
Package ‘GeneAccord’
April 15, 2020

Type Package

Title Detection of clonally exclusive gene or pathway pairs in a
cohort of cancer patients

Version 1.4.0

Author Ariane L. Moore, Jack Kuipers and Niko Beerenwinkel

Maintainer Ariane L. Moore <ariane.moore@bsse.ethz.ch>

Description A statistical framework to examine the combinations of clones that co-exist in tu-
mors. More precisely, the algorithm finds pairs of genes that are mutated in the same tu-
mor but in different clones, i.e. their subclonal mutation profiles are mutually exclusive. We re-
fer to this as clonally exclusive. It means that the mutations occurred in differ-
ent branches of the tumor phylogeny, indicating parallel evolution of the clones. Our statisti-
cal framework assesses whether a pattern of clonal exclusivity occurs more often than ex-
pected by chance alone across a cohort of patients. The required input data are the mutated gene-
to-clone assignments from a cohort of cancer patients, which were obtained by running phyloge-
netic tree inference methods. Reconstructing the evolutionary history of a tumor and detect-
ing the clones is challenging. For nondeterministic algorithms, repeated tree infer-
ence runs may lead to slightly different mutation-to-clone assignments. Therefore, our algo-
rithm was designed to allow the input of multiple gene-to-clone assignments per pa-
tient. They may have been generated by repeatedly performing the tree inference, or by sam-
pling from the posterior distribution of trees. The tree inference methods designate the muta-
tions to individual clones. The mutations can then be mapped to genes or path-
ways. Hence our statistical framework can be applied on the gene level, or on the path-
way level to detect clonally exclusive pairs of pathways. If a pair is significantly clonally exclu-
sive, it points towards the fact that this specific clone configuration confers a selective advan-
tage, possibly through synergies between the clones with these mutations.

Depends R (>= 3.5)

Suggests assertthat, BiocStyle, devtools, knitr, rmarkdown, testthat

Imports biomaRt, caTools, dplyr, ggplot2, graphics, grDevices, gtools,
ggpubr, magrittr, maxLik, RColorBrewer, reshape2, stats,
tibble, utils

biocViews BiomedicalInformatics, GeneticVariability, GenomicVariation,
SomaticMutation, FunctionalGenomics, Genetics,
MathematicalBiology, SystemsBiology, FeatureExtraction,
PatternLogic, Pathways

License file LICENSE

Encoding UTF-8

LazyData true

1

2 R topics documented:

RoxygenNote 6.0.1

VignetteBuilder knitr

URL https://github.com/cbg-ethz/GeneAccord

git_url https://git.bioconductor.org/packages/GeneAccord

git_branch RELEASE_3_10

git_last_commit ad6ab9d

git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

R topics documented:
all_genes_tbl . 3
avg_rates_m . 3
build_null_test_statistic . 4
clone_tbl_all_pats_all_trees . 5
compute_rates_clon_excl . 6
compute_test_stat_avg_rate . 7
convert_ensembl_to_reactome_pw_tbl . 8
create_ensembl_gene_tbl_hg . 9
create_tbl_ent_clones . 10
create_tbl_tree_collection . 11
ecdf_list . 12
ecdf_lr_test_clon_excl_avg_rate . 12
ensembl_to_hgnc . 14
ensembl_to_reactome . 15
ensg_reactome_path_map . 15
ensmusg_reactome_path_map . 16
extract_num_clones_tbl . 17
GeneAccord . 18
generate_ecdf_test_stat . 20
generate_test_stat_hist . 22
get_hist_clon_excl . 23
get_hist_clon_excl_this_pat_this_pair . 24
get_rate_diff_branch_ent_pair . 25
heatmap_clones_gene_pat . 26
hgnc_to_ensembl . 27
is_diff_branch_ent_pair . 28
list_of_clon_excl_all_pats . 29
list_of_num_trees_all_pats . 30
map_pairs_to_hgnc_symbols . 30
merge_clones_identical_ents . 31
pairs_in_patients_hist . 32
plot_ecdf_test_stat . 33
plot_rates_clon_excl . 34
take_pairs_and_get_patients . 35
vis_pval_distr_num_pat . 36
write_res_pairs_to_disk . 37

Index 39

https://github.com/cbg-ethz/GeneAccord

all_genes_tbl 3

all_genes_tbl Different gene id’s and their chromosomal location.

Description

This is a tibble that contains mappings between different gene identifiers. It can be created with
the function create_ensembl_gene_tbl_hg. These are the human genes from the human genome
version hg19/GRCh37, and Ensembl Genes version 88.

Usage

all_genes_tbl

Format

A tibble with 41’393 rows and seven variables:

ensembl_gene_id the Ensembl gene id as a character

hgnc_symbol the HGNC gene symbol as a character

entrezgene the Entrez gene id as an integer

uniprotswissprot the UniProtKB/Swiss-Prot gene id’s as a character

chromosome_name the name of the chromosome where the gene is located as a character, e.g. "3"
for chromosome three

start_position the nucleotide start position of the gene as an integer

end_position the nucleotide end position of the gene as an integer

Source

The tibble can be generated with create_ensembl_gene_tbl_hg(), which uses the R-package
biomaRt and the Ensembl data base www.ensembl.org.

avg_rates_m The average rates of clonal exclusivity of the example data set used in
the vignette

Description

This is a named vector that contains the average rate of clonal exclusivity for each of the 82 patients
as described in the vignette.

Usage

avg_rates_m

Format

A vector with the average rates of clonal exclusivity of each patient. The names of each element is
the respective patient name.

www.ensembl.org

4 build_null_test_statistic

Source

The rates can be generated for each patient separately with compute_rates_clon_excl, and then
taking the mean(). This is demonstrated in the vignette.

build_null_test_statistic

Simulate pairs to generate values of the test statistic under the null
distribution

Description

Generate samples from the test statistic under the null distribution - here we take the average rates
of clonal exclusivity across trees, and also the histogram for each patient over all pairs with the
values # clon. excl./#trees.

Usage

build_null_test_statistic(avg_rates_m, list_of_clon_excl_frac_trees_all_pats,
num_pat_pair, num_pairs_sim, beta_distortion = 1000)

Arguments

avg_rates_m The average rates of clonal exclusivity to be sampled from.

list_of_clon_excl_frac_trees_all_pats

The list of two lists. The first one contains a list entry for each patient containing
the vector with the values of the information from each pair in a patient of how
often it was mutated across trees. The second list entry is a list with an entry
for each patient that is a vector with the values of in how many trees the pair
was clonally exclusive. The patient ordering in the lists has to be the same as in
avg_rates_m.

num_pat_pair The number of patients the simulated pairs are mutated in.

num_pairs_sim The number of simulated gene/pathway pairs to be generated.
beta_distortion

The value M=alpha + beta for the beta distribution, with which the average rates
will be distorted. The bigger the M the higher the distribution is peaked around
the actual rate. Therefore, the lesser the M, the more distorted the rates will be.
Default: 1000.

Details

This function simulates gene pairs for the likelihood ratio test to generate values from the test
statistic under the null. It draws the average rates of clonal exclusivity from the ones provided by
the user. That is, the average rates of clonal exclusivity have to be computed first for each patient.
The number of patients the simulated pairs are mutated in can be specified with num_pat_pair. This
function can be used to build the ecdf of the test statistic under the null hypothesis (see Examples).
The patients in which the simulated pairs are mutated in are randomly selected proportional to the
number of pairs in a patient.

clone_tbl_all_pats_all_trees 5

Value

The return value is a tibble with the columns ’test_statistic’, ’mle_delta’, and num_pat_pair columns
with the respective rates that were drawn for each of the patients, num_pat_pair columns with the
respective number of mutated times across trees, and num_pat_pair columns with the respective
number of times of being clonally exclusive across trees, and num_pat_pair columns with the rate
that was distorted by the beta distribution. The ’test_statistic’ is the test statistic of the likelihood
ratio test. The ’mle_delta’ is the maximum likelihood estimate of the delta for the elevated clonal
exclusivity rate in the alternative model of the likelihood ratio test.

Author(s)

Ariane L. Moore

Examples

avg_rates_m=c(0.4, 0.3)
list_of_clon_excl_frac_trees_all_pats <- list(list(c(5, 4, 5), c(5, 4)),

list(c(4, 4, 3), c(3, 2)))
sim_pairs <- build_null_test_statistic(avg_rates_m,

list_of_clon_excl_frac_trees_all_pats, 2, 100,
beta_distortion=100)

ecdf_test_stat <-
ecdf(as.numeric(as.character(sim_pairs$test_statistic)))

plot(ecdf_test_stat,
main="ECDF of the test statistic when num_pat_pair=2")

assume the observed test statistic t=6.0,
compute a p-value given the ecdf of
the test statistic ecdf(T) from the null distribution
p_value=P(T>t | H_0 true)=1-ecdf(t) ## (upper-tailed test)
p_value <- 1-ecdf_test_stat(6.0)

clone_tbl_all_pats_all_trees

The tibble with gene-to-clone assignments from all patients and all
trees

Description

This is a tibble that contains the information, which gene is mutated in which clone from which
patient.

