Linker Sequence next to flycode
param[['knownNB']] <- knownNB
param[['minRelBestHitFreq']] <- 0.8 #minimal fraction of the dominant nanobody for a specific flycode
param[['minConsensusScore']] <- 0.9 #minimal fraction per sequence position in nanabody consensus sequence calculation
param[['minNanobodyLength']] <- 348 #minimal nanobody length in [nt]
param[['minFlycodeLength']] <- 33  #minimal flycode length in [nt]
param[['FCminFreq']] <- 1 #minimal number of subreads for a specific flycode to keep it in the analysis
The following steps are included:
system.time(NB2FC <- runNGSAnalysis(file = expFile[1], param))
##    user  system elapsed 
##   2.692   0.096   2.831
head(NB2FC, 2)
##                                                                                                                          NB
## 1 SQVQLVESGGGLVQAGGSLRLSCAASGFPVEAHRMYWYRQAPGKEREWVAAISSKGQQTWYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGWYYGDYDYWGQGTQVTVS
## 2 SQVQLVESGGGLVQAGGSLRLSCAASGFPVSWTKMYWYRQAPGKEREWVAAIWSTGSWTKYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDKGHQHAHYDYWGQGTQVTVS
##   FlycodeCount
## 1           29
## 2            3
##                                                                                                                                                                                                                                                                                                                                                                                                                AssociatedFlycodes
## 1 GSAAATAVTWR,GSADGQETDWR,GSADVPEAVWLTVR,GSAPTAPVSWQEGGR,GSAVDPVTVWLTVR,GSDAEGVAAWQSR,GSDAEYTTAWR,GSDDTDETDWR,GSDEAEEEGWQEGGR,GSDPGTDDEWQSR,GSDTEDWEEWQSR,GSDVWDTAVWLTVR,GSEGTDAVGWLTVR,GSEPASEVVWQEGGR,GSEPDVYTAWLTVR,GSEVLDGDEWR,GSFVASFAVWLTVR,GSGDVEGEAWQEGGR,GSGPDPPYGWLR,GSPAVDPPVWLTVR,GSPDEVEVVWLTVR,GSPDSPPAYWLTVR,GSPTVVTFLWR,GSQYTLTPTWLTVR,GSSDAASPSWLTVR,GSTGEDGVVWLTVR,GSTVVTSDPWLTVR,GSVDDQPDTWQEGGR,GSYTPGSTSWQSR
## 2                                                                                                                                                                                                                                                                                                                                                                                      GSADFPVVAWLR,GSAEVDEADWQEGGR,GSEPDVAAGWQSR
##   NB_Name
## 1        
## 2
head(nanobodyFlycodeLinking.as.fasta(NB2FC))
## [1] ">NB0001 FC29 SQVQLVESGGGLVQAGGSLRLSCAASGFPVEAHRMYWYRQAPGKEREWVAAISSKGQQTWYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGWYYGDYDYWGQGTQVTVS\nGSAAATAVTWRGSADGQETDWRGSADVPEAVWLTVRGSAPTAPVSWQEGGRGSAVDPVTVWLTVRGSDAEGVAAWQSRGSDAEYTTAWRGSDDTDETDWRGSDEAEEEGWQEGGRGSDPGTDDEWQSRGSDTEDWEEWQSRGSDVWDTAVWLTVRGSEGTDAVGWLTVRGSEPASEVVWQEGGRGSEPDVYTAWLTVRGSEVLDGDEWRGSFVASFAVWLTVRGSGDVEGEAWQEGGRGSGPDPPYGWLRGSPAVDPPVWLTVRGSPDEVEVVWLTVRGSPDSPPAYWLTVRGSPTVVTFLWRGSQYTLTPTWLTVRGSSDAASPSWLTVRGSTGEDGVVWLTVRGSTVVTSDPWLTVRGSVDDQPDTWQEGGRGSYTPGSTSWQSR\n"
## [2] ">NB0002 FC3 SQVQLVESGGGLVQAGGSLRLSCAASGFPVSWTKMYWYRQAPGKEREWVAAIWSTGSWTKYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDKGHQHAHYDYWGQGTQVTVS\nGSADFPVVAWLRGSAEVDEADWQEGGRGSEPDVAAGWQSR\n"                                                                                                                                                                                                                                                                                                                                                            
## [3] ">NB0003 FC1 SQVQLVESGGGLVQAGGSLRLSCAASGFPVSWWKMYWYRQAPGKEREWVAAIWSEGWWTKYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGGENANYDYWGQGTQVTVS\nGSDGTTEDAWQEGGR\n"                                                                                                                                                                                                                                                                                                                                                                                     
## [4] ">NB0004 FC1 SQVQLVESGGGLVQAGGSLRLSCAASGFPVEWSWMYWYRQAPGKEREWVAAIYSQGRGTEYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGWWYGDYDYWGQGTQVTVS\nGSEEAADPAWR\n"                                                                                                                                                                                                                                                                                                                                                                                         
## [5] ">NB0005 FC1 SQVQLVESGGGLVQAGGSLRLSCAASGFPVEAHRMYWYRQAPGKEREWVAAISSKGQQTWYADSVKGRFTISRDNAKNTVYLQMNSLEPEDTAVYYCNVKDYGWYYGDYDYWGQGTQVTVS\nGSEEAEATWWR\n"                                                                                                                                                                                                                                                                                                                                                                                         
## [6] ">NB0006 FC2 SQVQLVESGGGLVQAGGSLRLSCAASGFPVEENFMYWYRQAPGKEREWVAAIYSHGYETEYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDQGYWWWEYDYWGQGTQVTVS\nGSGLPATPAWLRGSTDAEEGVWLTVR\n"
To analyze the expressed flycodes mass spectrometry is used.