Usage

clone_tbl_all_pats_all_trees

Format

A tibble containing the following columns:

file_name the name of the csv-file from which the data was read

patient_id the patient identifier

altered_entity ensembl gene identifier of the mutated gene

6 compute_rates_clon_excl

clone1 the indication whether the current gene is mutated in this clone

clone2 the indication whether the current gene is mutated in this clone

clone3 the indication whether the current gene is mutated in this clone

clone4 the indication whether the current gene is mutated in this clone

clone5 the indication whether the current gene is mutated in this clone

clone6 the indication whether the current gene is mutated in this clone

clone7 the indication whether the current gene is mutated in this clone

tree_id the identifier that tells from which tree this gene-to-clone assignment comes

Source

The tibble can be generated for each patient separately with create_tbl_tree_collection as
demonstrated in the vignette.

compute_rates_clon_excl

Get rates of clonal exclusivity for each tree inference

Description

Compute the clonal exclusivity rates for each gene-to-clone-assignment from the collection of tree
inferences.

Usage

compute_rates_clon_excl(pat_tbl)

Arguments

pat_tbl A tibble with the information of which gene/pathway is altered in which clone
in the patient, and including this information from the collection of trees. Can
be created with with create_tbl_tree_collection.

Details

Takes the gene-to-clone assignment tibble as created with create_tbl_tree_collection and
computes for each instance from the collection of trees the rate of clonal exclusivity. This rate
is the fraction of gene/pathway pairs that were on a different branch in the tumor phylogeny, i.e. the
fraction of pairs that was clonally exclusive.

Value

A vector with all rates of clonal exclusivity from all tree inferences.

Author(s)

Ariane L. Moore

compute_test_stat_avg_rate 7

Examples

clone_tbl <- dplyr::tibble(file_name =
rep("fn1", 10),
"patient_id"=rep("pat1", 10),
"altered_entity"=paste0("gene",
LETTERS[seq_len(10)]),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1),
"tree_id"=c(rep(1, 5), rep(2, 5)))

compute_rates_clon_excl(clone_tbl)

compute_test_stat_avg_rate

Compute the test statistic of the clonal exclusivity test (lrtest).

Description

Compute test statistic that is based on the average rates of clonal exclusivity of a patient, and the
observed number of times a pair was clonally exclusive across several trees of the tree inference.

Usage

compute_test_stat_avg_rate(avg_rates_m, num_trees_pair, num_clon_excl)

Arguments

avg_rates_m The vector of average rates of clonal exclusivity of each patient the pair is mu-
tated in. It was computed for each patient separately, and is averaged over all
gene pairs and all trees. Expected to be in the same (patient) order as the other
inputs to this function.

num_trees_pair The vector with the number of tree inferences in which the pair was occurring
in. Has to be the same order as avg_rates_m.

num_clon_excl The vector with the number of times the pair was clonally exclusive in the trees
in each patient. Has to be the same order as avg_rates_m.

Details

For a given gene/pathway pair, this function takes as input: the average rates of clonal exclusivity
of all patients in which the pair is mutated, the number of trees among the trees in the collection
of trees from each patient in which the pair was occurring, and the number of times it was clonally
exclusive

Value

A list with the test statistic of the clonal exclusivity test (lrtest), and the maximum likelihood esti-
mate of delta.

Author(s)

Ariane L. Moore

8 convert_ensembl_to_reactome_pw_tbl

Examples

compute_test_stat_avg_rate(c(0.1, 0.2), c(10, 10), c(9, 7))
compute_test_stat_avg_rate(c(0.05, 0.23), c(20, 20), c(8, 5))

convert_ensembl_to_reactome_pw_tbl

Map ensembl gene id clone tibble to reactome pathway clone tibble.

Description

For a tibble that contains the information which ensembl gene id is mutated in which clone, map
the ensembl gene id to the reactome pathways that contain this gene.

Usage

convert_ensembl_to_reactome_pw_tbl(mutated_gene_tbl, ensg_reactome_path_map)

Arguments

mutated_gene_tbl

The tibble containing the information of which ensembl gene id is altered in
which patient and clone. Can be created with e.g. create_tbl_ent_clones.

ensg_reactome_path_map

A tibble with all ensembl id’s and their reactome pathways. Can be loaded with
data("ensg_reactome_path_map").

Details

Such a tibble can be generated with e.g. the function create_tbl_tree_collection. If the al-
tered entities in the lists were the ensembl gene id’s, this function can convert the tibble into a tibble
with the altered reactome pathways. It has the columns ’file_name’, ’patient_id’, ’altered_entity’,
’clone1’, ’clone2’, ... up to the maximal number of clones (Default: until ’clone7’). If the mu-
tated entities are ensembl gene id’s, they can be mapped with this function to the pathways from
’reactome’. The pathways are from the lowest level of hierarchy.

Value

The tibble containing the information of which pathway is altered in which clone.

Author(s)

Ariane L. Moore

Examples

data("ensg_reactome_path_map")
mutated_gene_tbl <-

dplyr::tibble(file_name=c("pat1.csv", "pat1.csv"),
patient_id=c("1","1"),
altered_entity=c("ENSG00000134086",
"ENSG00000141510"),
clone1=c(1,0),

create_ensembl_gene_tbl_hg 9

clone2=c(0,1))
convert_ensembl_to_reactome_pw_tbl(mutated_gene_tbl,

ensg_reactome_path_map)

create_ensembl_gene_tbl_hg

Get a tibble of all gene ensembl id’s, gene names (hgnc), entrez gene
id’s, uniprot/swissprot gene id’s and genomic coordinates.

Description

Retrieve a mapping between different gene identifiers.

Usage

create_ensembl_gene_tbl_hg(GRCh = 37, ensembl_version = 88)

Arguments

GRCh The human genome version. Default: 37.
ensembl_version

The version of the ensembl data base. Default: 88.

Details

This function retrieves the ensembl gene id’s from biomart together with the hgnc gene symbol, the
entrez gene id, the uniprot/swissprot gene id, as well as chromosome, start and end position. This
is done for the human genes from the human genome version hg19/GRCh37, and Ensembl Genes
version 88. The user can also specify other human genome or ensembl versions.

Value

A tibble with the following columns: ensembl_gene_id, hgnc_symbol, entrezgene, uniprotswissprot,
chromosome_name, start_position, end_position. The entrez gene id, as well as the start and
end positions are numeric, and the other columns are characters. The chromosome is specified
without "chr", i.e. the chromosome 13 for example, would be specified with "13".

Author(s)

Ariane L. Moore

Examples

Not run:
create_ensembl_gene_tbl_hg()

End(Not run)

10 create_tbl_ent_clones

create_tbl_ent_clones Get clone alteration tibble.

Description

Creates a tibble containing the information of which genes/pathways are altered in a patient in
which clone.

Usage

create_tbl_ent_clones(path_to_file, max_num_clones = 7)

Arguments

path_to_file The path to the file with the table of altered genes/pathways and their clone
affiliation.

max_num_clones The upper bound for the number of clones that were found per tumor. Default:
7.

Details

It expects a comma-separated table where the first column is the name of the altered gene or path-
way. The other columns are for the clones in the respective tumor. Such a table can be generated
with a tool that identifies clones in tumor samples, e.g. Cloe.

The table is expected to be comma-separated and to have the columns ’altered_entity’, ’clone1’,
’clone2’, ..., ’cloneN’, depending on how many clones were detected in the respective tumor. Each
row then contains in the first column the name of the mutated gene or affected pathway, e.g.
"ENSG00000134086", and in the other columns it has either zeros or ones, indicating in which
clone the respective gene/pathway is altered.

Value

The tibble containing the information of which gene/pathway is altered in which clone in a patient.
Has the columns ’file_name’, ’patient_id’, ’altered_entity’, ’clone1’, ’clone2’, ... up to the maximal
number of clones (Default: until ’clone7’). Note that the labelling of the clones does not matter and
only needs to stay fixed within each patient and tree inference.

Author(s)

Ariane L. Moore

Examples

ext_data_dir <- system.file('extdata', package='GeneAccord')
create_tbl_ent_clones(paste(ext_data_dir,

"/clonal_genotypes/cloe_seed5/01.csv", sep=""))

create_tbl_tree_collection 11

create_tbl_tree_collection

Get clone alteration tibble across the collection of trees.

Description

Read in the patient’s gene-to-clone assignment across a collection of trees

Usage

create_tbl_tree_collection(input_files, no_noisy_ents = 0.9,
max_num_clones = 7)

Arguments

input_files A vector containing the paths to the files with the tables of altered genes/pathways
and their clone affiliation from the collection of tree inferences.

no_noisy_ents Minimum fraction for genes/pathways of how often they have to occur across
the collection of trees in order to be in the tibble. This makes sure that noisy
genes, which were not assigned to many trees are excluded. Default: 0.9.

max_num_clones The upper bound for the number of clones that were found per tumor. Default:
7.

Details

Creates a tibble containing the information of which genes/pathways are altered in which clone in
a patient across a collection of tree inferences. It expects a list containing the paths to the comma-
separated tables where the first column is the name of the altered gene or pathway. The other
columns are for the clones in the respective tumor. Such tables can be generated by repeatedly
performing the phylogenetic tree inference with e.g. the package Cloe, or by sampling from the
posterior. The tables are expected to be comma-separated and to have the columns ’altered_entity’,
’clone1’, ’clone2’, ..., ’cloneN’, depending on how many clones were detected in the respective
tumor. Each row then contains in the first column the name of the mutated gene or affected pathway,
e.g. "ENSG00000134086", and in the other columns it has either zeros or ones, indicating in which
clone the respective gene/pathway is altered.

Value

A clean tibble with the information of which gene/pathway is altered in which clone in the pa-
tient, and with an entry for each tree inference where it occurred. Has the columns ’file_name’,
’patient_id’, ’altered_entity’, ’clone1’, ’clone2’, ... up to the maximal number of clones (Default:
until ’clone7’), and ’tree_id’ as an indication in which tree the assignment was found. Note that
the labelling of the clones does not matter and only needs to stay fixed within each patient and tree
inference.

Author(s)

Ariane L. Moore

12 ecdf_lr_test_clon_excl_avg_rate

Examples

ext_data_dir <- system.file('extdata', package='GeneAccord')
this_patient <- "01"
input_files_01 <- paste(ext_data_dir,

"/clonal_genotypes/cloe_seed", seq(5, 100, by=5),
"/", this_patient, ".csv", sep="")

create_tbl_tree_collection(input_files_01)

ecdf_list The list with the ECDF’s of the test statistic under the null hypothesis

Description

This is a list whose entries are the empirical cumulative distribution functions for different number
of patients that pairs can be mutated in.

Usage

ecdf_list

Format

A list whose entries are the empirical cumulative distribution functions. Entry 1 is set to NULL,
because GeneAccord does not test pairs that occur in just one patient. Entry 2 then contains the
ECDF of the test statistic under the null hypothesis for the case that pairs are mutated in two patients.
Entry 3 contains the ECDF for the case where pairs occur in three patients.

Source

The list was generated with the function generate_ecdf_test_stat as demonstrated in the vi-
gnette, just that the following parameter was set as num_pairs_sim = 100000.

ecdf_lr_test_clon_excl_avg_rate

Compare observed likelihood ratio test statistic to its ecdf under null.

Description

Compare the likelihood ratio test statistic to its ecdf under the null for two mutated genes/pathways
in clones of patients.

Usage

ecdf_lr_test_clon_excl_avg_rate(entA, entB, clone_tbl, avg_rates_m, ecdf_list,
alternative)

ecdf_lr_test_clon_excl_avg_rate 13

Arguments

entA One gene/pathway of the pair.

entB The other gene/pathway of the pair.

clone_tbl The clone tibble as generated with create_tbl_tree_collection from several
trees of the tree inference, i.e. it also contains a column ’tree_id’.

avg_rates_m The average rates of clonal exclusivity for each patient. The name of each rate
is the respective patient_id.

ecdf_list The list of ECDF’s of the test statistic under the null distribution. Can be gen-
erated with generate_ecdf_test_stat. It is important that the rates that are
used for that are the same as the avg_rates_m here.

alternative The character indicating whether pairs should only be tested if delta > 0 or if all
pairs should be tested. Can be one of "greater" or "two.sided".

Details

Tests whether the observed number of clonal exclusivities of mutated entities (genes or pathways) A
and B in clones of patients is significantly different from what would be expected given the average
clonal exclusivity rates. The observed test statistic is compared to the ecdf of the test statistic under
the null hypothesis.

Value

Returns list(p_val, num_patients, mle_delta, test_statistic), i.e. a list with the p-value, the number
of patients in which both of the genes/pathways were mutated, the maximum likelihood estimate of
the delta, and the test statistic.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble("file_name"=
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))

clone_tbl_pat1 <- dplyr::filter(clone_tbl, patient_id == "pat1")
clone_tbl_pat2 <- dplyr::filter(clone_tbl, patient_id == "pat2")
rates_exmpl_1 <- compute_rates_clon_excl(clone_tbl_pat1)
rates_exmpl_2 <- compute_rates_clon_excl(clone_tbl_pat2)
avg_rates_m <- apply(cbind(rates_exmpl_1, rates_exmpl_2), 2, mean)
names(avg_rates_m) <- c(names(rates_exmpl_1)[1],

names(rates_exmpl_2)[1])
values_clon_excl_num_trees_pat1 <- get_hist_clon_excl(clone_tbl_pat1)
values_clon_excl_num_trees_pat2 <- get_hist_clon_excl(clone_tbl_pat2)
list_of_num_trees_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[1]],

pat2=values_clon_excl_num_trees_pat2[[1]])
list_of_clon_excl_all_pats <-

list(pat1=values_clon_excl_num_trees_pat1[[2]],

14 ensembl_to_hgnc

pat2=values_clon_excl_num_trees_pat2[[2]])
num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,

list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
num_pat_pair_max,
num_pairs_sim)

ecdf_lr_test_clon_excl_avg_rate("geneA", "geneB", clone_tbl,
avg_rates_m,
ecdf_list, "greater")

ensembl_to_hgnc Get the hgnc gene symbol for an ensembl gene id.

Description

Map a given ensembl gene id to the hgnc gene symbol.

Usage

ensembl_to_hgnc(this_ensembl, all_genes_tbl)

Arguments

this_ensembl The ensembl id of a gene.

all_genes_tbl A tibble with all genes ensembl id’s and hgnc symbols.

Details

For an ensembl id and a tibble with all genes as input, this function returns the matching hgnc gene
symbol. The tibble with all genes can be generated with create_ensembl_gene_tbl_hg.

Value

The matching hgnc gene symbol.

Author(s)

Ariane L. Moore

Examples

Not run:
all_genes_tbl <- create_ensembl_gene_tbl_hg()
ensembl_to_hgnc("ENSG00000134086", all_genes_tbl)
ensembl_to_hgnc("ENSG00000141510", all_genes_tbl)

End(Not run)

ensembl_to_reactome 15

ensembl_to_reactome Get the reactome pathways for an ensembl gene id.

Description

Map a given ensembl gene id to the reactome pathways that contain this gene.

Usage

ensembl_to_reactome(this_ensembl, ensg_reactome_path_map)

Arguments

this_ensembl The ensembl id of a gene.
ensg_reactome_path_map

A tibble with all ensembl id’s and their reactome pathways. Can be loaded with
data("ensg_reactome_path_map").

Details

As input, an ensembl gene id is given as well as the tibble ’ensg_reactome_path_map’. It can
be loaded with data("ensg_reactome_path_map"), and contains the ensembl gene id to reactome
pathway mappings. The reactome pathways are from the lowest level of the hierarchy. This function
returns the reactome pathways for the input gene.

Value

The pathways that contain this gene as a character vector.

Author(s)

Ariane L. Moore

Examples

data("ensg_reactome_path_map")
ensg_gene <- "ENSG00000134086"
ensembl_to_reactome(ensg_gene, ensg_reactome_path_map)

ensg_reactome_path_map

Ensembl gene id’s and the Reactome pathways.