the FASTA file containing the nanobody - flycode linkage can
be written to a file using functions such as cat.
The exec directory provides alternative shell scripts using command line GNU tools and AWK.
Here is the output of the sessionInfo() command.
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] scales_1.0.0                ggplot2_3.2.1              
##  [3] NestLink_1.2.0              ShortRead_1.44.0           
##  [5] GenomicAlignments_1.22.0    SummarizedExperiment_1.16.0
##  [7] DelayedArray_0.12.0         matrixStats_0.55.0         
##  [9] Biobase_2.46.0              Rsamtools_2.2.0            
## [11] GenomicRanges_1.38.0        GenomeInfoDb_1.22.0        
## [13] BiocParallel_1.20.0         protViz_0.4.0              
## [15] gplots_3.0.1.1              Biostrings_2.54.0          
## [17] XVector_0.26.0              IRanges_2.20.0             
## [19] S4Vectors_0.24.0            ExperimentHub_1.12.0       
## [21] AnnotationHub_2.18.0        BiocFileCache_1.10.0       
## [23] dbplyr_1.4.2                BiocGenerics_0.32.0        
## [25] BiocStyle_2.14.0           
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.1                    bit64_0.9-7                  
##  [3] gtools_3.8.1                  shiny_1.4.0                  
##  [5] assertthat_0.2.1              interactiveDisplayBase_1.24.0
##  [7] BiocManager_1.30.9            latticeExtra_0.6-28          
##  [9] blob_1.2.0                    GenomeInfoDbData_1.2.2       
## [11] yaml_2.2.0                    BiocVersion_3.10.1           
## [13] pillar_1.4.2                  RSQLite_2.1.2                
## [15] backports_1.1.5               lattice_0.20-38              
## [17] glue_1.3.1                    digest_0.6.22                
## [19] RColorBrewer_1.1-2            promises_1.1.0               
## [21] colorspace_1.4-1              htmltools_0.4.0              
## [23] httpuv_1.5.2                  Matrix_1.2-17                
## [25] pkgconfig_2.0.3               bookdown_0.14                
## [27] zlibbioc_1.32.0               purrr_0.3.3                  
## [29] xtable_1.8-4                  gdata_2.18.0                 
## [31] later_1.0.0                   tibble_2.1.3                 
## [33] withr_2.1.2                   lazyeval_0.2.2               
## [35] magrittr_1.5                  crayon_1.3.4                 
## [37] mime_0.7                      memoise_1.1.0                
## [39] evaluate_0.14                 hwriter_1.3.2                
## [41] tools_3.6.1                   stringr_1.4.0                
## [43] munsell_0.5.0                 AnnotationDbi_1.48.0         
## [45] compiler_3.6.1                caTools_1.17.1.2             
## [47] rlang_0.4.1                   grid_3.6.1                   
## [49] RCurl_1.95-4.12               rappdirs_0.3.1               
## [51] labeling_0.3                  bitops_1.0-6                 
## [53] rmarkdown_1.16                gtable_0.3.0                 
## [55] codetools_0.2-16              DBI_1.0.0                    
## [57] curl_4.2                      R6_2.4.0                     
## [59] knitr_1.25                    dplyr_0.8.3                  
## [61] fastmap_1.0.1                 bit_1.1-14                   
## [63] zeallot_0.1.0                 KernSmooth_2.23-16           
## [65] stringi_1.4.3                 Rcpp_1.0.2                   
## [67] vctrs_0.2.0                   tidyselect_0.2.5             
## [69] xfun_0.10
Egloff, Pascal, Iwan Zimmermann, Fabian M. Arnold, Cedric A.J. Hutter, Damien Damien Morger, Lennart Opitz, Lucy Poveda, et al. 2018. “Engineered Peptide Barcodes for In-Depth Analyses of Binding Protein Ensembles.” bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/287813.