Description

This is a tibble that contains mappings between ensembl gene id’s and reactome pathways. The
reactome pathways are from the lowest level in the hierarchy ("Lowest level pathway diagram /
Subset of the pathway"), and were obtained by download from the Reactome website (https://
reactome.org/download-data; "ENSEMBL to pathways"). The following commands were used:
wget https://reactome.org/download/current/Ensembl2Reactome.txt; cat Ensembl2Reactome.txt |
grep "Homo sapiens" > Ensembl2Reactome_homo_sapiens.txt

https://reactome.org/download-data
https://reactome.org/download-data

16 ensmusg_reactome_path_map

Usage

ensg_reactome_path_map

Format

A tibble with 46’141 rows and six variables:

ensembl_gene_id the Ensembl gene id as a character
reactome_pw_id the Reactome pathway stable identifier
url The url leading to the pathway graph
reactome_pw_name the name of the Reactome pathway
evidence_code the evidence code
species the species

Source

The tibble was created as follows: library(dplyr); ensg_path_map_raw <- read.csv("Ensembl2Reactome_homo_sapiens.txt",
header = F, sep = "\t", comment.char = "", check.names = F, skip = 0); stopifnot(dim(ensg_path_map_raw)[1]
== 46141); stopifnot(dim(ensg_path_map_raw)[2] == 6); colnames(ensg_path_map_raw) <- c("ensembl_gene_id",
"reactome_pw_id", "url", "reactome_pw_name", "evidence_code", "species"); ensg_path_map_raw
<- dplyr::as.tbl(ensg_path_map_raw); ensg_reactome_path_map <- filter(filter(ensg_path_map_raw,
grepl("ENSG", ensg_path_map_raw$ensembl_gene_id)), species == "Homo sapiens")

ensmusg_reactome_path_map

Ensembl gene id’s and the Reactome pathways - for mouse!

Description

This is a tibble that contains mappings between mouse ensembl gene id’s and reactome pathways.
The reactome pathways are from the lowest level in the hierarchy ("Lowest level pathway diagram
/ Subset of the pathway"), and were obtained by download from the Reactome website (https://
reactome.org/download-data; "ENSEMBL to pathways"). The following commands were used:
wget https://reactome.org/download/current/Ensembl2Reactome.txt; cat Ensembl2Reactome.txt |
grep "Mus musculus" > Ensembl2Reactome_mus_musculus.txt # and then Ensembl2Reactome_mus_musculus_woOmegaSymbol.txt
was created from this by just # replacing the greek ’omega’-symbol in pathway "R-MMU-9027604"
with the word ’omega’.

Usage

ensmusg_reactome_path_map

Format

A tibble with 28,630 rows and six variables:

ensembl_gene_id the Ensembl gene id as a character
reactome_pw_id the Reactome pathway stable identifier
url The url leading to the pathway graph
reactome_pw_name the name of the Reactome pathway
evidence_code the evidence code
species the species

https://reactome.org/download-data
https://reactome.org/download-data

extract_num_clones_tbl 17

Source

The tibble was created as follows: library(dplyr); ensmusg_path_map_raw <- read.csv("Ensembl2Reactome_mus_musculus_woOmegaSymbol.txt",
header = F, sep = "\t", comment.char = "", check.names = F, skip = 0); stopifnot(dim(ensmusg_path_map_raw)[1]
== 28696); stopifnot(dim(ensmusg_path_map_raw)[2] == 6); colnames(ensmusg_path_map_raw)
<- c("ensembl_gene_id", "reactome_pw_id", "url", "reactome_pw_name", "evidence_code", "species");
ensmusg_path_map_raw <- dplyr::as.tbl(ensmusg_path_map_raw); ensmusg_reactome_path_map
<- filter(filter(ensmusg_path_map_raw, grepl("ENSMUSG", ensmusg_path_map_raw$ensembl_gene_id)),
species == "Mus musculus") stopifnot(dim(ensmusg_reactome_path_map)[1] == 28630)

extract_num_clones_tbl

Extract number of clones.

Description

Extract number of clones in each patient.

Usage

extract_num_clones_tbl(clone_tbl)

Arguments

clone_tbl The tibble generated with create_tbl_ent_clones.

Details

Given a clone tibble as created with create_tbl_ent_clones this function extracts the informa-
tion, how many clones there are in each patient. The counted clones will be those with at least one
non-zero entry, i.e. at least one gene/pathway assigned to the clone.

Value

A named vector with the number of clones in each patient. The name of each element is the respec-
tive patient_id.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble(
file_name=c(rep("fn1", 2), rep("fn2", 2)),
patient_id=c(rep("pat1", 2), rep("pat2", 2)),
altered_entity=c("pw1", "pw2", "pw1", "pw3"),
clone1=c(0, 0, 0, 0),
clone2=c(0, 1, 0, 1),
clone3=c(1, 1, 0, 1),
clone4=c(1, 0, 0, 0))

extract_num_clones_tbl(clone_tbl)

18 GeneAccord

GeneAccord Detection of clonally exclusive gene or pathway pairs in a cohort of
cancer patients

Description

Method to detect clonally exclusive gene or pathway pairs in a cohort of cancer patients

Usage

GeneAccord(clone_tbl, avg_rates_m, ecdf_list, alternative = "greater",
genes_of_interest = "ALL", AND_OR = "OR")

Arguments

clone_tbl The tibble containing the information of which gene/pathway is mutated in
which clone from which patient and in which tree from the collection of trees.
Can be generated with create_tbl_tree_collection for each patient sepa-
rately and then appended.

avg_rates_m The average rates of clonal exclusivity for each patient as computed with compute_rates_clon_excl.
The name of each rate is the respective patient id. The rates are assumed to be
the average over all tree inferences from a patient.

ecdf_list The list of ECDF’s of the test statistic under the null distribution. Can be gener-
ated with generate_ecdf_test_stat.

alternative The character indicating whether pairs should only be tested if delta > 0 or if
all pairs should be tested. Can be one of "greater" or "two.sided". Default:
"greater".

genes_of_interest

A character vector of genes to test for clonal exclusivity. The genes have to be
in the same identifier as the one in the tibble. Per default, all genes are tested.
Default: "ALL".

AND_OR If genes_of_interest is specified, this indicator tells whether to test only pairs
within the genes_of_interest (AND), or whether all pairs involving at least
one of these genes should be tested (OR). I.e. can be one of "AND", "OR".
Default: "OR". If genes_of_interest is "ALL", then all gene pairs will be
tested and this parameter is ignored.

Details

After running a tool such as Cloe that identifies clones in a tumor and infers the phylogenetic history,
the user has for each tumor a list of alterations and their clone assignments. Since the tree inference
includes uncertainty, it may be run several times. Given a tibble containing the information of which
genes/pathways are mutated in which patient and clone and from which tree, this function systemat-
ically tests the data for significant clonal exclusivities. That is, it checks for each gene/pathway pair
whether the number of clonal exclusivities is significantly different from what would be expected
by chance. Such a tibble can be generated with create_tbl_tree_collection, and then adding
the additional column ’tree_id’ to indicate which tree of the tree inference was used. For instance,
if the tree inference tool was run several times using different seeds, the column ’tree_id’ may con-
tain the seed of the respective tree. Hence, the tibble is expected to have the columns ’file_name’,
’patient_id’, ’altered_entity’, ’clone1’, ’clone2’, ... up to the maximal number of clones (Default:

GeneAccord 19

until ’clone7’), and ’tree_id’. Note that the labelling of the clones does not matter and only needs to
stay fixed within each patient and tree inference. There is also the option to test two-sided, meaning
that also pairs will be tested that tend to occur more often together in the same clones or separate
in different clones. Hence it also allows to detect significant clonal co-occurrence. An additional
option is to test only a specific subset of genes.

Value

A tibble containing the test result for each pair of mutated genes/pathways that was tested. More
precisely, it contains the columns ’entity_A’, ’entity_B’, ’num_patients’, ’pval’, ’mle_delta’, ’test_statistic’,
and ’qval’. Each row is then a gene or pathway pair which is specified with ’entity_A’, and ’en-
tity_B’. Note that the test is symmetric, hence switching the labels A and B does not change the
results. The column ’num_patients’ contains the information in how many patients both of the
genes/pathways were mutated and hence how many patients’ rates were used for the test. The
’pval’ is the p-value of the clonal exclusivity test. The ’mlde_delta’ is the maximum likelihood
estimate of the delta for the elevated clonal exclusivity rate in the alternative model. The column
’test_statistic’ is the likelihood ratio test statistic. The ’qval’ is the adjusted p-value after multiple
testing correction with Benjamini-Hochberg.

Author(s)

Ariane L. Moore, <ariane.moore@bsse.ethz.ch>

Examples

clone_tbl <- dplyr::tibble("file_name"=
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))

clone_tbl_pat1 <- dplyr::filter(clone_tbl, patient_id == "pat1")
clone_tbl_pat2 <- dplyr::filter(clone_tbl, patient_id == "pat2")
rates_exmpl_1 <- compute_rates_clon_excl(clone_tbl_pat1)
rates_exmpl_2 <- compute_rates_clon_excl(clone_tbl_pat2)
avg_rates_m <- apply(cbind(rates_exmpl_1, rates_exmpl_2), 2, mean)
names(avg_rates_m) <- c(names(rates_exmpl_1)[1],
names(rates_exmpl_2)[1])
values_clon_excl_num_trees_pat1 <- get_hist_clon_excl(clone_tbl_pat1)
values_clon_excl_num_trees_pat2 <- get_hist_clon_excl(clone_tbl_pat2)
list_of_num_trees_all_pats <-

list(pat1=values_clon_excl_num_trees_pat1[[1]],
pat2=values_clon_excl_num_trees_pat2[[1]])

list_of_clon_excl_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[2]],
pat2=values_clon_excl_num_trees_pat2[[2]])

num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,

list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
num_pat_pair_max,
num_pairs_sim)

alternative <- "greater"
GeneAccord(clone_tbl, avg_rates_m, ecdf_list, alternative)

20 generate_ecdf_test_stat

alternative <- "two.sided"
GeneAccord(clone_tbl, avg_rates_m, ecdf_list, alternative)
genes_of_interest <- c("geneB", "geneC")
GeneAccord(clone_tbl, avg_rates_m, ecdf_list,

alternative, genes_of_interest)
AND_OR <- "AND"
GeneAccord(clone_tbl, avg_rates_m, ecdf_list,

alternative, genes_of_interest, AND_OR)

generate_ecdf_test_stat

Generate the ECDF of the test statistic under the null distribution -
taking the average rates of clonal exclusivity

Description

Generate the ECDF of the test statistic under the null distribution - taking the average rates of clonal
exclusivity, as well as sampling from the real data for each patient, in how many trees a pair occurs
and is clonally excl.

Usage

generate_ecdf_test_stat(avg_rates_m, list_of_num_trees_all_pats,
list_of_clon_excl_all_pats, num_pat_pair_max, num_pairs_sim,
beta_distortion = 1000)

Arguments

avg_rates_m The average rates of clonal exclusivity from all the patients in the cohort, and
averaged over several trees from the collection of tree inferences.

list_of_num_trees_all_pats

A named list that contains an entry for each patient which is the vector with
the values of the information from each pair in a patient of how often it was
mutated across trees. The patient odering in the list has to be the same as in
avg_rates_m.

list_of_clon_excl_all_pats

A named list with an entry for each patient that is a vector with the values of in
how many trees a pair was clonally exclusive. The patient ordering in the list
has to be the same as in avg_rates_m.

num_pat_pair_max

The maximum number of patients a pair is mutated in.

num_pairs_sim The number of simulated gene/pathway pairs to be generated, i.e. the number of
times the test statistic is computed. Recommended to choose a big number, e.g.
100000.

beta_distortion

The value M=alpha + beta for the beta distribution, with which the average rates
will be distorted. The bigger the M the higher the distribution is peaked around
the actual rate. Therefore, the lesser the M, the more distorted the rates will be.
Default: 1000.

generate_ecdf_test_stat 21

Details

This function takes the computed average rates of clonal exclusivity from the data (m1, ... mN),
which are specific to each patient and averaged over several trees from the collection of tree infer-
ences. It also takes the histogram for each patient, of the values of how often a pair was clonally
exclusive over the number of trees it was mutated in. It then simulates the test statistic under the null
for each number of patients a pair is be mutated in from 2, 3, ... ’num_pat_pair_max’. Afterwards,
it generates the empirical cumulative distribution function (ECDF) using the ecdf function of the
stats package and returns the list with the ECDF’s for the number of patients n=2, 3, ..., N. This
step is necessary for each new data set before the clonal exclusivity test can be done. In the clonal
exclusivity test, the observed test statistics are compared to the ECDF.

Value

The return value is a list with ECDF’s. The first list entry is just set to NULL for technical reasons.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble("file_name" =
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))

clone_tbl_pat1 <- dplyr::filter(clone_tbl, patient_id == "pat1")
clone_tbl_pat2 <- dplyr::filter(clone_tbl, patient_id == "pat2")
rates_exmpl_1 <- compute_rates_clon_excl(clone_tbl_pat1)
rates_exmpl_2 <- compute_rates_clon_excl(clone_tbl_pat2)
avg_rates_m <- apply(cbind(rates_exmpl_1, rates_exmpl_2), 2, mean)
names(avg_rates_m) <- c(names(rates_exmpl_1)[1], names(rates_exmpl_2)[1])
values_clon_excl_num_trees_pat1 <- get_hist_clon_excl(clone_tbl_pat1)
values_clon_excl_num_trees_pat2 <- get_hist_clon_excl(clone_tbl_pat2)
list_of_num_trees_all_pats <-

list(pat1=values_clon_excl_num_trees_pat1[[1]],
pat2=values_clon_excl_num_trees_pat2[[1]])

list_of_clon_excl_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[2]],
pat2=values_clon_excl_num_trees_pat2[[2]])

num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,

list_of_num_trees_all_pats, list_of_clon_excl_all_pats,
num_pat_pair_max, num_pairs_sim)

plot(ecdf_list[[2]])

22 generate_test_stat_hist

generate_test_stat_hist

Generate the test statistic and p-values under the null distribution

Description

Generate the values of the test statistic under the null, and also p-values of the clonal exclusivity
test under the null. Taking the average rates of clonal exclusivity, as well as sampling from the real
data for each patient, in how many trees a pair occurs and is clonally exclusive.

Usage

generate_test_stat_hist(avg_rates_m, list_of_num_trees_all_pats,
list_of_clon_excl_all_pats, ecdf_list, num_pat_pair_max, num_pairs_sim,
beta_distortion = 1000)

Arguments

avg_rates_m The average rates of clonal exclusivity from all the patients in the cohort, and
averaged over several trees from the collection of tree inferences.

list_of_num_trees_all_pats

A named list that contains an entry for each patient which is the vector with
the values of the information from each pair in a patient of how often it was
mutated across trees. The patient odering in the list has to be the same as in
avg_rates_m.

list_of_clon_excl_all_pats

A named list with an entry for each patient that is a vector with the values of in
how many trees a pair was clonally exclusive. The patient ordering in the list
has to be the same as in avg_rates_m.

ecdf_list The list with ECDF’s as generated with generate_ecdf_test_stat.
num_pat_pair_max

The maximum number of patients a pair is mutated in.

num_pairs_sim The number of simulated gene/pathway pairs to be generated, i.e. the number of
times the test statistic is computed.

beta_distortion

The value M=alpha + beta for the beta distribution, with which the average rates
will be distorted. The bigger the M the higher the distribution is peaked around
the actual rate. Therefore, the lesser the M, the more distorted the rates will be.
Default: 1000.

Details

This function takes the computed average rates of clonal exclusivity from the data (m1, ... mN),
which are specific to each patient and averaged over several trees from the collection of tree infer-
ences. It also takes the histogram for each patient, of the values of how often a pair was clonally
exclusive over the number of trees it was mutated in. It also takes the empirical cumulative distri-
bution function (ECDF) which was generated with generate_ecdf_test_stat. It then computes
the p-value of the simulated pairs under the null.

get_hist_clon_excl 23

Value

The return value is a list of tibbles with a tibble for each number of patients, a pair can be mutated
in. Each tibble contains the columns ’test_statistic’, ’mle_delta’, and then num_pat_pair columns
of the rates of each patient ’pat1’, ’pat2’, ...; as well as num_pat_pair columns with the information
about each patient, in how many trees the pair was occurring and in how many trees the pair was
clonally exclusive. The tibble also contains a column ’pval’ with the p-value of the simulated pair.
The list of tibbles is of length minnum_pat_pair_max, length(avg_rates_m).

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble("file_name" =
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))

clone_tbl_pat1 <- dplyr::filter(clone_tbl, patient_id == "pat1")
clone_tbl_pat2 <- dplyr::filter(clone_tbl, patient_id == "pat2")
rates_exmpl_1 <- compute_rates_clon_excl(clone_tbl_pat1)
rates_exmpl_2 <- compute_rates_clon_excl(clone_tbl_pat2)
avg_rates_m <- apply(cbind(rates_exmpl_1, rates_exmpl_2), 2, mean)
names(avg_rates_m) <- c(names(rates_exmpl_1)[1], names(rates_exmpl_2)[1])
values_clon_excl_num_trees_pat1 <- get_hist_clon_excl(clone_tbl_pat1)
values_clon_excl_num_trees_pat2 <- get_hist_clon_excl(clone_tbl_pat2)
list_of_num_trees_all_pats <-
list(pat1=values_clon_excl_num_trees_pat1[[1]],

pat2=values_clon_excl_num_trees_pat2[[1]])
list_of_clon_excl_all_pats <-

list(pat1=values_clon_excl_num_trees_pat1[[2]],
pat2=values_clon_excl_num_trees_pat2[[2]])

num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,

list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
num_pat_pair_max, num_pairs_sim)

sim_res <- generate_test_stat_hist(avg_rates_m,
list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
ecdf_list,
num_pat_pair_max,
num_pairs_sim)

get_hist_clon_excl Compute all values of how often gene pairs were clonally exclusive
across all trees for a patient.

24 get_hist_clon_excl_this_pat_this_pair

Description

Compute all values of how often gene pairs were clonally exclusive/all trees for a patient.

Usage

get_hist_clon_excl(clone_tbl)

Arguments

clone_tbl A tibble containing the columns ’altered_entity’, and then a column for each
clone in the tumor, e.g. ’clone1’, ’clone2’, ’clone3’. It also contains the column
’tree_id’, which specifies which tree of the collection of tree inferences was
used. This tibble can be generated e.g. from the Cloe output.

Details

It computes a histogram of the following two values: Amomg all gene/pathway pairs in a patient,
the number of trees in which the both entities of a pair are assigned to a clone at all, and the number
of trees in which the pair is clonally exclusive.

Value

A list with two vectors: The numbers of how often gene pairs were mutated across trees, and the
numbers of how often they were clonally exclusive. The order of these two vectors is matching, i.e.
the ith entry in each vector refers to the same gene pair.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble(
altered_entity=c(paste("gene", seq_len(10), sep="")),
clone1=c(rep(0,10)),
clone2=c(sample(c(0,1), 10, replace=TRUE)),
clone3=c(sample(c(0,1), 10, replace=TRUE)),
clone4=c(sample(c(0,1), 10, replace=TRUE)),
tree_id=c(rep(5, 5), rep(10, 5)))

get_hist_clon_excl(clone_tbl)

get_hist_clon_excl_this_pat_this_pair

Check for a pair how often it was mutated in the current patient across
trees, and how often also clonally exclusive.

Description

Check for a pair how often it was mutated in the current patient across trees, and how often also
clonally exclusive.

get_rate_diff_branch_ent_pair 25

Usage

get_hist_clon_excl_this_pat_this_pair(entA, entB, clone_tbl)

Arguments

entA One gene/pathway of the pair

entB The other gene/pathway of the pair

clone_tbl A tibble containing the columns ’altered_entity’, and then a column for each
clone in the tumor, e.g. ’clone1’, ’clone2’, ’clone3’. It also contains the column
’tree_id’, which specifies which tree of the collection of tree inferences was
used. This tibble can be generated e.g. from the Cloe output.

Value

A vector with the values of in how many trees the pair was mutated, and in how many of those it
was clonally exclusive.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble(
altered_entity=c(paste("gene", seq_len(10), sep="")),
clone1=c(rep(0,10)),
clone2=c(sample(c(0,1), 10, replace=TRUE)),
clone3=c(sample(c(0,1), 10, replace=TRUE)),
clone4=c(sample(c(0,1), 10, replace=TRUE)),
tree_id=c(rep(5, 5), rep(10, 5)))

get_hist_clon_excl_this_pat_this_pair("gene1", "gene2", clone_tbl)

get_rate_diff_branch_ent_pair

Compute rate of being in different branches/clones.

Description

Compute the rate of mutated gene/pathway pairs being in different branches.

Usage

get_rate_diff_branch_ent_pair(clone_tbl)

Arguments

clone_tbl A tibble containing the columns ’altered_entity’, and then a column for each
clone

26 heatmap_clones_gene_pat

Details

Given the output of a tool that identifies clones within tumors and their phylogenetic history, this
function computes the rate of mutated gene/pathway pairs being in different branches. That is,
it will calculate the number of times mutated gene/pathway pairs are in different branches/clones
divided by the total number of all mutated gene/pathway pairs.

Value

The rate of occurrence of mutated gene/pathway pairs being in different clones.

Author(s)

Ariane L. Moore in the tumor, e.g. ’clone1’, ’clone2’, ’clone3’. This tibble can be generated e.g.
from the Cloe output.

Examples

clone_tbl <- dplyr::tibble(
altered_entity=c(paste("gene", seq_len(10), sep="")),
clone1=c(rep(0,10)),
clone2=c(sample(c(0,1), 10, replace=TRUE)),
clone3=c(sample(c(0,1), 10, replace=TRUE)),
clone4=c(sample(c(0,1), 10, replace=TRUE)))

get_rate_diff_branch_ent_pair(clone_tbl)

heatmap_clones_gene_pat

Heatmaps of gene pairs of interest

Description

This function plots the heatmaps of final gene clone matrices.

Usage

heatmap_clones_gene_pat(pairs_of_interest, clone_tbl, all_genes_tbl,
first_clone_is_N = FALSE, output_pdf = "direct")

Arguments

pairs_of_interest

The tibble containing the pairs of genes/pathways that should be visualized in
the heatmap. This may be, e.g. the gene pairs were mle_delta > 0, qval < 0.1,
and num_patients > 1. It contains the columns ’entity_A’, and ’entity_B’, and
can be generated with GeneAccord. For the plot, the function will attempt to
map the gene ID’s from ensembl ID to gene name. However, if the input genes
are not ensembl IDs, it does not matter.

clone_tbl The tibble containing the information of which gene/pathway is mutated in
which clone from which patient. Here, it is assumed that only one tree from
the collection of trees was chosen per patient.

hgnc_to_ensembl 27

all_genes_tbl A tibble with all genes ensembl id’s and hgnc symbols. Can be created with
create_ensembl_gene_tbl_hg.

first_clone_is_N

Logical indicating whether the first clone column is actually representing the
normal or germline, and is not a tumor clone. In that case, it will have the name
’N’, and all other columns will be one clone number smaller, e.g. ’clone2’ is
then actually ’clone1’ etc. Default: FALSE.

output_pdf The name of the pdf to be generated. Or if output_pdf is "direct", then the plot
is generated directly and not to a pdf. Default: "direct"

Details

After running the GeneAccord, one may want to visualize the gene clone heatmap for significant
gene pairs.

Value

None, the function plots a gene-to-clone assignment heatmap.

Author(s)

Ariane L. Moore

Examples

pairs_of_interest <- dplyr::tibble(entity_A="SETD2",
entity_B="BAP1")

clone_tbl <- dplyr::tibble(
file_name=c("X.csv", "X.csv", "Y.csv", "Y.csv"),
patient_id=c("X", "X", "Y", "Y"),
altered_entity=c("SETD2", "BAP1", "SETD2", "BAP1"),
clone1=c(0, 1, 1, 0),
clone2=c(1, 0, 0, 1))

Not run: all_genes_tbl <- create_ensembl_gene_tbl_hg()
all_genes_tbl_example <- dplyr::tibble(

ensembl_gene_id=c("ENSG00000181555",
"ENSG00000163930"),
hgnc_symbol=c("SETD2", "BAP1"))

heatmap_clones_gene_pat(pairs_of_interest, clone_tbl,
all_genes_tbl_example)

hgnc_to_ensembl Get the ensembl gene id for a hgnc gene symbol.

Description

Map a given hgnc gene symbol to the ensembl gene id.

Usage

hgnc_to_ensembl(this_hgnc, all_genes_tbl)

28 is_diff_branch_ent_pair

Arguments

this_hgnc The hgnc gene symbol of a gene.

all_genes_tbl A tibble with all genes ensembl id’s and hgnc gene symbols.

Details

For a hgnc gene symbol and a tibble with all genes as input, this function returns the matching
ensembl gene id. The tibble with all genes can be generated with create_ensembl_gene_tbl_hg.

Value

The matching ensembl gene id. In case several ensembl gene id’s were found, they are all returned
with ";" as a separator.

Author(s)

Ariane L. Moore

Examples

Not run:
all_genes_tbl <- create_ensembl_gene_tbl_hg()
hgnc_to_ensembl("VHL", all_genes_tbl)
hgnc_to_ensembl("PBRM1", all_genes_tbl)

End(Not run)

is_diff_branch_ent_pair

Check whether pair is in different branches/clones.

Description

Check whether a given pair of mutated genes/pathways is in different branches/clones.

Usage

is_diff_branch_ent_pair(ent1, ent2, clone_tbl)

Arguments

ent1 One mutated gene/pathway from the pair.

ent2 The other mutated gene/pathway from the pair.

clone_tbl A tibble containing the columns ’altered_entity’, and then a column for each
clone in the tumor, e.g. ’clone1’, ’clone2’, ’clone3’. This tibble can be generated
e.g. from the Cloe output.

Details

Given two mutated genes or pathways and the clone tibble as described in get_rate_diff_branch_ent_pair,
this function returns TRUE or FALSE for whether the pair is mutated in different branches/clones.

list_of_clon_excl_all_pats 29

Value

TRUE or FALSE for whether or not the pair is mutated in different clones/in different branches of the
tree.

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble(
altered_entity=c(paste("gene", seq_len(10), sep="")),
clone1=c(rep(0,10)),
clone2=c(sample(c(0,1), 10, replace=TRUE)),
clone3=c(sample(c(0,1), 10, replace=TRUE)),
clone4=c(sample(c(0,1), 10, replace=TRUE)))

is_diff_branch_ent_pair("gene1", "gene2", clone_tbl)

list_of_clon_excl_all_pats

The list with the histogram of how often pairs are clonally exclusive
across the collection of trees

Description

This is a named list whose entries for each patient are the histograms of how often pairs are clonally
exclusive in all trees of a patient.

Usage

list_of_clon_excl_all_pats

Format

A list whose entries are named after the patient, and they contain vectors with the numbers of how
often the pairs in this patient are clonally exclusive accross trees.

Source

The histogram can be generated for each patient separately with get_hist_clon_excl as demon-
strated in the vignette.

30 map_pairs_to_hgnc_symbols

list_of_num_trees_all_pats

The list with the histogram of how often pairs are occurring across the
collection of trees

Description

This is a named list whose entries for each patient are the histograms of how often pairs occurr in
all trees of a patient.

Usage

list_of_num_trees_all_pats

Format

A list whose entries are named after the patient, and they contain vectors with the numbers of how
often the pairs in this patient occur accross trees.

Source

The histogram can be generated for each patient separately with get_hist_clon_excl as demon-
strated in the vignette.

map_pairs_to_hgnc_symbols

Map the ensembl gene ids to hgnc symbols from a tibble

Description

Map the ensembl gene ids to hgnc symbols from a tibble with pairs.

Usage

map_pairs_to_hgnc_symbols(pairs_of_interest_tbl, all_genes_tbl)

Arguments

pairs_of_interest_tbl

A tibble containing pairs of mutated genes/pathways. More precisely, it contains
the columns ’entity_A’ and ’entity_B’.

all_genes_tbl A tibble with all genes ensembl id’s and hgnc symbols. Can be created with
create_ensembl_gene_tbl_hg.

Details

After having extracted the pairs of interest, it is of interest to know the genes hgnc symbols of the
pairs. Here, it is assumed that the current gene identifier of the pairs are ensembl gene ids. They
will be mapped to the corresponding hgnc symbols.

merge_clones_identical_ents 31

Value

A tibble similar to the input pairs_of_interest_tbl but with two additional columns, namely
’hgnc_gene_A’, and ’hgnc_gene_B’. The column ’hgnc_gene_A’ contains the hgnc gene symbol of
’entity_A’, and the column ’hgnc_gene_B’ the one of ’entity_B’.

Author(s)

Ariane L. Moore

Examples

Not run:
pairs_of_interest <- dplyr::tibble(

entity_A=c("ENSG00000181143", "ENSG00000163939"),
entity_B=c("ENSG00000141510", "ENSG00000163930"))

all_genes_tbl <- create_ensembl_gene_tbl_hg()
map_pairs_to_hgnc_symbols(pairs_of_interest, all_genes_tbl)

End(Not run)

merge_clones_identical_ents

Merge identical entities in clone tibble from one patient

Description

Merge clone profile of identical entities in clone tibble from one patient

Usage

merge_clones_identical_ents(clone_tbl)

Arguments

clone_tbl The clone tibble as generated with create_tbl_ent_clones from one patient.

Details

Given a clone tibble as created with create_tbl_ent_clones from one patient and where the
entities were possibly mapped from genes to pathways, this function checks whether there were
several entities mapped to the same new entity. If so, the clone profile will be merged. This can be
the case, for instance, of two mutated genes are in the same pathway(s).

Value

The same tibble but in case there were several identical genes/pathways in the same patient with
different clone profiles, their profile will be merged together. This can happen if, e.g. two genes with
different clone profiles are in the same pathway. When mapping them to the pathways, there will be
two identical ’altered_entities’ with different clone profiles. These profiles would be merged by this
function because the pathway is affected in the union of clones were the two genes were mutated.

32 pairs_in_patients_hist

Author(s)

Ariane L. Moore

Examples

clone_tbl <- dplyr::tibble(
file_name=c(rep("fn1", 4)),
patient_id=c(rep("pat1", 4)),
altered_entity=c("pw1", "pw1",

"pw2", "pw3"),
clone1=c(1, 0, 1, 0),
clone2=c(0, 1, 0, 1),
clone3=c(1, 1, 0, 1),
clone4=c(0, 1, 0, 0))

merge_clones_identical_ents(clone_tbl)

pairs_in_patients_hist

Pairs in how many patients histogram

Description

Check in how many patients pairs are mutated in

Usage

pairs_in_patients_hist(clone_tbl)

Arguments

clone_tbl The tibble containing the information of which gene/pathway is mutated in
which clone from which patient and in which tree from the collection of trees.
Can be generated with create_tbl_tree_collection for each patient sepa-
rately and then appended.

Details

After having created the tibble with all gene-to-clone assignments from all patients and the whole
collection of trees, we’re interested in how many patients tha pairs are mutated in. This function
creats a histogram that shows in how many patients the pairs are mutated in.

Value

The tibble that summarizes the number of pairs that occur in how many patients.

Author(s)

Ariane L. Moore

plot_ecdf_test_stat 33

Examples

clone_tbl <- dplyr::tibble("file_name" =
rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(5, 6), rep(10, 6)))

pairs_in_patients_hist(clone_tbl)

plot_ecdf_test_stat Plot empirical cumulative distribution functions of the test statistic un-
der the null.

Description

This function plots the ECDFs of the test statistic under the null hypothesis.

Usage

plot_ecdf_test_stat(ecdf_list, plot_idx = c(2, 3), num_panel_rows = 1,
output_pdf = "direct")

Arguments

ecdf_list The list of ECDF’s as generated with generate_ecdf_test_stat.

plot_idx The index of which of the list entries of the ecdf_list to plot. Default: c(2,3).

num_panel_rows The ECDF’s will be plotted altogether, hence par(mfrow=c(x,y)) is used.
Here, x is the number of panel rows, which has to be set with this parameter,
and y will be taken as ceil(#ECDF’s/x). E.g., if you have 20 ECDF’s in total,
you can set num_panel_rows=4, and then your 20 ECDF’s will be plotted in
panels with four rows, and five columns. Default=1.

output_pdf The name of the pdf to be generated. Or if output_pdf is "direct", then the plot
is generated directly and not to a pdf. Default: "direct".

Details

The ECDF’s of the test statistic under the null for a data set can be generated with generate_ecdf_test_stat.
Afterwards, they can be visualized with this function. It is assumed that the first ECDF in the
ecdf_list is the ECDF for the case where pairs are mutated in two patients.

Value

None, the function plots ecdf curves.

Author(s)

Ariane L. Moore

34 plot_rates_clon_excl

Examples

avg_rates_m <- c(pat1=0.1, pat2=0.034, pat3=0.21, pat4=0.063)
list_of_num_trees_all_pats <- list(pat1=c(20, 20, 19),

pat2=c(20, 18, 20),
pat3=c(19, 20, 20),
pat4=c(20, 20, 20))

list_of_clon_excl_all_pats <- list(pat1=c(5, 0, 1),
pat2=c(10, 2, 0),
pat3=c(18, 12, 0),
pat4=c(0, 2, 0))

num_pat_pair_max <- 2
num_pairs_sim <- 10
ecdf_list <- generate_ecdf_test_stat(avg_rates_m,

list_of_num_trees_all_pats,
list_of_clon_excl_all_pats,
num_pat_pair_max,
num_pairs_sim)

plot_ecdf_test_stat(ecdf_list, plot_idx=2)

plot_rates_clon_excl Barplot of rates of clonal exclusivity and number of clones.

Description

This function plots the average rates of clonal exclusivity for each patient.

Usage

plot_rates_clon_excl(avg_rates_m, clone_tbl, output_pdf = "direct")

Arguments

avg_rates_m A named vector with the average rates of clonal exclusivity for each patient. The
name of each element is the patient id to be used in the barplot.

clone_tbl The tibble containing the gene-to-clone assignments from all patients and all
trees from the collection of trees.

output_pdf The name of the pdf to be generated. Or if output_pdf is "direct", then the plot
is generated directly and not to a pdf. Default: "direct"

Details

In addition to the average rate of clonal exclusivity, it also visualizes the average number of clones
of each patient.

Value

None, the function plots the average rates of clonal exclusivity.

Author(s)

Ariane L. Moore

take_pairs_and_get_patients 35

Examples

clone_tbl <- dplyr::tibble(
"file_name"=rep(c(rep(c("fn1", "fn2"), each=3)), 2),
"patient_id"=rep(c(rep(c("pat1", "pat2"), each=3)), 2),
"altered_entity"=c(rep(c("geneA", "geneB", "geneC"), 4)),
"clone1"=c(0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0),
"clone2"=c(1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1),
"tree_id"=c(rep(1, 6), rep(2, 6)))

avg_rates_m <- c(pat1=0.014, pat2=0.3)
plot_rates_clon_excl(avg_rates_m, clone_tbl)

take_pairs_and_get_patients

Get the patients in which pairs are mutated

Description

Take the final pairs and return the patients id’s, in which they are mutated, and the patients id’s in
which they are clonally exclusive.

Usage

take_pairs_and_get_patients(clone_tbl_all_trees, pairs_of_interest_tbl)

Arguments

clone_tbl_all_trees

The tibble containing the information of which gene/pathway is mutated in
which clone from which patient across a collection of trees. Can be gener-
ated with create_tbl_tree_collection, repeatedly for each patient, and then
combining them.

pairs_of_interest_tbl

A tibble containing pairs of mutated genes/pathways. More precisely, it contains
the columns ’entity_A’ and ’entity_B’.

Details

This function takes the final pairs of interest, and returns a tibble with the information for each gene
pair, in which patient the pair was mutated, and in which of these patients the pair was clonally
exclusive in the majority of the trees in the tree inference collection.

Value

A tibble similar to the input pairs_of_interest_tbl but with two additional columns, namely
’mutated_in’, and ’clonally_exclusive_in’. The column ’mutated_in’ contains the patient id’s that
the pair is mutated in separated by a semicolon. The column ’clonally_exclusive_in’ contains the
semicolon separated patient id’s of the ones in which the pairs was also clonally exclusive in the
majority of the trees in the collection of tree inferences.

Author(s)

Ariane L. Moore

36 vis_pval_distr_num_pat

Examples

clone_tbl <- dplyr::tibble(file_name=rep(c(rep(c("fn1", "fn2"),
each=3)), 2),
patient_id=rep(c(rep(c("pat1", "pat2"),
each=3)), 2),
altered_entity=c(rep(c("geneA", "geneB", "geneC"),
4)),
clone1=c(0, 1, 0, 1, 0, 1, 0,
1, 1, 1, 0, 0),
clone2=c(1, 0, 1, 0, 1, 1, 1,
0, 0, 1, 0, 1),
tree_id=c(rep(5, 6), rep(10, 6)))

pairs_of_interest <- dplyr::tibble(entity_A=c("geneA", "geneB"),
entity_B=c("geneB", "geneC"))

take_pairs_and_get_patients(clone_tbl, pairs_of_interest)

vis_pval_distr_num_pat

Plot histogram and empirical cumulative distribution function of p-
values.

Description

This function visualizes the distribution of p-values.

Usage

vis_pval_distr_num_pat(res_sim, output_pdf = "direct")

Arguments

res_sim tibble containing the simulated pairs of genes/pathways. It contains the columns
’num_patients’, and ’pval’, and can be generated with generate_test_stat_hist
and then concatenating the tibbles.

output_pdf The name of the pdf to be generated. Or if output_pdf is "direct", then the plot
is generated directly and not to a pdf. Default: "direct"

Details

It is especially useful, when exploring the results with simulated data under the null hypothesis, i.e.
when delta is zero. In that scenario, the p-values are expected to be uniformly distributed. This
function can take the p-values from generate_test_stat_hist where the concatenated tibble
contains different values for ’num_pat_pair’, i.e. the number of patients the simulated pairs are
mutated in. The input tibble is expected to have the two columns ’pval’, and ’num_patients’. Left
panel: histogram of all p-values from the whole tibble. Right panel: ecdf of the p-values with
different colors for different numbers of patients that the pairs were mutated in.

Value

None, the function plots a p-value histogram.

write_res_pairs_to_disk 37

Author(s)

Ariane L. Moore

Examples

res_sim <- dplyr::tibble(num_patients=c(rep(2,100),
rep(3,100), rep(4,100)),
pval=c(runif(300)))

vis_pval_distr_num_pat(res_sim)

write_res_pairs_to_disk

Write resulting significant pairs to disk

Description

Write the resulting significant pairs tibble to disk as a tab-separated file.

Usage

write_res_pairs_to_disk(sig_pairs, avg_rates_m, tsv_file, num_digits = 2)

Arguments

sig_pairs The tibble containing the significant pairs of mutated genes/pathways.

avg_rates_m The average rates of clonal exclusivity for each patient. The name of each rate
is the respective patient identifier.

tsv_file The path to the tsv-file to which the results should be written.

num_digits The number of digits after the comma of the average rate m, the p-value and the
q-value (adjusted p-value). Default: 2.

Details

After having extracted the significant pairs. The tibble can be saved as a tab-separated file. It
is assumed that the input tibble has the columns ’hgnc_gene_A’, ’hgnc_gene_B’, ’pval’, ’qval’,
’mutated_in’, ’clonally_exclusive_in’.

Value

The tibble that is written to disk. It has the columns ’Gene A’, ’Gene B’, ’P-value’, ’Adjusted
p-value’, ’Mutated in (rate)’, ’Clonally exclusive in’.

Author(s)

Ariane L. Moore

38 write_res_pairs_to_disk

Examples

sig_pairs <- dplyr::tibble(hgnc_gene_A=c("VHL", "BAP1"),
hgnc_gene_B=c("PTEN", "KIT"),
pval=c(0.001, 0.002),
qval=c(0.01, 0.02),
mutated_in=c("pat1; pat2", "pat1; pat2"),
clonally_exclusive_in=c("pat1; pat2",
"pat2"))

avg_rates_m <- c(pat1=0.0034, pat2=0.0021)
write_res_pairs_to_disk(sig_pairs, avg_rates_m, "test.tsv")
file.remove("test.tsv")

Index

∗Topic datasets
all_genes_tbl, 3
avg_rates_m, 3
clone_tbl_all_pats_all_trees, 5
ecdf_list, 12
ensg_reactome_path_map, 15
ensmusg_reactome_path_map, 16
list_of_clon_excl_all_pats, 29
list_of_num_trees_all_pats, 30

all_genes_tbl, 3
avg_rates_m, 3

build_null_test_statistic, 4

clone_tbl_all_pats_all_trees, 5
compute_rates_clon_excl, 4, 6, 18
compute_test_stat_avg_rate, 7
convert_ensembl_to_reactome_pw_tbl, 8
create_ensembl_gene_tbl_hg, 3, 9, 14, 27,

28, 30
create_tbl_ent_clones, 8, 10, 17, 31
create_tbl_tree_collection, 6, 8, 11, 13,

18, 32, 35

ecdf_list, 12
ecdf_lr_test_clon_excl_avg_rate, 12
ensembl_to_hgnc, 14
ensembl_to_reactome, 15
ensg_reactome_path_map, 15
ensmusg_reactome_path_map, 16
extract_num_clones_tbl, 17

GeneAccord, 18, 26, 27
generate_ecdf_test_stat, 12, 13, 18, 20,

22, 33
generate_test_stat_hist, 22, 36
get_hist_clon_excl, 23, 29, 30
get_hist_clon_excl_this_pat_this_pair,

24
get_rate_diff_branch_ent_pair, 25, 28

heatmap_clones_gene_pat, 26
hgnc_to_ensembl, 27

is_diff_branch_ent_pair, 28

list_of_clon_excl_all_pats, 29
list_of_num_trees_all_pats, 30

map_pairs_to_hgnc_symbols, 30
merge_clones_identical_ents, 31

pairs_in_patients_hist, 32
plot_ecdf_test_stat, 33
plot_rates_clon_excl, 34

take_pairs_and_get_patients, 35

vis_pval_distr_num_pat, 36

write_res_pairs_to_disk, 37

39

	all_genes_tbl
	avg_rates_m
	build_null_test_statistic
	clone_tbl_all_pats_all_trees
	compute_rates_clon_excl
	compute_test_stat_avg_rate
	convert_ensembl_to_reactome_pw_tbl
	create_ensembl_gene_tbl_hg
	create_tbl_ent_clones
	create_tbl_tree_collection
	ecdf_list
	ecdf_lr_test_clon_excl_avg_rate
	ensembl_to_hgnc
	ensembl_to_reactome
	ensg_reactome_path_map
	ensmusg_reactome_path_map
	extract_num_clones_tbl
	GeneAccord
	generate_ecdf_test_stat
	generate_test_stat_hist
	get_hist_clon_excl
	get_hist_clon_excl_this_pat_this_pair
	get_rate_diff_branch_ent_pair
	heatmap_clones_gene_pat
	hgnc_to_ensembl
	is_diff_branch_ent_pair
	list_of_clon_excl_all_pats
	list_of_num_trees_all_pats
	map_pairs_to_hgnc_symbols
	merge_clones_identical_ents
	pairs_in_patients_hist
	plot_ecdf_test_stat
	plot_rates_clon_excl
	take_pairs_and_get_patients
	vis_pval_distr_num_pat
	write_res_pairs_to_disk
	Index

